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1. INTRODUCTION 
An essential feature of human thinking is the capacity for 
logical reasoning. Everyone uses it all the time, mostly in an 
unconscious way. It was this capacity which eventually led to 
man's scientific activity. Therefore, it is not surprising that 
since the dawn of history, man has reflected upon the very 
nature of logical reasoning. He has modeled it within natural 
language, and isolated general rules operative in the human 
brain in everyday experience. In the course of time, the rules 
of logic were abstracted from natural language and expressed 
within formal languages, which model natural languages to 
the extent that they keep the logical structure intact. These 
formal languages together with the rules are called formal, or 
logical systems. 

There are many such formal systems to date, each devel- 
oped according to the purpose it was meant to serve. For 
instance, one formal system might be developed as a tool to 
be used by a mathematician to prove theorems within some 
theory, while another might be of a purely machine-oriented 
nature. Formal systems developed within non-monotonic 
logic must account for contingent truths; clearly, such sys- 
tems, which admit the possibility of contingency, would be 
inappropriate for proving mathematical theorems. 

Most of these formal systems are based on first-order logic 
(FOL). Its rules are so fundamental that any (existing or fu- 
ture) system of practical importance will probably have incor- 
porated them in some form. This is, for instance, true of 
systems for both higher-order and modal logic which simply 
are extensions of FOL. Further, FOL is both natural and pow- 
erful enough to model much of our reasoning adequately. We 
will, therefore, focus our attention on FOL keeping in mind 
that, while this restriction may be artificial, it is certainly 
reasonable as a point of departure. 

Although this paper is written with a particular formal 
system for FOL in mind, we will not specify the details here. 
No trouble should arise for readers familiar with the basic 
concepts of FOL. As usual, we have the class of (well-formed) 
formulas which correspond to syntactically correct fragments 
of text in natural language. 
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The most fundamental problem in FOL, as in any other 
formal system, is the development of a (hopefully efficient) 
procedure which for a given set of formulas Fo . . . . .  F,, n _> 0, 
decides whether Fo is a consequence of F1 . . . . .  Fn according 
to the rules in FOL. Such a procedure is called a decision 
procedure. According to a well-known result of Church (e.g., 
see [15], p. 170), this problem, in its most general form, has no 
solution, unless the Fi's are taken from certain subclasses of 
formulas (which frequently is the case for formulas of inter- 
est). For arbitrary F/s, there are only so-called semi-decision or 
proof procedures, that is, procedures which are guaranteed to 
give a result in the affirmative case only, and in the negative 
case may give an answer (the usual case in practice) or run 
forever. These are the type of procedures we will study. 

If we could develop an efficient such procedure this would 
have an enormous practical impact for many kinds of applica- 
tions in science because of the general nature of FOL dis- 
cussed before. Some of these applications are described by 
Nilsson [18]. It has occasionally been argued against this kind 
of general approach with reference to results (and conjectures) 
from complexity theory which seem to indicate that in princi- 
ple such procedures cannot be efficient for arbitrary formulas. 
But even were this the case, it would not say very much 
about the feasibility of proof procedures in practice because of 
the worst-case nature of such general complexity results (cf., 
Sect. IV.3 in [7]). Therefore, the development of efficient proof 
procedures does remain a challenging and promising research 
goal. 

This is not to say that current proof procedures are com- 
pletely inefficient. On the contrary, running deductive sys- 
tems have proved rather deep mathematical theorems auto- 
matically; they have even solved a number of open mathe- 
matical problems (none of the famous ones, of course) for 
which a human proof was not found. Further they are in 
daily use as programming aids, generating or verifying pieces 
of programming code. (The interested reader is referred to the 
Proceedings of the Conferences on Automated Deduction [9, 
14, 17, 21]. In many respects, these achievements are still 
modest, however, when compared with human performance. 

The reasons for their deficiencies seem to be of two differ- 
ent kinds. First, human beings seem to adapt, quickly, power- 
ful strategies which speed up the search. Research is just 
beginning to study such adaptive mechanisms. Second, the 
existing systems are based on proof procedures which work in 
such a redundant way that it is amazing that they are at all 
successful. Researchers, like all people, tend to a monotheistic 
attitude in such a situation, expecting the cure by solving one 
of these two kinds of problems. We believe, however, that 
both kinds of deficiencies necessarily have to be removed in 
order to substantially enhance the performance of running 
systems. 

This paper is concerned with only one of these kinds of 
deficiencies: redundancy. It plagues all the popular proof pro- 
cedures, In particular those based on the resolution principle 
introduced by Robinson [19], as well as most of those based 
on a natural deduction-like approach [10]. 

In the last decade, however, there have been two essen- 
tially independent but closely related developments, which 
provide an improvement in this direction. One is due to An- 
drews, the other to the author. The results have been pub- 
lished in a number of papers of a rather technical nature (see 
[1-6] for the most recent ones). Therefore, we attempt to 
provide a more expository overview of this method which is 
provably less redundant than any other known proof method. 
In the course of this overview, we clarify the relationship 
between Andrews' and the author's approach. Occasionally, 

we compare our method with standard proof methods. For a 
comprehensive treatment, the reader is referred to [7]. 

It is hoped that the presentation is such that not only an 
expert in the field will be able to quickly grasp the essence of 
this method, but also a non-expert with some familiarity with 
FOL will get a feeling for the enhancement achieved (a sum- 
mary of which appears in Section 8). Due to the nature of the 
exposition and to limitations in space, the examples discussed 
are necessarily trivial and consequently do not reflect the 
generality of application. For more complex problems, the 
many details of a technical nature have to be left to the 
computer in actual implementations. In fact, the method has 
been implemented both by Andrews and the author together 
with their associates (e.g., see [17], pp. 50-69). A more ad- 
vanced implementation is currently in progress (project "Be- 
weisverfahren" supported by the Deutsche Forschungsge- 
meinschaft). 

2. THE BASIC CONCEPTS FOR THE CONNECTION 
METHOD 

As our first example, we choose a very old syllogism saying 
that the man, Socrates, is mortal since every man is mortal. 
The logic of such a statement in natural language is often 
ambiguous. For this reason, the formal first-order language 
has been developed in order to express the statement in the 
following logically equivalent but unambiguous way (see [15], 
or Chapter 4 in [18] for an introduction). 

AI :  Vx (MANx ~ MTLx) : "every man is mortal"  

A2: MANsocrates : "Socrates is a man" 

TH: MTLsocrates : "Socrates is mortal"  

With these partial statements, the whole statement says: 
from the axioms, A1 and A2, we may infer the theorem, TH. 
In fact, we may express the whole statement as the single 
formula A1 A A2 ~ TH wherein A1, A2, and TH abbreviate 
the respective formulas above. Note the usage of the conven- 
tion that A binds more than ~ in order to save parentheses. 
(Such conventions will henceforth be assumed). For purely 
didactic reasons, in this formula, the implication sign ~ is 
replaced equivalently by negation 7 and disjunction V and 
the scope of each occurrence of 7 is made to be atomic by 
applying the well known equivalence rules relating logical 
connectives (cf., m.1.4 in [7]). The resulting formula then 
reads 

F : 3 x ( M A N x  A 7MTLx) V 7MANsocrates V MTLsocrates 

The original inference from A1 and A2 to TH is a valid one 
if and only if F is a valid formula or a theorem in the sense of 
FOL without non-logical axioms. The problem is how to test 
the validity of F (and of other theorems) as efficiently as 
possible. 

For the following, it is illustrative to display such a formula 
in a two-dimensional format by listing the parts connected by 
V from left to right, and within each such part connected by 
A from top down. F represented in this way reads 

Without a quantifier, 3x, this structure is called a matrix in 
normal form which, by definition, is a set of sets of literals or 
shortly a set of clauses. In this particular example, we have a 
set of three clauses listed from left to right, the literals in each 
clause listed top-down. If one crosses such a matrix in two- 
dimensional format from left to right, visiting exactly one 
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literal in each clause, one obtains a good illustration for what 
is called a path through the matrix. Doing this with our 
matrix, also denoted by F, only the first clause gives us a 
choice of whether to visit the top or the bottom literal. Hence, 
there are exactly two paths through F 

{MANx, -nMANsocrates, MTLsocrates} 

and 

hMTLx, 7MANsocrates, MTLsocrates} 

An unordered pair of literals such as IMANx, "nMANso- 
crates} with one and the same predicate symbol--here  
MAN--one  literal unnegated, the other negated, and both 
contained in some path through a matrix, is called a connec- 
tion in that matrix. A set of connections is called spanning for 
a matrix if each path through it contains such a connection 
(as a subset). Obviously, there are exactly two connections in 
F which, in fact, are spanning for FF and are illustrated by 

~ M A N x  
3x - 1 M I ~  MANsocrates} ..~MTLsocrates} 

/ '12._Lx/ " 

Now, according to the results of Andrews and the author 
(see Corollary IIL6.4 in [7]), F is in fact a theorem if, and only 
if, there is a substitution of some term for the variable x such 
that after this substitution, each of the two spanning connec- 
tions consists of two complementary literals, i.e., a literal L 
and its negated form -nL. This obviously is the case if we 
substitute socrates for x; hence, F, in fact, is a theorem or, in 
other words, MTLsocrates is a logical consequence of the two 
axioms A1 and A2. 

It was pointed out before that the elimination of the impli- 
cation sign serves didactic purposes only. We now can see 
why it does not affect the essence of the method at all. We 
need just redefine the crucial notion of a spanning set of 
connections for arbitrary formulas via the equivalence rules 
mentioned above, a simple exercise indeed. For our original 
formula we thus obtain 

Vx(M"-ANx ~ MTLx) A~MANsocrates - -~MTLsocra tes  

This demonstrates that it is a negligible technical detail 
whether we prefer to work with the originally given formula 
or the equivalent two-dimensional display. In this paper, we 
mainly use the latter since it displays the paths, the connec- 
tions, and the spanning properties in a more transparent way. 

Let us be sure that among all these comments and defini- 
tions we do not miss the crux of this discussion: For establish- 
ing the proof of our theorem, F, all we have to do is: (i) locate 
the two spanning connections within F; and (ii) test the exist- 
ence of an appropriate substitution. It is important to note that 
this does not require any storage for copies of parts of the 
given formula, which, for this method, holds in general and 
not only with this trivial example. 

For comparison, it is interesting to have a look at the popu- 
lar resolution method [19]. For reasons which today may be 
regarded as historical, the given formula is first negated. The 
resulting formula is transformed into clausal form similar to 
what we did with F above. From the resulting set of clauses 
(or matrix), the empty set (or clause) is derived by two appli- 
cations of the resolution rule as shown in Figure 1. 

If we now recall our previous proof, it becomes obvious 
that each resolution step, resolving upon two literals, corre- 
sponds exactly to locating the connection between these two 
literals in the given formula and vice versa. The empty set is 
derived as soon as the set of connections thus obtained be- 

{-qMANx, MTLx} {MANsocrates} {-~MTLsocrates}'l 

FIGURE 1. The Resolution Proof for F. 

comes spanning and vice versa. We notice that in the clausal 
form of resolution, the position of the negation in each con- 
nection is switched due to negating the original formula. Less 
trivial is the fact that in the course of the resolution proof a 
new clause, namely {MTLsocrates}, has been generated. 
Since, in general, no clauses may be deleted, this not only 
requires additional memory space but also increases the 
search space since we may resolve any two clauses, old or 
new. Much research effort has been invested in resolution in 
order to avoid these drawbacks which may become disastrrous 
in more realistic problems where tens of thousands of gener- 
ated clauses are not unusual. In our approach, these problems 
do not arise at all. 

From this perspective, then, our method appears as a clever 
representation of resolution avoiding some of its drawbacks. 
That it is more will become clear as we proceed with addi- 
tional examples. Perhaps at this point it might be appropriate 
to introduce some name for this new method. Over the years, 
the author used to call it the systematic method to stress the 
point that it affects a more systematic proof search than other 
methods. This is not a very distinctive name, however, since 
all these methods are more or less systematic. In view of the 
fact that locating connections in the formula may be regarded 
as its characteristic activity as we have already seen, connec- 
tion principle or method will be used in this paper. 

The connection method as described up to this point is 
identical with Andrews' general matings method except for 
the following notational differences. Following the resolution 
tradition Andrews starts with negating the given formula. 
Consequently, his paths run top-down rather than left-right 
in the matrix. Incidentally, he refers to a formula like the one 
explicitly named F above as in negation normal form where 
the scope of each explicit or implicit (e.g., via --~) negation is 
atomic. 

A set of connections in his terminology is a potential mat- 
ing. A set of connections such that there is a substitution 
making all connected pairs of literals complementary is called 
a mating. If, additionally, it is spanning, p-acceptable in his 
terminology, then it is a refutation mating. The literals in a 
single connection are called potential mates (with respect to 
the empty mating). More substantial differences between the 
two methods than merely these notational ones will emerge 
as we proceed with further examples. 

3. GENERATING SPANNING SETS OF CONNECTIONS 
The previous section demonstrated that a proof with the con- 
nection method requires two things--namely, a spanning set 
of connections and an appropriate substitution. Although a 
realistic proof procedure will not perform these two tasks 
separately, a separate discussion will certainly be helpful for 
the reader. Therefore, in this section, we shall set aside all 
aspects related to substitution. This can be achieved by as- 
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suming that the appropriate substitution has been determined 
in advance. The formula F from the previous section in ma- 
trix form would then read 

{ n M ~ : 3 ~ ; : t t ~ : }  {nMANsocrates} {MTLsocrates} 

By abbreviating MANsocrates by L and MTLsocrates by K, 

and deleting the braces we obtain simply n~ nL K. 

In this case, where the literals are simply (possibly negated) 
propositional variables, our basic question whether F is a 
theorem is reduced to whether this matrix in propositional 
logic (sometimes called the ground level) is a tautology. As 
before, this is the case if, and only if, each of its paths contains 
a connection (see Theorem 11.3.4 in [7]). We are now going to 
describe an algorithm which determines exactly that. Let us 
call it SSC for "spanning set of connections." Since our matrix 
is a little too simple for illustrating its behavior, we add four 
more literals, yielding 

L nL L 
nM K 

nK M K 

Initially, SSC chooses any clause, say the leftmost one, and 
in it any literal, say L. A data structure for storing the whole 
matrix is easily designed such that a clause containing the 
negation of the chosen literal can be found immediately, for 
instance, by looking it up in a table which contains all occur- 
ring literals in a determined order together with a reference to 
those clauses in which they occur. Doing this establishes a 

~--~nL L 
first connection in our m a t r i x ~ n K  M nM K K. 

1 
At the same time a pointer is set in the first clause (the little 
arrow in the picture) noting that L has been processed but the 
rest of the clause--in this case, just n/G-remains to be proc- 
essed. This completes the first step of SSC in which all paths 
containing this selected connection {L, nL}--only two in this 
particular example, but obviously there may be many more 
in general--have been checked and will never be considered 
by SSC. 

The paths yet to be processed may be partitioned into those 
which contain L (but not nL) from the first connection and 
those which do not. SSC proceeds with the first ones while 
the second ones have been stored on a stack simply by the 
reference depicted by the pointer above. At this stage, the 
situation is essentially the same as the one after the selection 
of the first clause, the selected clause now being the second 
one from the left, marked with a vertical arrow. SSC chooses 
any member literal except nL. Here, this must be M since this 
is the only one left. As before, from the remaining clauses (to 
the right of the vertical arrow), we choose one which contains 
nM, thus establishing the second connection as shown 

f f - ~ ' L  L 
nK M nM K K 

If there had been more literals in the second clause, this 
would have provided a new entry on the stack as illustrated 
with the second horizontal arrow pointing to nothing in this 
particular example. After this second step, all paths containing 
one of the selected connections have been checked. 

SSC must continue to process those paths containing L (but 
not nL, and not both M and nM any more). If there were such 
paths left, the same partition would be made with respect to 
M as before with respect to L; thus, we would proceed with 
the third step as before in the second step, and so forth. Note 
that such a chain is never longer than the clauses in the 
whole matrix since new clauses in this process are always 
selected from those not already involved in the present chain. 
Due to the particular situation of this example, there is no 
such third step; however, since all paths containing L also 
contain one of the selected connections. SSC notices this since 
the third clause does not contain any literal other than nM. In 
such a situation, it backs up by considering the topmost (non- 
empty) entry on the stack which is depicted by the leftmost 
horizontal arrow, thus starting a new chain from the situation 
illustrated by 

L L L 
nK M ~ M K K 

1' 

As before, SSC selects any literal in the actual clause 
marked by the vertical arrow, which has not been processed 
before, and any clause containing its complement, thus estab- 
lishing a third connection as shown in 

K --~ L 

.._, T 

where the reordering of the clauses is required for clarity of 
presentation. The horizontal arrow depicts later processing of 
further literals in the first clause (none in this case). The new 
chain after this step has already been completed. Since the 
stack is empty, SSC terminates with success. The three se- 
lected connections which, incidentally, need not be stored 
explicitly, are in fact spanning for this matrix. The rightmost 
clause and any connections containing its literals were redun- 
dant for the proof. 

This completes the description of algorithm SSC for testing 
any matrix for a set of spanning connections. Above, we have 
already stressed that no extra storage of copies of the parts of 
the given formula is required. Only the pointers directing the 
chaining through the formula have to be stored in addition to 
a single copy of the formula and something like the table (of 
the size of the formula) mentioned at the beginning of this 
section. This fact is characteristic for SSC, not only in its 
simple form just described with a trivial example, but also in 
its full version applicable to arbitrary formulas. 

A full version of this has been developed in [4] (see also pp. 
326--341 in [17]). It is very general and has been designed to 
avoid certain redundant steps arising in special situations, for 
which reason its algorithmic details are rather complicated. It 
has been demonstrated [4] that this full version may simulate 
any known refinement of resolution with fewer or equal 
number of steps (and less storage) in the search for a proof, 
the amount of processing required for a single step being 
about the same in both cases. Since there are formulas for 
which SSC requires strictly fewer steps we see that the con- 
nection method provides a real (and provable) advantage over 
known resolution methods in addition to the representational 
advantage mentioned several times before. (There is another 
major advantage to be discussed in later sections.) As a guard 
against too much optimism we mention that determining a 
spanning set of connections is known as a hard problem in 
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general (actually co-NP-hard in the terminology of complexity 
theory); hence, no miracles should be expected for the worst 
case. 

Because of its generality, the full version, in fact, may deal 
with arbitrary formulas or matrices not only ones in normal 
form (as our examples have considered thus far). For instance, 
any literal, e.g., M in the previous matrix, might be replaced 
by a whole (non-normal form) matrix; SSC still would be able 
to process such a matrix as before and without any change of 
its structure. The reason for this generalization lies in the fact 
that the characterization of tautologies via connections in 
each path, which was mentioned before, holds for arbitrary 
formulas. (See Theorem II.3.4 in [7].) 

Andrews has demonstrated the disadvantages of the trans- 
formation to clausal form, which is required for resolution, 
with several examples. For instance, in [1], it has been shown 
that the simple mathematical statement f(S U T} = f(S) 1.3 f(T} 
for a function f and two sets S and T after elimination of the 
defined operations (like U but not ~.-*) leads to a formula with 
12 literals, compared with 104 literals in the corresponding 
clausal form. Now imagine the effect when the proof process 
searches among 104 rather than among 12 literals! 

It might be helpful for the reader to consider SSC as a proof 
rule rather than an algorithm. Namely, for any given matrix, 
A, SSC in ech step essentially adds a single connection w to 
the set W of those connections obtained in previous steps; 
hence, the rule is (A, W) k (A, W U {w}). (For more details, see 
Sections 11.4 and 11.5 in [7].) 

Note that the formula, A, does not change, in contrast to 
any other logical rules. Initially, W = ~3 and the termination 
criterion for a successful derivation is the spanning property 
of W for A. If the process gets stuck before this criterion is 
fulfilled, then A is shown to be invalid. Thus, in the sense 
defined in the Introduction, SSC is actually a decision proce- 
dure for the subclass of propositional formulas (of the class of 
all formulas in FOL). 

4. UNIFICATION 
In Section 2, we have seen that a proof of a theorem involves 
the problem of 

(i) determining a spanning set of connections such that 

(ii) there is a substitution of terms for variables which 
makes the connected literals complementary. 

In the previous section, we described the basic idea of the 
algorithm SSC for solving (i) on the ground level. Obviously, 
such an algorithm is applicable also on the genera/level, i.e., 
in FOL, by simply neglecting the terms in the literals. There- 
fore, we now take the existence of such an algorithm for 
granted and ask for a solution of the subproblem (ii). 

Since the test for (ii) may be performed by a fast algorithm, 
and a potential failure might be detected after any step of 
SSC, it is preferable to check for (ii) after each step. For 
example, after the first step of SSC is applied to the matrix F 
of Section 2, we would have to test whether there is a substi- 
tution, say a~, which makes MANx and 7MANsocrates com- 
plementary. Of course, a~ = Ix ,-- socrates} will do and thus is 
kept for the following steps. Thus, the situation after this first 
step may be illustrated as in the previous section with the 
substitution a~ added. 

7MANsocrates MTLsocrates Ix ~ socratesl 
7 M T L x  

After having obtained the second connection in the second 
step, subproblem (ii) now requires a substitution a2 such that 
the two literals 7MTLx and MTLsocrates, after application of 
al and a2, become complementary. Obviously c~2 = ~ since al 
alone is sufficient in this particular case, thus completing the 
proof already presented in Section 2. 

In general, we proceed this way considering in the nth step 
two literals, L1 and L2, and the composition ~,_~, a,-2 . . . . .  a~ 
of the substitutions obtained in the previous steps (substituting 
terms for variables} and test for a substitution ao such that 
a,L(  = a,TL2' where L/ = a,1-1 • .. a~L~ for i = 1, 2. This 
problem of determining a, is known as the unification prob- 
lem [19] which has been thoroughly studied with fast solu- 
tions (running in linear time} for the general case. We do not 
discuss any of these unification algorithms in detail (See Sec- 
tions III.5 and W.9 in [7].} assuming that the reader will grasp 
somewhat of their nature from further examples. But we 
must point out that their application is subject to an essential 
restriction. 

Consider any predicate Q with two arguments and the 
formula 

Vc 3x (Qcx ~ Qxc) 

Applying the connection method this turns out to be a theo- 
rem since the substitution or1 = Ix ~-- c} solves subproblem (ii). 
Let us now exchange the two quantifiers to yield 

3 x  Vc  (Q~x --~Qxc) 

Simply by reading the formula as a statement with his natural 
language, the reader will see that this cannot be a true state- 
ment for arbitrary Qs although our method, as described thus 
far, would result in the same proof with a~ = Ix ~-- c}. Of 
course, a~ cannot be a correct solution since according to the 
formula the existence of object x is claimed independent of 
the choice of c while a~ would suggest a dependent solution. 

Standard proof methods take care of that by introducing so- 
called Skolem functions for each V quantifier with the domi- 
nating 3-quantified variables as arguments. In this example, 
3x dominates Vc in the (tree} structure of the formula which 
is expressed briefly by x < c; hence, c is replaced by fx to 

yield 3x (Q-~fx)x'-~x(fx)) where f is any new function 
symbol. Obviously, this prevents the two connected literaLq 
from being unified since for no substitution can x and fx yield 
the same term. 

As an alternate solution to this, one may regard c = a~x as a 
tree-ordering relation c <.  x. Such a substitution is then 
called acceptable if the transitive closure <3 of the union 
< U < of the relations < and < has no cycles. In this sense, al 
for our example is not acceptable since c <. x < c obviously 
leads to the cycle c ~ c. Thus, all we need do is restrict 
unification to acceptable substitutions; this has several techni- 
cal advantages over the solution via Skolem functions. 
Namely, some fast unification methods, after having intro- 
duced Skolem functions, construct <3 from them--hence,  
their introduction is in fact redundant - -and test for cycles 
anyway. (See 1V.9.1 in [7].} Also, our solution fits elegantly 
with what will be discussed in later sections. 

We complete the description of the most basic aspects of 
the connection method by pointing out that it requires (selec- 
tive) backtracking whenever an acceptable substitution does 
not exist as in the following example: 

Vb 3x Vc (Qffcx)x ~ Qxc V 3y  Qyb) 
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~ f  fac~xl) = Yl / fac(x2) = Y2 faG(2) ~- 21 

fac(O) = 1  3fac(x~ + 1 ) =  y,-(xl + 1 ) J  -nfac(x2 + 1 ) =  y2.(x2 + 1 ~  

FIGURE 2. An Example 

Here, the dotted connection has no acceptable substitution. 
Hence, SSC has to back up and consider the alternate (fully 
lined) connection which yields the proof with the acceptable 
substitution 

Ix ~-  b, y ~ - f c x l  

At this point, it is appropriate to complete the comparison 
with Andrews' work. As in the standard resolution methods, 
he uses Skolem fimctions. His ground-level procedure is less 
elaborate than our full version of SSC. Finally, his method 
lacks the features described in the following two sections. 

5. IMPLICIT AMPLIFICATION 
Consider the formula 

fac(O) = 1 A 

Vxy ffac(x) = y ~ f a c ( x  + 1) = y.(x + 1)) 

3 z  fac(2) = z 

It claims the existence of a value for the factorial function for 
the argument 2 which obviously is a valid statement. As 
before, we prefer the matrix representation which is 

, f a c ( O l  = 1 3xyt_vactx ~ /  = y.(x + 11 3 z f a c ( 2 1  = z 

An attempt to prove this theorem with the connection 
method as described in the previous sections will fail, how- 
ever, since this description is still incomplete in an essential 
detail. Namely, according to the nature of FOL, we must 
allow for an arbitrary number of independent copies of any 
3-quantified part in the matrix (which explains why no deci- 
sion procedure exists for FOL). Adding further such copies is 
called amplification by Andrews. For our example, a proof is 
obtained with one additional copy of the second clause as 
shown in Figure 2. 

Here, the copies are distinguished by indices added to the 
variables. For instance, x and y from the original second 
clause are replaced by x~ and y~ in its first copy and by x2 and 
y2 in its second copy, respectively. Although only a single 
copy of the rightmost clause is needed so that a replacement 
is not actually required here, z has nevertheless been re- 
placed by z~ for reasons of uniformity. 

of Amplification. 

Evidently, the three depicted connections are spanning. 
The corresponding acceptable substitution is a = {xl *-- 0, 
yl ~-- 1, x2 ~-- 1, y2 ~-  1, zl ~ 21; for instances, a unifies (here 
in a slightly generalized sense as the altert reader might no- 
tice) the respective pairs of terms corresponding to the second 
connection, viz., a(x~ + 1) = (0 + 1) = 1 -- gx2 and a( yl. (x~ + 
1)) = 1 .(0 + 1) = 1 = ay2. Note that for the "answer" variable, 
z~, this proof yields the expected result of computing the 
factorial of 2, viz., ~rzl = 2. We now encode this proof within a 
single copy of the original matrix in the following way. 

f l  

. .  f f~c (x )  = y 2) = z 
~ x Y l . f a c ( x  + 3 / =  y . (x  

1. 
2 * - -  

This representation is obtained from the previous one simply 
by projecting the two copies of the second clause into the 
single original one, while the information concerning their 
differences is encoded in the indices now labeling the nodes 
of the connections (each by definition, given in Section 1, 
referring to the adjacent literal). For instance, there are two 
such nodes adjacent to the literal fac(x) = y, one labeled with 
1, the other with 2. 

It is obvious, for this example, that all information con- 
tained in the previous explicit presentation (with the explic- 
itly added second copy) can be recovered from this implicit 
encoding; conversely, the implicit representation is also 
uniquely determined by the explicit one. This one-to-one cor- 
respondence between these two kinds of representations in 
fact holds in general. Hence, the connection method need not 
explicitly generate such copies of 3-quantified formula parts, 
since the illustrated simple indexing technique serves the 
same purpose. The technical and rather complicated details 
realizing this intuitively simple idea may be found in the 
Sections m.6 and IV.8 of [7], while a version of our algorithm 
SSC, adapted to the present complication, is spelled out in 
I11.7.2 of [7]. 

This kind of connection proof in implicit representation 
may easily be generalized to arbitrary input n _> 1 for the 
present example (as well as for others, of course) by introduc- 
ing schemes of connections. This is illustrated as follows, this 
time using again the original formula structure (Figure 3). 

i = 1  . . . . .  n - 1  

i + 1  

fa~.___,(0) = 1 A Vxy(fac(x) = y ~ fac(x  + 1) = ~ z f a c ( n )  = z 
1 n "--,.._ 

FIGURE 3. An Example of a Connection Scheme. 
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f 

3x(3y~yx A1 3zPbzx) v (3u "TPuuc A~ 3v "lPvbd) {AI<'U,V;A2<-X} 

FIGURE 4. A Theorem and its Proof with the Connection Method. 

It represents both the natural specification of the problem to 
compute the value of the factorial for input n (viz., the logical 
formula) and a proof, respectively a program, determining 
how to compute this value efficiently (viz., the connection 
scheme). Note that specification and program are neatly sepa- 
rated, whereas in conventional programs the logical and dy- 
namic structure are mixed together. It is this mixture which 
causes so many problems in software production. Such a logic 
program (i.e., formula + scheme) may be compiled automati- 
cally as usual to run as efficiently as any conventional pro- 
gram computing fac(n). (For a discussion of the close connec- 
tion between these kind of proofs and programs, and for fur- 
ther information concerning the predicate logic as a suitable 
programming environment, see [8], or Section V.2 in [7], and 
the references given there, such as Reference 3 in [8]). 

splitting (among other possibilities such as alternate connec- 
tions or further copies) the way to be explained below. 

Splitting means to consider separable subcases separately. 
This, in turn, requires the separation (represented by A) to be 
carried out before processing each subcase, in particular be- 
fore performing the substitutions on x. Instead of carrying out 
this separation explicitly, this requirement is encoded in our 
method as a condition on the relation < ,  hence also on <3. In 
this example, this condition reads A < x, where A refers to 
the particular occurrence of conjunction in the formula. With 
this notation, the definition of an acceptable substitution can 
be extended in a straightforward way such that it covers this 
intended meaning of A < x. (For the awkward technical 
details, see Section IV.10 in [7]). Thus, both a~ and a2 would 
be acceptable in the present context, resulting in the following 
proof with only a single (explicit or implicit) copy of ILLx: 

6. SPLITTING BY NEED 
Consider the formula Vx I Lbob with A <- x 

1 
Vx I ~ - - - ~ L L p a t  A ILLbob 

2 . , _ _ _ . _ = . _ , . , - ~ "  

presented together with its proof along the lines of the pre- 
vious section. This looks like a satisfactory solution but, in 
fact, has a major drawback. Imagine that the three literals are 
replaced by matrices of considerable size with many more 
required connections. Then, the implicit generation of a sec- 
ond copy of the matrix to the left of the implication will 
certainly increase the search space for appropriate connec- 
tions substantially since in particular connections between the 
two copies have to be taken into consideration as the previous 
example has demonstrated. The second copy, however, is not 
actually required (not even implicitly) since the two conclu- 
sions are independent from each other because of the separat- 
ing conjunction; hence, the search for the proof may take 
advantage of what is called splitting in conventional methods 
and is applied there in a prrocessing step. 

Here, we briefly discuss an alternate form of splitting by 
need which is more flexible and more general than previous 
splitting methods, and which elegantly fits into the connection 
method. 

Recall the relations < (tree structure of formula}, <1 (substi- 
tutional structure), and <3 (transitive closure of < U <1), intro- 
duced in Section 4. In order to account for splitting, < will 
now serve an additional purpose. Namely, consider the situa- 
tion where the proof has located the first connection with 
~1 = {x ~-- pat] in the above example, and is now considering 
the second one, still with a single copy of ILLx in mind. The 
unification fails since a2 = Ix ~ bob} is apparently not com- 
patible with a~. At this point, i.e., when the need arises rather 
than in advance, the process may consider the possibility of 

The merits of this sophisticated technique become more visi- 
ble in more complicated problems, the proofs of which yield 
more than just one such conditions. This is illustrated in 
Figures 4 and 5 with an example that (for reasons of space) is 
artificially elaborated but shows the effect as it may well 
occur in complicated theorems. 

Figure 4 shows the four-step proof with the connection 
method involving no search at all. It leads to three such 
conditions shown in the figure. On their basis, the substitu- 
tions determined by the depicted connections, in fact, become 
acceptable. Even without the formal definition at hand, this 
can be verified by the reader on the basis of the intended 
interpretation of these conditions as splittings. Here we have 
two splits, namely, one on A1 and one on A2. The conditions 
imply that the latter has to precede the former since the 
condition A2 ~ X together with x < A1 (given by the formula 
structure) implies A2 <3 A1, which expresses exactly that prec- 
edence. Performing these splits in that sequence leads to four 
separate subproblems each of which can be proved immedi- 
ately (an easy exercise which is left to the reader). But note 
the essential point that the method itself does not carry out 
any such splits since the test for cycles (present in unification 
anyway as explained in Section 3), now incorporating the 
extended relation < ,  takes care of that in a very efficient way. 

For comparison, Figure 5 shows an optimal eight-step proof 
with resolution for the same formula. For resolution fans, it is 
a healthy exercise to attempt it by hand before looking at the 
picture since in relation to the small size of the problem it 
involves considerable search. The comparison is fair since, for 
resolution, further splitting is excluded if a slight change is 
made in the example which, in contrast, has no effect on the 
connection method: 

3xw (3y Payxw A 3z Pbzxw) V 3s (3u "7Puucs A 3v "7Pvbds) 
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{7Payx, 7Pbzx} IPuuc, Pvbd} 

{7Pbzc , Puuc} 

IPvbd i Pv'bd} ~ InPbzc, 7Pbz'dl 

{ P v d ~  

{Puucl {7Pbzc} 

l i b  

FIGURE 5. The Resolution Derivation of the Theorem in Figure 2. 

Remember the proof rule introduced for the connection 
method in Section 3. Here, and in Section 4, we have seen 
that each step not only adds a connection, w, to formula A 
but possibly also extends the relation < to ~ '  which initially 
is empty. Hence, its complete form is (A, W, <-) ~- (A, W U 
{wl, <. '), where A never changes. 

7. NATURAL DEDUCTION PROOFS 
The results reported in this paper were inspired by a thor- 
ough study of natural deduction proofs [12]. It is not surpris- 
ing, then, that the connection proofs we describe are closely 
related to natural deduction proofs which may even be 
printed out immediately once the connection proof has been 

achieved. In this transformation, the relation <. provides the 
sequence of the deduction steps, and the connections encode 
both the instantiated terms (via unification) and the property 
qualifying the formulas at the leaves of the deduction tree as 
logical axioms. This is illustrated in Figure 6 with the natural 
deduction proof corresponding to the (second) connection 
proof for the first example of the previous section. Note that 
the A splitting is performed prior to the instantiation of the 
terms pat and bob for x due to the information given by 
A < x which reveals the proper nature of this relation. 
(For the natural deduction proof obtained from the proof in 
Figure 2, see Figure 3 in [5].) 

In Section 2, we already pointed out the close relation 
between the connection method and resolution (or its refine- 

FIGURE 6. The Natural Deduction Proof Obtained 
from the Connection Proof Vx ILLx .-~ ILLpat A ILLbob, A < .x. 

Vx ILLx .-~ ILLpat A ILLbob 

ILLpat ~lLLpat ILLb.. ob , ILLbob 
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ments) which was studied in detail [4]. Here, we now see its 
close relation with natural deduction proofs. This justifies re- 
garding the connection method as a higher  level proof 
method; it provides a deeper insight into the characteristic 
features of theorems (versus formulas) than do the resolution 
or the natural deduction proof method. 

8. SUMMARY 
In this paper, we have given an overview of a proof method 
for theorems in first-order logic called the connec t ion  method .  
With a number  of examples, we have illustrated a number  of 
its prominent  features. These and further ones are now sum- 
marized. 

(i) It may be regarded as a higher level proof method 
providing deeper insight into the characteristic fea- 
tures of theorems (versus formulas) than do conven- 
tional proof methods (see Section 7). 

(it) It operates exclusively on a single copy of the given 
formula (see Sections 3 and 5, and the proof rule at 
the end of Section 6). 

(iii) In particular, no transformation into any normal form 
of the given formula is required which allows the use 
of any standard logical connectives and the speeding 
up of search by antiprenexing (see Section 2, and [7], 
p. 209). 

(iv) Not even Skolem functions need be introduced, i.e., 
only the terms in the original formula need be unified 
(see Section 4). 

(v) Unification is generalized to include an optimal split- 
ting by need (see Section 6). 

(vi) Amplification is accomplished by a systematic index- 
ing without  violating feature (it) (see Section 5). 

(vii) A connection proof can easily be transformed into a 
natural, thus immediately comprehensible deduction 
of the given formula (see Section 7). 

(viii) Special handling of equality and other algebraic rela- 
tions (extensively studied under  the key word "re- 
write rules") smoothly fits into the connection 
method, since from its perspective such specialized 
rules simply encode a deterministic control for locat- 
ing connections, possibly a whole scheme of connec- 
tions within one step (see Sections V.3 and 4 in [7]). 

(ix) Induction may appropriately be incorporated follow- 
ing the s tandard--or  a new, in fact promising-- l ine  
(see Section V.5 in [7]); the generalization of the 
method to higher-order logic (or type theory) is simi- 
larly straightforward (see Section V.6 in [7]); the same 
may be expected for other extensions of FOL such as 
modal logic. 

(x) The location of connections in a given formula struc- 
ture has a potential of being realized on the chip 
level. 

All these features have been developed by the author in a 
number  of technical papers. (See [3-6] and their references.) 

A number  of them were  also obtained by Andrews in an 
independent  approach with mat ings .  (See [1-2] and their ref- 
erences.) This paper has clarified this relationship. 

Due to its intended nature, this paper has not provided any 
technical details such as precise definitions, theorems, proofs 
or other justifications, and algorithms. For these details, the 
interested reader is referred to the references ment ioned be- 
fore or to the comprehensive treatment given in [7]. 
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