
RESEARCH
CONI"RIBUTIONS

,iiiii:: i'ii~i ,~ i! ̧~I!!; ~ii:i~iii,~!;~ ii~?ji ~!:iij'~il;i~i? i?~!i~,,,~?

~! i~ i~ ! ,~ i ~ i~!~ Matings in Matrices
W ~ G ~ W ~ Technische Universitat Munchen, West Germany

Wolfgang Bibel's current
research interests include

mechanization of reasoning,
natural language processing,

and computer architecture
dedicated to knowledge

representation and
processing.

Author's Present Address:
Dr. Wolfgang Bibel, lnstitut

ffir Informatik der
Technischen Universit~t

Miinchen, D-8000, Miinchen
2, Postfach 20 24 20,

West Germany

A preliminary version of this
paper was presented as an

invited lecture to the
German Workshop on

Artificial Intelligence, [20].

Permission to copy without
fee all or part of this material

is granted provided that the
copies are not made or

distributed for direct
commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying

is by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/1100-0844 75¢

1. INTRODUCTION
An essential feature of human thinking is the capacity for
logical reasoning. Everyone uses it all the time, mostly in an
unconscious way. It was this capacity which eventually led to
man's scientific activity. Therefore, it is not surprising that
since the dawn of history, man has reflected upon the very
nature of logical reasoning. He has modeled it within natural
language, and isolated general rules operative in the human
brain in everyday experience. In the course of time, the rules
of logic were abstracted from natural language and expressed
within formal languages, which model natural languages to
the extent that they keep the logical structure intact. These
formal languages together with the rules are called formal, or
logical systems.

There are many such formal systems to date, each devel-
oped according to the purpose it was meant to serve. For
instance, one formal system might be developed as a tool to
be used by a mathematician to prove theorems within some
theory, while another might be of a purely machine-oriented
nature. Formal systems developed within non-monotonic
logic must account for contingent truths; clearly, such sys-
tems, which admit the possibility of contingency, would be
inappropriate for proving mathematical theorems.

Most of these formal systems are based on first-order logic
(FOL). Its rules are so fundamental that any (existing or fu-
ture) system of practical importance will probably have incor-
porated them in some form. This is, for instance, true of
systems for both higher-order and modal logic which simply
are extensions of FOL. Further, FOL is both natural and pow-
erful enough to model much of our reasoning adequately. We
will, therefore, focus our attention on FOL keeping in mind
that, while this restriction may be artificial, it is certainly
reasonable as a point of departure.

Although this paper is written with a particular formal
system for FOL in mind, we will not specify the details here.
No trouble should arise for readers familiar with the basic
concepts of FOL. As usual, we have the class of (well-formed)
formulas which correspond to syntactically correct fragments
of text in natural language.

ABSTRACT: This paper gives an
overview of the connection method,
developed by the author in
Automated Theorem Proving. Its
prominent features are illustrated
with a number of examples. Well-
defined measures of efficiency have
shown it to outperform standard
proof methods. Some of its features
are also present in Andrews'
independent approach via matings.
The relationship between these two
methods is clarified.

844 Communications of the ACM November 1983 Volume 26 Number 11

RESEi~qCH CONTRmUTTONS

The most fundamental problem in FOL, as in any other
formal system, is the development of a (hopefully efficient)
procedure which for a given set of formulas Fo F,, n _> 0,
decides whether Fo is a consequence of F1 Fn according
to the rules in FOL. Such a procedure is called a decision
procedure. According to a well-known result of Church (e.g.,
see [15], p. 170), this problem, in its most general form, has no
solution, unless the Fi's are taken from certain subclasses of
formulas (which frequently is the case for formulas of inter-
est). For arbitrary F/s, there are only so-called semi-decision or
proof procedures, that is, procedures which are guaranteed to
give a result in the affirmative case only, and in the negative
case may give an answer (the usual case in practice) or run
forever. These are the type of procedures we will study.

If we could develop an efficient such procedure this would
have an enormous practical impact for many kinds of applica-
tions in science because of the general nature of FOL dis-
cussed before. Some of these applications are described by
Nilsson [18]. It has occasionally been argued against this kind
of general approach with reference to results (and conjectures)
from complexity theory which seem to indicate that in princi-
ple such procedures cannot be efficient for arbitrary formulas.
But even were this the case, it would not say very much
about the feasibility of proof procedures in practice because of
the worst-case nature of such general complexity results (cf.,
Sect. IV.3 in [7]). Therefore, the development of efficient proof
procedures does remain a challenging and promising research
goal.

This is not to say that current proof procedures are com-
pletely inefficient. On the contrary, running deductive sys-
tems have proved rather deep mathematical theorems auto-
matically; they have even solved a number of open mathe-
matical problems (none of the famous ones, of course) for
which a human proof was not found. Further they are in
daily use as programming aids, generating or verifying pieces
of programming code. (The interested reader is referred to the
Proceedings of the Conferences on Automated Deduction [9,
14, 17, 21]. In many respects, these achievements are still
modest, however, when compared with human performance.

The reasons for their deficiencies seem to be of two differ-
ent kinds. First, human beings seem to adapt, quickly, power-
ful strategies which speed up the search. Research is just
beginning to study such adaptive mechanisms. Second, the
existing systems are based on proof procedures which work in
such a redundant way that it is amazing that they are at all
successful. Researchers, like all people, tend to a monotheistic
attitude in such a situation, expecting the cure by solving one
of these two kinds of problems. We believe, however, that
both kinds of deficiencies necessarily have to be removed in
order to substantially enhance the performance of running
systems.

This paper is concerned with only one of these kinds of
deficiencies: redundancy. It plagues all the popular proof pro-
cedures, In particular those based on the resolution principle
introduced by Robinson [19], as well as most of those based
on a natural deduction-like approach [10].

In the last decade, however, there have been two essen-
tially independent but closely related developments, which
provide an improvement in this direction. One is due to An-
drews, the other to the author. The results have been pub-
lished in a number of papers of a rather technical nature (see
[1-6] for the most recent ones). Therefore, we attempt to
provide a more expository overview of this method which is
provably less redundant than any other known proof method.
In the course of this overview, we clarify the relationship
between Andrews' and the author's approach. Occasionally,

we compare our method with standard proof methods. For a
comprehensive treatment, the reader is referred to [7].

It is hoped that the presentation is such that not only an
expert in the field will be able to quickly grasp the essence of
this method, but also a non-expert with some familiarity with
FOL will get a feeling for the enhancement achieved (a sum-
mary of which appears in Section 8). Due to the nature of the
exposition and to limitations in space, the examples discussed
are necessarily trivial and consequently do not reflect the
generality of application. For more complex problems, the
many details of a technical nature have to be left to the
computer in actual implementations. In fact, the method has
been implemented both by Andrews and the author together
with their associates (e.g., see [17], pp. 50-69). A more ad-
vanced implementation is currently in progress (project "Be-
weisverfahren" supported by the Deutsche Forschungsge-
meinschaft).

2. THE BASIC CONCEPTS FOR THE CONNECTION
METHOD

As our first example, we choose a very old syllogism saying
that the man, Socrates, is mortal since every man is mortal.
The logic of such a statement in natural language is often
ambiguous. For this reason, the formal first-order language
has been developed in order to express the statement in the
following logically equivalent but unambiguous way (see [15],
or Chapter 4 in [18] for an introduction).

AI : Vx (MANx ~ MTLx) : "every man is mortal"

A2: MANsocrates : "Socrates is a man"

TH: MTLsocrates : "Socrates is mortal"

With these partial statements, the whole statement says:
from the axioms, A1 and A2, we may infer the theorem, TH.
In fact, we may express the whole statement as the single
formula A1 A A2 ~ TH wherein A1, A2, and TH abbreviate
the respective formulas above. Note the usage of the conven-
tion that A binds more than ~ in order to save parentheses.
(Such conventions will henceforth be assumed). For purely
didactic reasons, in this formula, the implication sign ~ is
replaced equivalently by negation 7 and disjunction V and
the scope of each occurrence of 7 is made to be atomic by
applying the well known equivalence rules relating logical
connectives (cf., m.1.4 in [7]). The resulting formula then
reads

F : 3 x (M A N x A 7MTLx) V 7MANsocrates V MTLsocrates

The original inference from A1 and A2 to TH is a valid one
if and only if F is a valid formula or a theorem in the sense of
FOL without non-logical axioms. The problem is how to test
the validity of F (and of other theorems) as efficiently as
possible.

For the following, it is illustrative to display such a formula
in a two-dimensional format by listing the parts connected by
V from left to right, and within each such part connected by
A from top down. F represented in this way reads

Without a quantifier, 3x, this structure is called a matrix in
normal form which, by definition, is a set of sets of literals or
shortly a set of clauses. In this particular example, we have a
set of three clauses listed from left to right, the literals in each
clause listed top-down. If one crosses such a matrix in two-
dimensional format from left to right, visiting exactly one

November 1983 Volume 26 Number 11 Communications of the ACM 845

RESEARCH CONTRIBUTIONS

literal in each clause, one obtains a good illustration for what
is called a path through the matrix. Doing this with our
matrix, also denoted by F, only the first clause gives us a
choice of whether to visit the top or the bottom literal. Hence,
there are exactly two paths through F

{MANx, -nMANsocrates, MTLsocrates}

and

hMTLx, 7MANsocrates, MTLsocrates}

An unordered pair of literals such as IMANx, "nMANso-
crates} with one and the same predicate symbol--here
MAN--one literal unnegated, the other negated, and both
contained in some path through a matrix, is called a connec-
tion in that matrix. A set of connections is called spanning for
a matrix if each path through it contains such a connection
(as a subset). Obviously, there are exactly two connections in
F which, in fact, are spanning for FF and are illustrated by

~ M A N x
3x - 1 M I ~ MANsocrates} ..~MTLsocrates}

/ '12._Lx/ "

Now, according to the results of Andrews and the author
(see Corollary IIL6.4 in [7]), F is in fact a theorem if, and only
if, there is a substitution of some term for the variable x such
that after this substitution, each of the two spanning connec-
tions consists of two complementary literals, i.e., a literal L
and its negated form -nL. This obviously is the case if we
substitute socrates for x; hence, F, in fact, is a theorem or, in
other words, MTLsocrates is a logical consequence of the two
axioms A1 and A2.

It was pointed out before that the elimination of the impli-
cation sign serves didactic purposes only. We now can see
why it does not affect the essence of the method at all. We
need just redefine the crucial notion of a spanning set of
connections for arbitrary formulas via the equivalence rules
mentioned above, a simple exercise indeed. For our original
formula we thus obtain

Vx(M"-ANx ~ MTLx) A~MANsocrates - -~MTLsocra tes

This demonstrates that it is a negligible technical detail
whether we prefer to work with the originally given formula
or the equivalent two-dimensional display. In this paper, we
mainly use the latter since it displays the paths, the connec-
tions, and the spanning properties in a more transparent way.

Let us be sure that among all these comments and defini-
tions we do not miss the crux of this discussion: For establish-
ing the proof of our theorem, F, all we have to do is: (i) locate
the two spanning connections within F; and (ii) test the exist-
ence of an appropriate substitution. It is important to note that
this does not require any storage for copies of parts of the
given formula, which, for this method, holds in general and
not only with this trivial example.

For comparison, it is interesting to have a look at the popu-
lar resolution method [19]. For reasons which today may be
regarded as historical, the given formula is first negated. The
resulting formula is transformed into clausal form similar to
what we did with F above. From the resulting set of clauses
(or matrix), the empty set (or clause) is derived by two appli-
cations of the resolution rule as shown in Figure 1.

If we now recall our previous proof, it becomes obvious
that each resolution step, resolving upon two literals, corre-
sponds exactly to locating the connection between these two
literals in the given formula and vice versa. The empty set is
derived as soon as the set of connections thus obtained be-

{-qMANx, MTLx} {MANsocrates} {-~MTLsocrates}'l

FIGURE 1. The Resolution Proof for F.

comes spanning and vice versa. We notice that in the clausal
form of resolution, the position of the negation in each con-
nection is switched due to negating the original formula. Less
trivial is the fact that in the course of the resolution proof a
new clause, namely {MTLsocrates}, has been generated.
Since, in general, no clauses may be deleted, this not only
requires additional memory space but also increases the
search space since we may resolve any two clauses, old or
new. Much research effort has been invested in resolution in
order to avoid these drawbacks which may become disastrrous
in more realistic problems where tens of thousands of gener-
ated clauses are not unusual. In our approach, these problems
do not arise at all.

From this perspective, then, our method appears as a clever
representation of resolution avoiding some of its drawbacks.
That it is more will become clear as we proceed with addi-
tional examples. Perhaps at this point it might be appropriate
to introduce some name for this new method. Over the years,
the author used to call it the systematic method to stress the
point that it affects a more systematic proof search than other
methods. This is not a very distinctive name, however, since
all these methods are more or less systematic. In view of the
fact that locating connections in the formula may be regarded
as its characteristic activity as we have already seen, connec-
tion principle or method will be used in this paper.

The connection method as described up to this point is
identical with Andrews' general matings method except for
the following notational differences. Following the resolution
tradition Andrews starts with negating the given formula.
Consequently, his paths run top-down rather than left-right
in the matrix. Incidentally, he refers to a formula like the one
explicitly named F above as in negation normal form where
the scope of each explicit or implicit (e.g., via --~) negation is
atomic.

A set of connections in his terminology is a potential mat-
ing. A set of connections such that there is a substitution
making all connected pairs of literals complementary is called
a mating. If, additionally, it is spanning, p-acceptable in his
terminology, then it is a refutation mating. The literals in a
single connection are called potential mates (with respect to
the empty mating). More substantial differences between the
two methods than merely these notational ones will emerge
as we proceed with further examples.

3. GENERATING SPANNING SETS OF CONNECTIONS
The previous section demonstrated that a proof with the con-
nection method requires two things--namely, a spanning set
of connections and an appropriate substitution. Although a
realistic proof procedure will not perform these two tasks
separately, a separate discussion will certainly be helpful for
the reader. Therefore, in this section, we shall set aside all
aspects related to substitution. This can be achieved by as-

846 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

suming that the appropriate substitution has been determined
in advance. The formula F from the previous section in ma-
trix form would then read

{ n M ~ : 3 ~ ; : t t ~ : } {nMANsocrates} {MTLsocrates}

By abbreviating MANsocrates by L and MTLsocrates by K,

and deleting the braces we obtain simply n~ nL K.

In this case, where the literals are simply (possibly negated)
propositional variables, our basic question whether F is a
theorem is reduced to whether this matrix in propositional
logic (sometimes called the ground level) is a tautology. As
before, this is the case if, and only if, each of its paths contains
a connection (see Theorem 11.3.4 in [7]). We are now going to
describe an algorithm which determines exactly that. Let us
call it SSC for "spanning set of connections." Since our matrix
is a little too simple for illustrating its behavior, we add four
more literals, yielding

L nL L
nM K

nK M K

Initially, SSC chooses any clause, say the leftmost one, and
in it any literal, say L. A data structure for storing the whole
matrix is easily designed such that a clause containing the
negation of the chosen literal can be found immediately, for
instance, by looking it up in a table which contains all occur-
ring literals in a determined order together with a reference to
those clauses in which they occur. Doing this establishes a

~--~nL L
first connection in our m a t r i x ~ n K M nM K K.

1
At the same time a pointer is set in the first clause (the little
arrow in the picture) noting that L has been processed but the
rest of the clause--in this case, just n/G-remains to be proc-
essed. This completes the first step of SSC in which all paths
containing this selected connection {L, nL}--only two in this
particular example, but obviously there may be many more
in general--have been checked and will never be considered
by SSC.

The paths yet to be processed may be partitioned into those
which contain L (but not nL) from the first connection and
those which do not. SSC proceeds with the first ones while
the second ones have been stored on a stack simply by the
reference depicted by the pointer above. At this stage, the
situation is essentially the same as the one after the selection
of the first clause, the selected clause now being the second
one from the left, marked with a vertical arrow. SSC chooses
any member literal except nL. Here, this must be M since this
is the only one left. As before, from the remaining clauses (to
the right of the vertical arrow), we choose one which contains
nM, thus establishing the second connection as shown

f f - ~ ' L L
nK M nM K K

If there had been more literals in the second clause, this
would have provided a new entry on the stack as illustrated
with the second horizontal arrow pointing to nothing in this
particular example. After this second step, all paths containing
one of the selected connections have been checked.

SSC must continue to process those paths containing L (but
not nL, and not both M and nM any more). If there were such
paths left, the same partition would be made with respect to
M as before with respect to L; thus, we would proceed with
the third step as before in the second step, and so forth. Note
that such a chain is never longer than the clauses in the
whole matrix since new clauses in this process are always
selected from those not already involved in the present chain.
Due to the particular situation of this example, there is no
such third step; however, since all paths containing L also
contain one of the selected connections. SSC notices this since
the third clause does not contain any literal other than nM. In
such a situation, it backs up by considering the topmost (non-
empty) entry on the stack which is depicted by the leftmost
horizontal arrow, thus starting a new chain from the situation
illustrated by

L L L
nK M ~ M K K

1'

As before, SSC selects any literal in the actual clause
marked by the vertical arrow, which has not been processed
before, and any clause containing its complement, thus estab-
lishing a third connection as shown in

K --~ L

.._, T

where the reordering of the clauses is required for clarity of
presentation. The horizontal arrow depicts later processing of
further literals in the first clause (none in this case). The new
chain after this step has already been completed. Since the
stack is empty, SSC terminates with success. The three se-
lected connections which, incidentally, need not be stored
explicitly, are in fact spanning for this matrix. The rightmost
clause and any connections containing its literals were redun-
dant for the proof.

This completes the description of algorithm SSC for testing
any matrix for a set of spanning connections. Above, we have
already stressed that no extra storage of copies of the parts of
the given formula is required. Only the pointers directing the
chaining through the formula have to be stored in addition to
a single copy of the formula and something like the table (of
the size of the formula) mentioned at the beginning of this
section. This fact is characteristic for SSC, not only in its
simple form just described with a trivial example, but also in
its full version applicable to arbitrary formulas.

A full version of this has been developed in [4] (see also pp.
326--341 in [17]). It is very general and has been designed to
avoid certain redundant steps arising in special situations, for
which reason its algorithmic details are rather complicated. It
has been demonstrated [4] that this full version may simulate
any known refinement of resolution with fewer or equal
number of steps (and less storage) in the search for a proof,
the amount of processing required for a single step being
about the same in both cases. Since there are formulas for
which SSC requires strictly fewer steps we see that the con-
nection method provides a real (and provable) advantage over
known resolution methods in addition to the representational
advantage mentioned several times before. (There is another
major advantage to be discussed in later sections.) As a guard
against too much optimism we mention that determining a
spanning set of connections is known as a hard problem in

November 1983 Volume 26 Number 11 Communications of the ACM 847

RESEARCH CONTRIBUTIONS

general (actually co-NP-hard in the terminology of complexity
theory); hence, no miracles should be expected for the worst
case.

Because of its generality, the full version, in fact, may deal
with arbitrary formulas or matrices not only ones in normal
form (as our examples have considered thus far). For instance,
any literal, e.g., M in the previous matrix, might be replaced
by a whole (non-normal form) matrix; SSC still would be able
to process such a matrix as before and without any change of
its structure. The reason for this generalization lies in the fact
that the characterization of tautologies via connections in
each path, which was mentioned before, holds for arbitrary
formulas. (See Theorem II.3.4 in [7].)

Andrews has demonstrated the disadvantages of the trans-
formation to clausal form, which is required for resolution,
with several examples. For instance, in [1], it has been shown
that the simple mathematical statement f(S U T} = f(S) 1.3 f(T}
for a function f and two sets S and T after elimination of the
defined operations (like U but not ~.-*) leads to a formula with
12 literals, compared with 104 literals in the corresponding
clausal form. Now imagine the effect when the proof process
searches among 104 rather than among 12 literals!

It might be helpful for the reader to consider SSC as a proof
rule rather than an algorithm. Namely, for any given matrix,
A, SSC in ech step essentially adds a single connection w to
the set W of those connections obtained in previous steps;
hence, the rule is (A, W) k (A, W U {w}). (For more details, see
Sections 11.4 and 11.5 in [7].)

Note that the formula, A, does not change, in contrast to
any other logical rules. Initially, W = ~3 and the termination
criterion for a successful derivation is the spanning property
of W for A. If the process gets stuck before this criterion is
fulfilled, then A is shown to be invalid. Thus, in the sense
defined in the Introduction, SSC is actually a decision proce-
dure for the subclass of propositional formulas (of the class of
all formulas in FOL).

4. UNIFICATION
In Section 2, we have seen that a proof of a theorem involves
the problem of

(i) determining a spanning set of connections such that

(ii) there is a substitution of terms for variables which
makes the connected literals complementary.

In the previous section, we described the basic idea of the
algorithm SSC for solving (i) on the ground level. Obviously,
such an algorithm is applicable also on the genera/level, i.e.,
in FOL, by simply neglecting the terms in the literals. There-
fore, we now take the existence of such an algorithm for
granted and ask for a solution of the subproblem (ii).

Since the test for (ii) may be performed by a fast algorithm,
and a potential failure might be detected after any step of
SSC, it is preferable to check for (ii) after each step. For
example, after the first step of SSC is applied to the matrix F
of Section 2, we would have to test whether there is a substi-
tution, say a~, which makes MANx and 7MANsocrates com-
plementary. Of course, a~ = Ix ,-- socrates} will do and thus is
kept for the following steps. Thus, the situation after this first
step may be illustrated as in the previous section with the
substitution a~ added.

7MANsocrates MTLsocrates Ix ~ socratesl
7 M T L x

After having obtained the second connection in the second
step, subproblem (ii) now requires a substitution a2 such that
the two literals 7MTLx and MTLsocrates, after application of
al and a2, become complementary. Obviously c~2 = ~ since al
alone is sufficient in this particular case, thus completing the
proof already presented in Section 2.

In general, we proceed this way considering in the nth step
two literals, L1 and L2, and the composition ~,_~, a,-2 a~
of the substitutions obtained in the previous steps (substituting
terms for variables} and test for a substitution ao such that
a,L(= a,TL2' where L/ = a,1-1 • .. a~L~ for i = 1, 2. This
problem of determining a, is known as the unification prob-
lem [19] which has been thoroughly studied with fast solu-
tions (running in linear time} for the general case. We do not
discuss any of these unification algorithms in detail (See Sec-
tions III.5 and W.9 in [7].} assuming that the reader will grasp
somewhat of their nature from further examples. But we
must point out that their application is subject to an essential
restriction.

Consider any predicate Q with two arguments and the
formula

Vc 3x (Qcx ~ Qxc)

Applying the connection method this turns out to be a theo-
rem since the substitution or1 = Ix ~-- c} solves subproblem (ii).
Let us now exchange the two quantifiers to yield

3 x Vc (Q~x --~Qxc)

Simply by reading the formula as a statement with his natural
language, the reader will see that this cannot be a true state-
ment for arbitrary Qs although our method, as described thus
far, would result in the same proof with a~ = Ix ~-- c}. Of
course, a~ cannot be a correct solution since according to the
formula the existence of object x is claimed independent of
the choice of c while a~ would suggest a dependent solution.

Standard proof methods take care of that by introducing so-
called Skolem functions for each V quantifier with the domi-
nating 3-quantified variables as arguments. In this example,
3x dominates Vc in the (tree} structure of the formula which
is expressed briefly by x < c; hence, c is replaced by fx to

yield 3x (Q-~fx)x'-~x(fx)) where f is any new function
symbol. Obviously, this prevents the two connected literaLq
from being unified since for no substitution can x and fx yield
the same term.

As an alternate solution to this, one may regard c = a~x as a
tree-ordering relation c <. x. Such a substitution is then
called acceptable if the transitive closure <3 of the union
< U < of the relations < and < has no cycles. In this sense, al
for our example is not acceptable since c <. x < c obviously
leads to the cycle c ~ c. Thus, all we need do is restrict
unification to acceptable substitutions; this has several techni-
cal advantages over the solution via Skolem functions.
Namely, some fast unification methods, after having intro-
duced Skolem functions, construct <3 from them--hence,
their introduction is in fact redundant - -and test for cycles
anyway. (See 1V.9.1 in [7].} Also, our solution fits elegantly
with what will be discussed in later sections.

We complete the description of the most basic aspects of
the connection method by pointing out that it requires (selec-
tive) backtracking whenever an acceptable substitution does
not exist as in the following example:

Vb 3x Vc (Qffcx)x ~ Qxc V 3y Qyb)

848 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUT~IS

~ f fac~xl) = Yl / fac(x2) = Y2 faG(2) ~- 21

fac(O) = 1 3fac(x~ + 1) = y,-(xl + 1) J -nfac(x2 + 1) = y2.(x2 + 1 ~

FIGURE 2. An Example

Here, the dotted connection has no acceptable substitution.
Hence, SSC has to back up and consider the alternate (fully
lined) connection which yields the proof with the acceptable
substitution

Ix ~- b, y ~ - f c x l

At this point, it is appropriate to complete the comparison
with Andrews' work. As in the standard resolution methods,
he uses Skolem fimctions. His ground-level procedure is less
elaborate than our full version of SSC. Finally, his method
lacks the features described in the following two sections.

5. IMPLICIT AMPLIFICATION
Consider the formula

fac(O) = 1 A

Vxy ffac(x) = y ~ f a c (x + 1) = y.(x + 1))

3 z fac(2) = z

It claims the existence of a value for the factorial function for
the argument 2 which obviously is a valid statement. As
before, we prefer the matrix representation which is

, f a c (O l = 1 3xyt_vactx ~ / = y.(x + 11 3 z f a c (2 1 = z

An attempt to prove this theorem with the connection
method as described in the previous sections will fail, how-
ever, since this description is still incomplete in an essential
detail. Namely, according to the nature of FOL, we must
allow for an arbitrary number of independent copies of any
3-quantified part in the matrix (which explains why no deci-
sion procedure exists for FOL). Adding further such copies is
called amplification by Andrews. For our example, a proof is
obtained with one additional copy of the second clause as
shown in Figure 2.

Here, the copies are distinguished by indices added to the
variables. For instance, x and y from the original second
clause are replaced by x~ and y~ in its first copy and by x2 and
y2 in its second copy, respectively. Although only a single
copy of the rightmost clause is needed so that a replacement
is not actually required here, z has nevertheless been re-
placed by z~ for reasons of uniformity.

of Amplification.

Evidently, the three depicted connections are spanning.
The corresponding acceptable substitution is a = {xl *-- 0,
yl ~-- 1, x2 ~-- 1, y2 ~- 1, zl ~ 21; for instances, a unifies (here
in a slightly generalized sense as the altert reader might no-
tice) the respective pairs of terms corresponding to the second
connection, viz., a(x~ + 1) = (0 + 1) = 1 -- gx2 and a(yl. (x~ +
1)) = 1 .(0 + 1) = 1 = ay2. Note that for the "answer" variable,
z~, this proof yields the expected result of computing the
factorial of 2, viz., ~rzl = 2. We now encode this proof within a
single copy of the original matrix in the following way.

f l

. . f f~c (x) = y 2) = z
~ x Y l . f a c (x + 3 / = y . (x

1.
2 * - -

This representation is obtained from the previous one simply
by projecting the two copies of the second clause into the
single original one, while the information concerning their
differences is encoded in the indices now labeling the nodes
of the connections (each by definition, given in Section 1,
referring to the adjacent literal). For instance, there are two
such nodes adjacent to the literal fac(x) = y, one labeled with
1, the other with 2.

It is obvious, for this example, that all information con-
tained in the previous explicit presentation (with the explic-
itly added second copy) can be recovered from this implicit
encoding; conversely, the implicit representation is also
uniquely determined by the explicit one. This one-to-one cor-
respondence between these two kinds of representations in
fact holds in general. Hence, the connection method need not
explicitly generate such copies of 3-quantified formula parts,
since the illustrated simple indexing technique serves the
same purpose. The technical and rather complicated details
realizing this intuitively simple idea may be found in the
Sections m.6 and IV.8 of [7], while a version of our algorithm
SSC, adapted to the present complication, is spelled out in
I11.7.2 of [7].

This kind of connection proof in implicit representation
may easily be generalized to arbitrary input n _> 1 for the
present example (as well as for others, of course) by introduc-
ing schemes of connections. This is illustrated as follows, this
time using again the original formula structure (Figure 3).

i = 1 n - 1

i + 1

fa~.___,(0) = 1 A Vxy(fac(x) = y ~ fac(x + 1) = ~ z f a c (n) = z
1 n "--,.._

FIGURE 3. An Example of a Connection Scheme.

November 1983 Volume 26 Number 11 Communications of the ACM 849

eeseaecM c o w r m v r m s

f

3x(3y~yx A1 3zPbzx) v (3u "TPuuc A~ 3v "lPvbd) {AI<'U,V;A2<-X}

FIGURE 4. A Theorem and its Proof with the Connection Method.

It represents both the natural specification of the problem to
compute the value of the factorial for input n (viz., the logical
formula) and a proof, respectively a program, determining
how to compute this value efficiently (viz., the connection
scheme). Note that specification and program are neatly sepa-
rated, whereas in conventional programs the logical and dy-
namic structure are mixed together. It is this mixture which
causes so many problems in software production. Such a logic
program (i.e., formula + scheme) may be compiled automati-
cally as usual to run as efficiently as any conventional pro-
gram computing fac(n). (For a discussion of the close connec-
tion between these kind of proofs and programs, and for fur-
ther information concerning the predicate logic as a suitable
programming environment, see [8], or Section V.2 in [7], and
the references given there, such as Reference 3 in [8]).

splitting (among other possibilities such as alternate connec-
tions or further copies) the way to be explained below.

Splitting means to consider separable subcases separately.
This, in turn, requires the separation (represented by A) to be
carried out before processing each subcase, in particular be-
fore performing the substitutions on x. Instead of carrying out
this separation explicitly, this requirement is encoded in our
method as a condition on the relation < , hence also on <3. In
this example, this condition reads A < x, where A refers to
the particular occurrence of conjunction in the formula. With
this notation, the definition of an acceptable substitution can
be extended in a straightforward way such that it covers this
intended meaning of A < x. (For the awkward technical
details, see Section IV.10 in [7]). Thus, both a~ and a2 would
be acceptable in the present context, resulting in the following
proof with only a single (explicit or implicit) copy of ILLx:

6. SPLITTING BY NEED
Consider the formula Vx I Lbob with A <- x

1
Vx I ~ - - - ~ L L p a t A ILLbob

2 . , _ _ _ . _ = . _ , . , - ~ "

presented together with its proof along the lines of the pre-
vious section. This looks like a satisfactory solution but, in
fact, has a major drawback. Imagine that the three literals are
replaced by matrices of considerable size with many more
required connections. Then, the implicit generation of a sec-
ond copy of the matrix to the left of the implication will
certainly increase the search space for appropriate connec-
tions substantially since in particular connections between the
two copies have to be taken into consideration as the previous
example has demonstrated. The second copy, however, is not
actually required (not even implicitly) since the two conclu-
sions are independent from each other because of the separat-
ing conjunction; hence, the search for the proof may take
advantage of what is called splitting in conventional methods
and is applied there in a prrocessing step.

Here, we briefly discuss an alternate form of splitting by
need which is more flexible and more general than previous
splitting methods, and which elegantly fits into the connection
method.

Recall the relations < (tree structure of formula}, <1 (substi-
tutional structure), and <3 (transitive closure of < U <1), intro-
duced in Section 4. In order to account for splitting, < will
now serve an additional purpose. Namely, consider the situa-
tion where the proof has located the first connection with
~1 = {x ~-- pat] in the above example, and is now considering
the second one, still with a single copy of ILLx in mind. The
unification fails since a2 = Ix ~ bob} is apparently not com-
patible with a~. At this point, i.e., when the need arises rather
than in advance, the process may consider the possibility of

The merits of this sophisticated technique become more visi-
ble in more complicated problems, the proofs of which yield
more than just one such conditions. This is illustrated in
Figures 4 and 5 with an example that (for reasons of space) is
artificially elaborated but shows the effect as it may well
occur in complicated theorems.

Figure 4 shows the four-step proof with the connection
method involving no search at all. It leads to three such
conditions shown in the figure. On their basis, the substitu-
tions determined by the depicted connections, in fact, become
acceptable. Even without the formal definition at hand, this
can be verified by the reader on the basis of the intended
interpretation of these conditions as splittings. Here we have
two splits, namely, one on A1 and one on A2. The conditions
imply that the latter has to precede the former since the
condition A2 ~ X together with x < A1 (given by the formula
structure) implies A2 <3 A1, which expresses exactly that prec-
edence. Performing these splits in that sequence leads to four
separate subproblems each of which can be proved immedi-
ately (an easy exercise which is left to the reader). But note
the essential point that the method itself does not carry out
any such splits since the test for cycles (present in unification
anyway as explained in Section 3), now incorporating the
extended relation < , takes care of that in a very efficient way.

For comparison, Figure 5 shows an optimal eight-step proof
with resolution for the same formula. For resolution fans, it is
a healthy exercise to attempt it by hand before looking at the
picture since in relation to the small size of the problem it
involves considerable search. The comparison is fair since, for
resolution, further splitting is excluded if a slight change is
made in the example which, in contrast, has no effect on the
connection method:

3xw (3y Payxw A 3z Pbzxw) V 3s (3u "7Puucs A 3v "7Pvbds)

850 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

{7Payx, 7Pbzx} IPuuc, Pvbd}

{7Pbzc , Puuc}

IPvbd i Pv'bd} ~ InPbzc, 7Pbz'dl

{ P v d ~

{Puucl {7Pbzc}

l i b

FIGURE 5. The Resolution Derivation of the Theorem in Figure 2.

Remember the proof rule introduced for the connection
method in Section 3. Here, and in Section 4, we have seen
that each step not only adds a connection, w, to formula A
but possibly also extends the relation < to ~ ' which initially
is empty. Hence, its complete form is (A, W, <-) ~- (A, W U
{wl, <. '), where A never changes.

7. NATURAL DEDUCTION PROOFS
The results reported in this paper were inspired by a thor-
ough study of natural deduction proofs [12]. It is not surpris-
ing, then, that the connection proofs we describe are closely
related to natural deduction proofs which may even be
printed out immediately once the connection proof has been

achieved. In this transformation, the relation <. provides the
sequence of the deduction steps, and the connections encode
both the instantiated terms (via unification) and the property
qualifying the formulas at the leaves of the deduction tree as
logical axioms. This is illustrated in Figure 6 with the natural
deduction proof corresponding to the (second) connection
proof for the first example of the previous section. Note that
the A splitting is performed prior to the instantiation of the
terms pat and bob for x due to the information given by
A < x which reveals the proper nature of this relation.
(For the natural deduction proof obtained from the proof in
Figure 2, see Figure 3 in [5].)

In Section 2, we already pointed out the close relation
between the connection method and resolution (or its refine-

FIGURE 6. The Natural Deduction Proof Obtained
from the Connection Proof Vx ILLx .-~ ILLpat A ILLbob, A < .x.

Vx ILLx .-~ ILLpat A ILLbob

ILLpat ~lLLpat ILLb.. ob , ILLbob

November 1983 Volume 26 Number 11 Communications of the ACM 851

RESEARCH CONTRIBUTIONS

ments) which was studied in detail [4]. Here, we now see its
close relation with natural deduction proofs. This justifies re-
garding the connection method as a higher level proof
method; it provides a deeper insight into the characteristic
features of theorems (versus formulas) than do the resolution
or the natural deduction proof method.

8. SUMMARY
In this paper, we have given an overview of a proof method
for theorems in first-order logic called the connec t ion method .
With a number of examples, we have illustrated a number of
its prominent features. These and further ones are now sum-
marized.

(i) It may be regarded as a higher level proof method
providing deeper insight into the characteristic fea-
tures of theorems (versus formulas) than do conven-
tional proof methods (see Section 7).

(it) It operates exclusively on a single copy of the given
formula (see Sections 3 and 5, and the proof rule at
the end of Section 6).

(iii) In particular, no transformation into any normal form
of the given formula is required which allows the use
of any standard logical connectives and the speeding
up of search by antiprenexing (see Section 2, and [7],
p. 209).

(iv) Not even Skolem functions need be introduced, i.e.,
only the terms in the original formula need be unified
(see Section 4).

(v) Unification is generalized to include an optimal split-
ting by need (see Section 6).

(vi) Amplification is accomplished by a systematic index-
ing without violating feature (it) (see Section 5).

(vii) A connection proof can easily be transformed into a
natural, thus immediately comprehensible deduction
of the given formula (see Section 7).

(viii) Special handling of equality and other algebraic rela-
tions (extensively studied under the key word "re-
write rules") smoothly fits into the connection
method, since from its perspective such specialized
rules simply encode a deterministic control for locat-
ing connections, possibly a whole scheme of connec-
tions within one step (see Sections V.3 and 4 in [7]).

(ix) Induction may appropriately be incorporated follow-
ing the s tandard--or a new, in fact promising-- l ine
(see Section V.5 in [7]); the generalization of the
method to higher-order logic (or type theory) is simi-
larly straightforward (see Section V.6 in [7]); the same
may be expected for other extensions of FOL such as
modal logic.

(x) The location of connections in a given formula struc-
ture has a potential of being realized on the chip
level.

All these features have been developed by the author in a
number of technical papers. (See [3-6] and their references.)

A number of them were also obtained by Andrews in an
independent approach with mat ings . (See [1-2] and their ref-
erences.) This paper has clarified this relationship.

Due to its intended nature, this paper has not provided any
technical details such as precise definitions, theorems, proofs
or other justifications, and algorithms. For these details, the
interested reader is referred to the references ment ioned be-
fore or to the comprehensive treatment given in [7].

A c k n o w l e d g m e n t s . I thank Peter Haddaway, Alex Kumjian,
Bernard Meltzer, and the referee for numerous valuable sug-
gestions for improving this text.

REFERENCES
1. Andrews, P.B. Theorem proving via general matings. J. ACM 28, 2

(April 1981), 193-214.
2. Andrews, P.B. Transforming matings into natural deduction proofs. In

W. Bibel, R. Kowalski, eds. Proc. 5th Conf. on Autom. Deduction, LN
in Comp. Sci. 87 (Springer, Berlin, 1980), 281-292.

3. Bibel, W. On matrices with connections. J. ACM 28, 4 (October 1981),
633-645.

4. Bibel, W. A comparative study of several proof procedures. Artif.
Intell. 18, (1982), 269-293.

5. Bibel, W. The complete theoretical basis for the systematic proof
method. Bericht ATP-6-XII-80, Institut ffir lnformatik, TUM (1980).
Submitted to J. ACM.

6. BibeL W. Computationally improved versions of Herbrand's theorem.
In Stern, ed. Proc. of the Herbrand Colloquium, North Holland, Am-
sterdam, 1982), 11-28.

7. Bibel, W. Automated theorem proving. Vieweg: Braunschweig, 1982.
8. Bibel, W. Syntax-directed, semantics-supported program synthesis.

Artif. Intell. 14, (1980), 243-261.
9. Bibel, W., and Kowalski, R., eds. 5th Conference on Automated Deduc-

tion, LN in Comp. Sc. 87 Berlin, Springer, 1980.
10. Bledsoe, W.W. Non-resolution theorem proving. Artif. Intell 9, (1977),

1-35.
11. Chang, C.-L., and Lee, R.C.-T. Symbolic logic and mechanical theo-

rem proving. New York: Academic Press, 1973.
12. Gentzen, G. Untersuchunge fiber dos logische Schliel~en I, Mathemat.

Zeitschrift 39, (1935), 176-210.
13. Herbrand, J. Recherches sur la Theorie de la Demonstration, Tra-

veaux de la Societ6 des Sciences et des Lettres de Varsovie, Classe lIl
sciences mathematiques et physiques, 33 (1930).

14. Joyner, W., (ed.) 4th Workshop on Automated Deduction (Austin,
Texas, 1979).

15. Kalish, D., and Montague, R. Logic. New York: Harcourt Brace Jova-
novich, 1964.

16. Loveland, D.W. Automated theorem proving. Amsterdam: North Hol-
land, 1978.

17. Loveland, D.W. (ed.) 6th Conference on Automated Deduction, LN in
Comput. Sc. 138, Berlin: Springer, 1982.

18. Nilsson, N.J. Principles of artificial intelligence. Polo Alto: Tioga,
1980.

19. Robinson, J.A. Logic: form and function, Edinburgh University Press
(1979).

20. Siekmann, J. (ed.) GWAI-81, Informatik Fachberichte 47. Berlin:
Springer, 1981.

21. Wos, L. Solving open questions with an automated theorem-proving
program, in [17].

CR Categories and Subject Descriptors: F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic--mechanical theorem proving,
logic programming; 1.2.3 [Artificial Intelligence]: Deduction and Theo-
rem Proving--deduction, resolution, logic programming; 1.2.4. [Artificial
Intelligence]: Knowledge Representation Formalisms and Methods--
predicate logic

General Terms: Theory, Algorithms
Additional Key Words and Phrases: logic, theorem proving, connec-

tion method, matings, resolution, unification, splitting, natural deduction,
systematic proof procedure, complementary matrices, spanning sets of
connections, structure sharing, refinements of resolution.

Received 3/81; revised 2/83; accepted 4/83

852 Communications of the ACM November 1983 Volume 26 Number 11

