
AI Communications 23 (2010) 159–182 159
DOI 10.3233/AIC-2010-0464
IOS Press

Restricting backtracking in connection
calculi

Jens Otten
Institut für Informatik, University of Potsdam, August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany
E-mail: jeotten@cs.uni-potsdam.de

Abstract. Connection calculi benefit from a goal-oriented proof search, but are in general not proof confluent. A substantial
amount of backtracking is required, which significantly affects the time complexity of the proof search. This paper presents
a simple strategy for effectively restricting backtracking in connection calculi. In combination with a few basic techniques it
provides the basis for a refined connection calculus. The paper also describes how this calculus can be implemented directly by a
few lines of Prolog code. This very compact program is the core of an enhanced version of the automated theorem prover leanCoP.
The performance of leanCoP is compared with other lean theorem provers, connection provers, and state-of-the-art theorem
provers. The results show that restricted backtracking is a successful technique when performing proof search in connection
calculi.
Keywords: Automated theorem proving, connection calculus, restricted backtracking, leanCoP

1. Introduction

Connection calculi are a well-known basis to au-
tomate formal reasoning in classical first-order logic.
Among these calculi are Bibel’s connection method
[3,4], the connection tableau calculus [18] and the
model elimination calculus [19]. Their main inference
step connects an atomic formula of the conjecture, or
an atomic formula of the proof derivation, to a new
atomic formula with the same predicate symbol but
different polarity. The two connected atomic formulae
are called a connection, which corresponds to a closed
branch in the tableau framework [10] or an axiom in
the sequent calculus [9]. The concept of a connection
permits a goal-oriented proof search. While the goal-
oriented strategy reduces the search space – compared
to, e.g., standard tableau or sequent calculi – it is not
confluent, i.e. it might end up in dead ends. To achieve
completeness an extensive use of backtracking is re-
quired. There have been only a few attempts to limit
this backtracking, e.g., by using a confluent connection
calculus [1,4]. But the practical benefit of a confluent
proof search does not outweigh the disadvantages in-
troduced by limiting the goal-oriented proof search.

Another major problem in connection calculi is the
integration of equality. Paramodulation, a successful
technique for dealing with equality in saturation-based
theorem proving, is not complete for the goal-oriented

approach of connection calculi. Therefore equality is
usually integrated by adding the axioms of equality, i.e.
the axioms for reflexivity, symmetry, transitivity and
substitutivity. In some cases several hundreds of equal-
ity axioms need to be added to the given formula.

This paper presents a simple strategy for restricting
backtracking in connection calculi that significantly re-
duces the search space. The main idea is that once a
literal has been solved, no alternative connections are
considered anymore. This is achieved by cutting off
any so-called non-essential backtracking that occurs
after a literal is solved. Even though this strategy is in-
complete, it performs very well in practice, in partic-
ular for problems that have many axioms or that con-
tain equality axioms. Experimental results show that it
is – up to now – the single most effective technique for
pruning the search space in connection calculi.

Many different techniques have been proposed so far
for pruning the search space in connection calculi; see,
e.g., [4,18]. In this paper a set of basic techniques is
selected that are most successful in practice. Among
these are well-known techniques, such as regularity
and lemmata. Together with the new technique for re-
stricting backtracking, these pruning techniques are the
main enhancements of the basic connection calculus.

This calculus can be implemented by a few lines
of Prolog code. The resulting implementation is the
core of leanCoP 2.0, a refined version of the theorem

0921-7126/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved

160 J. Otten / Restricting backtracking in connection calculi

prover leanCoP [28]. A definitional transformation for
translating first-order formulae into clausal form is pre-
sented as well. It is shown that this transformation is
more appropriate for connection calculi than other es-
tablished clausal-form transformations.

Outline of the paper

The paper is organized as follows. First some fun-
damental concepts are defined in Section 2. The basic
connection calculus together with a few essential and
well-known techniques for pruning the search space
are presented in Section 3. It includes an original for-
malization of these techniques within the “sequent-
style” connection calculus, as well as a new optimized
definitional transformation into clausal form. Section 4
provides a comprehensive analysis of the amount of
backtracking required in order to find a proof in the
connection calculus. The new technique for restrict-
ing this backtracking is introduced afterwards. In Sec-
tion 5 the basic calculus is specified in Prolog before
the presented techniques for pruning the search space
are added, leading to the leanCoP 2.0 core prover. Sec-
tion 6 provides comprehensive experimental results of
leanCoP on the problems in the TPTP library. Some
improvements and extensions of the leanCoP imple-
mentation, e.g. to intuitionistic logic, are described in
Section 7. The paper concludes with a short summary
and a brief outlook on further research in Section 8.

2. Preliminaries

The reader is assumed to be familiar with the lan-
guage of classical first-order logic, see, e.g., [8]. In
this paper the letters P , Q, R, S, T are used to denote
predicate symbols, a, b, c, d, e to denote constants and
x, y, z to denote variables. Terms are denoted by s, t
and are built from functions, constants and variables.
Atomic formulae or atoms are built from predicate
symbols and terms. The connectives ¬, ∧, ∨, ⇒ de-
note negation, conjunction, disjunction and implica-
tion, respectively. A (first-order) formula, denoted by
F , A, B, D, consists of atomic formulae, the connec-
tives and the existential and universal quantifiers, de-
noted by ∃ and ∀, respectively. A literal, denoted by L,
is either an atomic formula or a negated atomic for-
mula. The complement L of a literal L is P if L is of
the form ¬P , and ¬L otherwise.

In the following, formulae are considered that are ei-
ther in Skolemized negation normal form or in clausal

form. A formula is in negation normal form if it
contains only disjunctions, conjunctions and literals.
A clause, denoted by C, is of the form L1 ∧ · · · ∧ Ln

where Li is a literal. A formula in disjunctive nor-
mal form or clausal form has the form C1 ∨ · · · ∨ Cn

where Ci is a clause. A clause is often written as a set
of literals {L1, . . . , Ln}. A formula in clausal form can
also be written as a set of clauses {C1, . . . , Cn} and is
called a matrix, denoted by M . In the graphical rep-
resentation of a matrix, its clauses are arranged hori-
zontally, while the literals of each clause are arranged
vertically. A positive representation is used throughout
the paper, i.e. the introduced calculi are used to char-
acterize validity and not unsatisfiability.1

Example 1 (First-order formula, clause, matrix).

(
((∃xQ(x) ∨ ¬Q(c)) ⇒ P)

∧ (P ⇒ (∃yQ(y) ∧ R))
)

⇒ (P ∧ R)

is a formula. Its equivalent negation normal form
(where y is replaced by the Skolem term b) is

(
(Q(x) ∨ ¬Q(c)) ∧ ¬P

)
∨

(
P ∧ (¬Q(b) ∨ ¬R)

)
∨ (P ∧ R)

and its equivalent clausal form is

(P ∧ R) ∨ (¬P ∧ Q(x)) ∨ (¬Q(b) ∧ P)

∨ (¬Q(c) ∧ ¬P) ∨ (P ∧ ¬R).

The matrix of this formula is

{
{P , R}, {¬P , Qx}, {¬Qb, P},

{¬Qc, ¬P}, {P , ¬R}
}

,

where some parentheses are omitted for simplicity. It
consists of five clauses and can be represented in a two-
dimensional graphical way:

[
P ¬P ¬Qb ¬Qc P

R Qx P ¬P ¬R

]
.

Besides the concept of a connection, paths and term
substitutions are defined in the following.

1The difference is marginal but becomes more important when
non-classical logics, such as intuitionistic logic (see Section 7.2), are
considered within the presented framework.

J. Otten / Restricting backtracking in connection calculi 161

Definition 1 (Connection, path, term substitution).

(1) A connection is a set that contains two literals
of the form {P (s1, . . . , sn), ¬P (t1, . . . , tn)}.

(2) A path through a matrix M = {C1, . . . , Cn} is a
set of literals that contains one literal from each
clause Ci ∈ M , i.e.

⋃n
i=1{L′

i} with L′
i ∈ Ci.

(3) A first-order or term substitution σ is a mapping
from the set of variables to the set of terms. In
σ(L) all variables of the literal L are substituted
according to their mapping in σ.

Example 2 (Connection, path, term substitution). Con-
sider the formula in Example 1 and its matrix. Then
{P , ¬P}, {R, ¬R}, {Qx, ¬Qb} and {Qx, ¬Qc} are
connections. {P , ¬P , ¬Qb, ¬Qc, ¬R} and {R, Qx,
¬Qb, ¬Qc, P} are, e.g., paths through the matrix.
σ(x) = c is a term substitution.

These concepts are the basis of the connection cal-
culus presented in the next section.

3. Proof search in the connection calculus

At first the basic connection calculus is described,
before introducing a definitional clausal-form transfor-
mation and the rules for regularity and lemmata.

3.1. The basic calculus

The connection calculus uses a connection-driven
search strategy. In each inference step a connection is
identified along an active (sub-)path and only paths not
containing the active path and this connection will be
considered afterwards. See, e.g., [3,4,28] for details.

Definition 2 (Connection calculus). The axiom and
rules of the connection calculus are given in Fig. 1.
The words of the calculus are tuples “C, M , Path”
where the clause C is the open subgoal, M is the ma-
trix of the given formula, and the active path Path is
a subset of a path through M . In the rules of the cal-
culus C1 and C2 are clauses, σ is a term substitution,
and {L1, L2} is a connection with σ(L1) = σ(L2).
The rules of the calculus are applied in an analytic (i.e.
bottom-up) way. The term substitution σ is applied to
the whole derivation.

Theorem 1 (Correctness and completeness). A first-
order formula M in clausal form is valid in classical
logic iff there is a connection proof for “ε, M , ε”, i.e. a
derivation for “ε, M , ε” in the connection calculus so
that all leaves are axioms.

Axiom (Ax) {}, M , Path

Start rule (St)

C2, M , {}
ε, M , ε

and C2 is copy of C1 ∈ M

Reduction rule (Red)

C, M , Path ∪ {L2}
C ∪ {L1}, M , Path ∪ {L2}

with σ(L1) = σ(L2)

Extension rule (Ext)

C2 \{L2}, M , Path ∪ {L1} C, M , Path
C ∪ {L1}, M , Path

and C2 is copy of C1 ∈ M , L2 ∈ C2,

σ(L1) = σ(L2)

Fig. 1. The basic connection calculus.

A proof of this theorem can be found in [4,18]. Proof
search in the connection calculus is carried out by first
applying the start rule and then repeatedly applying the
reduction or the extension rule. The latter rules iden-
tify a connection {P (s1, . . . , sn), ¬P (t1, . . . , tn)} with
σ(si) = σ(ti), for 1 � i � n. In the sequent cal-
culus [9] this connection corresponds to an axiom of
the form P (σ(t1), . . . , σ(tn)) 	 P (σ(s1), . . . , σ(sn)),
whereas the active path Path corresponds to the literals
in the current sequent. The term substitution σ is cal-
culated by one of the well-known algorithms for term
unification, see, e.g., [20].

Example 3 (Connection calculus). Let M = {{P , R},
{¬P , Qx}, {¬Qb, P}, {¬Qc, ¬P}, {¬R, P}} be the
matrix of the formula in Example 1. A derivation for
M in the connection calculus with σ(x′) = σ(x′ ′) = c
is given in Fig. 2. Since all leaves are axioms it repre-
sents a connection proof and therefore the correspond-
ing formula is valid.

The presented connection calculus is very similar to
the connection tableau calculus [17,18]. In the con-
nection calculus (the active) Path corresponds to the
set of literals on the currently considered branch of the
connection tableau and the literals of the open subgoal
clause C correspond to the open leaf nodes of the cur-
rently considered tableau branch. A connection proof

162 J. Otten / Restricting backtracking in connection calculi

{}, M , {P , Qx′}
Ax

{¬P },M ,{P , Qx′}
Red

{},M ,{P }
Ax

{Qx′}, M , {P }
Ext

{}, M , {R, P , Qx′ ′}
Ax

{¬P },M ,{R, P , Qx′ ′}
Red

{},M ,{R, P }
Ax

{Qx′ ′},M ,{R, P }
Ext

{},M ,{R}
Ax

{P }, M , {R}
Ext

{},M ,{}
Ax

{R}, M , {}
Ext

{P , R}, M , {}
Ext

ε, {{P , R}, {¬P , Qx}, {¬Qb, P }, {¬Qc, ¬P }, {¬R, P }}, ε
St

Fig. 2. A connection proof in the connection calculus.

Fig. 3. A connection proof using the graphical matrix representation.

can also be represented by the graphical matrix presen-
tation [3,4].

Example 4 (Graphical connection (tableau) proof).
The connection proof in Fig. 2 from Example 3 can
be illustrated by the graphical representation in Fig. 3.
The literals of each connection of the connection proof
in Fig. 2 are connected with a line. The literals of
the active path are boxed. While the extension steps
connect a literal to a new clause (steps 1, 2, 4–6),
the reduction steps connect to literals in the active
path (steps 3 and 7). Together with the substitution
σ(x′) = σ(x′ ′) = c these matrices represent a con-
nection proof. The corresponding connection tableau
proof is depicted in Fig. 4. Every connection corre-
sponds to one tableau leaf and the literals of the active
path correspond to the literals on the tableau branches.

The following matrix characterization [4] of classi-
cal validity can be seen as the underlying basis of the
connection calculus. The notion of multiplicity is used

Fig. 4. A connection proof using the tableau representation.

to encode the number of clause copies used in a con-
nection proof. It is a function μ : M → N that assigns
each clause in a matrix M a natural number specifying
how many copies of this clause are considered for the
proof. The matrix that includes these copies is denoted
by Mμ. Clause copies correspond to applications of
the contraction rule in the sequent calculus [9].

Lemma 1 (Matrix characterization). A matrix M is
classically valid iff there exist a multiplicity μ, a
term substitution σ and a set of connections C, such
that every path through Mμ contains a complemen-
tary connection {L1, L2} ∈ C, i.e. a connection with
σ(L1) = σ(L2). The tuple (μ, σ, C) is called a matrix
proof.

It is important to notice that the matrix characteriza-
tion is not a calculus, i.e. it does not provide any infor-
mation on how to actually calculate the tuple (μ, σ, C).
A thorough analysis of the relation between the ma-
trix characterization and the connection (tableau) cal-
culus is given in [15]. A connection proof can be seen
as a matrix proof using an appropriate multiplicity μ.
Because of the close relationship between these proof
representations, the representation that is most appro-
priate for an explanation will be used throughout the

J. Otten / Restricting backtracking in connection calculi 163

rest of this paper. There are matrix characterizations
for a wide set of logics, e.g. for intuitionistic, modal,
and linear logic [13,45]. Section 7.2 gives more details
for intuitionistic logic.

Example 5 (Matrix characterization). Consider the
matrix M from Example 3 and its graphical represen-
tation

[
P ¬P ¬Qb ¬Qc P ∗

R Qx P ′ ¬P ′ ¬R

]

in which literals that occur more than once are marked
to distinguish them from each other. Then the tuple
(μ, σ, C) with μ(i) = 1 for i = 1, . . . , 5, σ(x) = c,
and C = {{P , ¬P}, {Qx, ¬Qc}, {¬P ′, P}, {R, ¬R},
{P ∗, ¬P}, {¬P ′, P ∗}} is a matrix proof for M .

If a matrix has no positive clause, i.e. a clause with
no negation, then there is a path that contains only
negated atoms and the matrix cannot be valid. There-
fore every connection proof has to contain a positive
clause and the following proposition holds.

Proposition 1 (Positive start clause). The connection
calculus remains correct and complete if the clause C1
of the start rule is restricted to positive clauses.

3.2. Definitional clausal form

The presented connection calculus works on formu-
lae in clausal form. Formulae that are not in this form
have to be translated into clausal form. The standard
transformation translates a first-order formula F that
is in negation normal form into clausal form by apply-
ing the following distributivity rules to all subformulae
of F until they cannot be applied anymore:

(A ∨ B) ∧ D ≡ (A ∧ D) ∨ (B ∧ D),

A ∧ (B ∨ D) ≡ (A ∧ B) ∨ (A ∧ D).

In the worst case the size of the formula F will
grow exponentially and thus increase the search space
for a proof in the connection calculus significantly.
The structure-preserving or definitional transforma-
tion into clausal form [7,31] avoids this disadvantage
by introducing definitions for all subformulae. Opti-
mized versions of this translations reduce the num-
ber of clauses and terms by reducing the number of
definitions [24]. Whereas this approach seems to im-
prove performance for saturation-based calculi, practi-

cal evaluations have shown that this is not always the
case for connection calculi (see Section 6.1). Therefore
a different approach is used, where definitions are in-
troduced only for subformulae of the form A ∨ B that
occur within a conjunction, i.e. within a formula of the
form (A ∨ B) ∧ D or D ∧ (A ∨ B).

Definition 3 (Definitional clausal form). Let F be a
formula in negation normal form and let cla(D) be the
standard transformation of a formula D into clausal
form. The definitional tuple (F ′, D) of F , where D is a
set of formulae, is inductively defined as follows:

(1) If F is a literal, then (F , {}) is the definitional
tuple of F ; otherwise

(2) if F is of the form A ∨ B and F occurs
within a conjunction and (A′, DA) and (B′, DB)
are the definitional tuples of A and B, respec-
tively, then (S(x1, . . . , xn), {¬S(x1, . . . , xn) ∧
A′, ¬S(x1, . . . , xn) ∧ B′} ∪ DA ∪ DB) is the
definitional tuple of F , where S is a new predi-
cate symbol and x1, . . . , xn are the variables oc-
curring in (A ∨ B); otherwise

(3) F is of the form A ◦ B with ◦ ∈ {∧, ∨}
and if (A′, DA) and (B′, DB) are the defin-
itional tuples of A and B, respectively, then
(A′ ◦ B′, DA ∪ DB) is the definitional tuple
of F .

Then the definitional clausal form of F is defined
as F ′ ∨ cla(D1) ∨ · · · ∨ cla(Dn) where (F ′, {D1, . . . ,
Dn}) is the definitional tuple of F .

Lemma 2 (Definitional clausal form). A formula F is
valid iff its definitional clausal form F ′ is valid.

The proof is by structural induction on the size of
the formula F . It is shown that all paths through the
matrix M of F contain a complementary connection
if, and only if, all paths through the matrix M ′ repre-
senting the definitional transformation F ′ of F contain
a connection (see Fig. 5). As the proof is conducted in
a purely proof-theoretical way, i.e., based on the ma-
trix characterization of validity, it can be adapted to in-
tuitionistic logic as well (see Section 7.2).

Example 6 (Definitional clausal form). Consider the
formula ((Q(x) ∨ ¬Q(c)) ∧ ¬P) ∨ (P ∧ (¬Q(b) ∨
¬R)) ∨ (P ∧ R) in negation normal form from Exam-
ple 1. The upper matrix in Fig. 6 shows its standard
transformation into clausal form; the lower matrix rep-
resents its definitional clausal form. The definitional

164 J. Otten / Restricting backtracking in connection calculi

2. M1 = [A′ DA B′ DB]

M ′
1 =

[¬S(x1, . . . , xn) ¬S(x1, . . . , xn) DA DB

S(x1, . . . , xn) A′ B′

]

3. a M2 =
[

[A′ DA]

[B′ DB]

]
M ′

2 =
[

A′ DA DB

B′

]

3. b M3 = [A′ DA B′ DB] M ′
3 = [A′ B′ DA DB]

Fig. 5. The definitional clausal-form transformation.

[
P ¬P ¬Qb ¬Qc P

R Qx P ¬P ¬R

]

[
P ¬P ¬Sx ¬Sx P ¬T ¬T

R Sx Qx ¬Qc T ¬Qb ¬R

]

Fig. 6. Standard and definitional clausal form.

translation introduces definitions for (Q(x) ∨ ¬Q(c))
and (¬Q(b) ∨ ¬R), which are named Sx and T , re-
spectively (Sx and ¬Sx can also be simplified to S
and ¬S, respectively). The lower matrix consists of
more clauses but allows fewer combination of connec-
tions. For example, there are only two P , each with
only one choice to choose a connection, instead of
three P , each with two choices for possible connec-
tions in the standard clausal form. Fewer connections
reduce backtracking when searching for a connection
proof.

3.3. Regularity and lemmata

Regularity and lemmata are well-known inference
rules for pruning the search space in connection cal-
culi. See, e.g., [17,18] for details.

Definition 4 (Regularity). A connection proof is reg-
ular iff no literal occurs more than once in the active
path.

Since the active path corresponds to the set of lit-
erals in a branch in the connection tableau representa-
tion, a connection tableau proof is regular if in the cur-
rently considered branch no literal occurs more than
once. For example, on the left side of Fig. 7 the literal L
occurs twice in the tableau branch, hence the tableau is
not regular. The regularity condition is integrated into

Fig. 7. Regularity and lemmata in the connection calculus.

the connection calculus in Fig. 1 by imposing the fol-
lowing restriction on the reduction and extension rule:

∀L′ ∈ C ∪ {L1}: σ(L′) /∈ σ(Path).

Lemma 3 (Regularity). A formula M in clausal form
is valid iff there is a regular connection proof for
“ε, M , ε”.

Regularity is correct, since it only imposes a restric-
tion on the applicability of the reduction and extension
rules. The completeness proof can be found in [18].
Regularity is so far considered the most effective sin-
gle technique to prune the search space in connection
calculi [18]. Another important technique is the reuse
of subproofs, named lemmata or factorization.

Definition 5 (Lemmata). The connection calculus in
Fig. 1 is modified by adding a set of literals Lem, called
lemmata, to all tuples “C, M , Path”. The empty set {}
is added to the premise of the new start rule, ε is added
to its conclusion. The set Lem ∪ {L1} is added to the
premise of the new reduction rule and the right premise
of the extension rule. Furthermore, the following rule
is added to the connection calculus:

Lemma rule

C, M , Path, Lem ∪ {L2}
C ∪ {L1}, M , Path, Lem ∪ {L2}

with σ(L1) = σ(L2).

J. Otten / Restricting backtracking in connection calculi 165

In the connection tableau calculus this technique
is named factorization and uses an additional depen-
dency relation on the tableau nodes [18].

Lemma 4 (Lemmata). A formula M in clausal form
is valid iff there is a (regular) connection proof for
“ε, M , ε, ε” in the connection calculus with lemmata.

The correctness and completeness of the connection
calculus with lemmata (and regularity) follows imme-
diately from the fact that subproofs can be reused as
illustrated in the connection tableau on the right side of
Fig. 7. See also [17,18] for details.

Example 7 (Regularity and lemmata). Consider the
matrix from Example 3 and its proof shown in Fig. 3.
The matrix is depicted in the upper part of Fig. 8. If for
the second extension step the third clause {¬Qb, P}
is selected, the regularity condition is violated since P
already occurs in the active path {P , Qx}. Consider
the lower matrix in Fig. 8, which shows the connec-
tion proof after three proof steps. When proving the
literal R the literal P (boxed twice) is a lemma. Af-
ter the extension step to the clause {P , ¬R} the con-
nection proof is completed by applying the lemma rule
for the literal P . Consider the right branch of the con-
nection proof in Fig. 2. After the extension step to
the clause {P , ¬R} the lemma rule can be applied to
{P}, M , {R}, {P}. Afterwards the whole branch can
be immediately closed by an axiom.

In this section the basic connection calculus and a
few additional techniques and inference rules to prune
the search space have been introduced: positive start
clauses, definitional clausal form, regularity, and lem-
mata. The next section introduces a new technique for
pruning the search space in connection calculi.

Fig. 8. Using regularity and lemmata in a connection proof.

4. Restricting backtracking in connection calculi

In contrast to saturation-based calculi, such as res-
olution [34] and instance based methods [14], con-
nection calculi are not proof confluent. A significant
amount of backtracking is required during the proof
search. In this section it is first clarified for which rules
backtracking might be required when searching for a
connection proof. Afterwards a comprehensive analy-
sis of the amount of backtracking actually used to find
connection proofs is given before an approach for re-
stricting this backtracking is introduced.

4.1. Proof search and backtracking

In general backtracking is used if a calculus has
more than one rule that can be applied to a node in
a derivation. In this case the search algorithm first
chooses the first applicable rule. If the application of
this rule does not lead to a proof the next applicable
rule is chosen and so on.

Proposition 2 (Backtracking in connection calculi).
For the proof search in the connection calculus shown
in Fig. 1 backtracking is required:

(1) for different (positive) start clauses C1 of the
start rule,

(2) for different literals L2 of the reduction rule,
(3) for different clauses C1 and different literals L2

of the extension rule,
(4) for different literals L2 of the lemma rule, and
(5) if more than one of the reduction, extension, or

lemma rules are applicable at the same time.

No backtracking is required when choosing the lit-
eral L1 in the reduction or the extension rule, since all
literals in C ∪ {L1} will be considered in subsequent
proof steps anyway.

Since the term substitution σ is rigid for the entire
derivation, it is not only important that a branch of the
derivation is closed, but how it is closed. The applica-
tion of different rules to a node might result in differ-
ent substitutions. In order to consider alternative sub-
stitutions, backtracking has to be carried out even for
branches of a derivation that have already been closed.

Example 8 (Backtracking in connection calculi). Con-
sider the matrix {{Pa}, {¬Px, Pb}, {¬Py, ¬Pz,
Qz}, {Pc, Pd}, {Pe}, {Qe}} in Fig. 9. The derivation
of a proof is started with the clause {Pa}. The first ex-
tension step connects to the literal ¬Px with σ(x) = a,

166 J. Otten / Restricting backtracking in connection calculi

Fig. 9. Backtracking in the connection calculus.

the second one connects to the literal ¬Py with
σ(y) = b; in the matrix representation these steps are
marked by thick lines. From the literal ¬Pz there are
five possible connections, which are marked by thin
lines: to literals of the active path {Pa, Pb} by ap-
plying the reduction rule or to literals of the fourth
clause {Pc, Pd} or the fifth clause {Pe} by applying
the extension rule. Depending on which of these liter-
als is chosen the proof results in one of the substitu-
tions σ(z) = x with x ∈ {a, b, c, d, e}. But only the
substitution σ(z) = e ensures that the proof can be
completed with the connection {Qz, ¬Qe}.

4.2. Analysing backtracking in connection proofs

When searching for a connection proof the aim is
to eliminate literals from an open subgoal (clause).
Each literal of an open subgoal corresponds to an
open branch in the connection tableau representation.
The notion of a solved literal is used to express the
fact that within a derivation a proof step deletes the so-
called principal literal from an open subgoal and any
new open subgoal introduced by this proof step can be
solved as well.

Definition 6 (Principal literal, solved literal). When
the reduction, extension or lemma rules are applied
the literal L1 (see Fig. 1 and Definition 5) is called
the principal literal of the proof step. A reduction or
lemma step solves a literal L iff L is the principal lit-
eral of the proof step. An extension step solves a lit-
eral L iff L is the principal literal of the proof step
and there is a proof for the left premise, i.e. there is
a derivation for the left premise so that all leaves are
axioms.

A solved literal in the connection calculus corre-
sponds to a closed branch in the tableau representation.

Example 9 (Principal literal, solved literal). Consider
the matrix of Example 8 in Fig. 9. The principal lit-
eral of the third extension step is ¬Pz. The reduction
steps to Pa and Pb, as well as the extension step to Pe
solves the literal ¬Pz. The extensions steps to Pc or
Pd solve ¬Pz as well after Pd or Pc, respectively, are
solved using a copy of the third clause.

In the following, the amount of backtracking re-
quired for finding connection proofs is evaluated. For
this purpose all non-clausal so-called FOF problems of
version 3.7.0 of the TPTP problem library [40] are con-
sidered (see also remarks in Section 6). To find con-
nection proofs the “regular” variant of the leanCoP 2.0
core prover is used that implements the basic calcu-
lus with regularity, lemmata, and the presented defini-
tional clausal form. Details of the implementation are
given in Sections 5 and 6.2. During the proof search the
lemma rule is applied before the reduction rule, which
is applied before the extension rule; the left premise of
the extension rule is considered first.

At first the formula AGT016+2 is considered. It is
included in the AGT domain, which contains problems
that formalize reasoning about agents. The clausal
form of this problem has more than 1000 clauses in-
cluding the equality axioms. The connection proof
found by leanCoP consists of one start step and nine
extension steps. These ten proof steps are shown in Ta-
ble 1. The application of the axiom is deterministic,
i.e., whenever the axiom rule is applicable, no other
rule can be applied. For that reason the axiom rule is
not considered in the table and the following analysis.

The third, fourth and fifth column of Table 1 show
for each proof step with principal literal L the total
number of applicable rules with the same principal lit-
eral L, the rule number that has first solved the lit-
eral L, and the rule number that is used in the actual
connection proof. For the start step the third column
shows the number of applicable start rules, i.e. the first
line indicates that there are 48 positive start clauses, of
which the first one is used in the proof. The second line,
e.g., indicates that the second proof step is an exten-
sion step; there are alltogether six applicable rules with
the same principal literal, the fourth applicable rule is

Table 1

Backtracking in the connection proof for AGT016+2

Proof Applied Applicable Solved Proof

step rule rules rule # rule #

1 start 48 – 1

2 extension 6 4 4

3 extension 5 5 5

4 extension 7 1 1

5 extension 6 1 1

6 extension 10 1 1

7 extension 11 1 1

8 extension 10 1 1

9 extension 6 5 5

10 extension 4 4 4

J. Otten / Restricting backtracking in connection calculi 167

the first one that solves this literal, and the fourth ap-
plicable rule is also the one used in the final connection
proof. For six of the ten poof steps the first applica-
ble rule is also the one used in the connection proof.
More remarkable, for all ten proof steps the first rule
that solves a literal is also the one used in the proof. To
see if this property holds for other connection proofs
as well, all 17 problems in the AGT domain for which
a connection proof is found are now considered.

Table 2 shows a summary of all 98 proof steps used
in the 17 connection proofs for the formulae of the
AGT domain. The first section shows the statistics for
the start step. For example, the first line indicates that
there are five problems (fourth column) each with 43
possible start clauses (first column) and in each case
the first start clause is used in the proof (third column).
The second section contains the statistics about the re-
duction and extension steps. For example, the first line
shows that there are 10 proof steps (fourth column)
for which there are four applicable rules with the same
principal literal (first column), the fourth applicable
rule is the first one that solves this literal (second col-
umn), and the fourth applicable rule is the one used in
the connection proof. There are two observations:

(1) Even though there are between 43 and 49 alter-
natives for choosing a start clause, in 15 of the

Table 2

Backtracking in connection proofs for the AGT domain

Applicable Solved Proof Number of

rules rule # rule # occurrences

Start rule

43 – 1 5

43 – 36 1

44 – 1 2

48 – 1 5

48 – 36 1

49 – 1 3

Reduction and extension rule

4 4 4 10

5 3 3 5

5 5 5 12

6 1 1 12

6 4 4 8

6 4 5 *2

6 5 5 5

6 6 6 11

7 1 1 4

9 1 1 4

10 1 1 6

11 1 1 2

17 proofs the selection of the first start clause
results in a successful proof search.

(2) For 79 of the 81 reduction or extension steps,
the first applicable rule that solves a literal is
also the one used in the proof. Only for two
proof steps (sixth line and marked with a “*”)
this property does not hold; in these two cases
there are six applicable rules, the fourth applica-
ble rule is the first one that solves the literal, and
the fifth applicable rule is the one used in the
connection proof.

These findings suggest a distinction between back-
tracking that occurs before a literal is first solved and
backtracking that occurs afterwards. The notion of es-
sential backtracking is used for the former kind of
backtracking. Proof steps that involve only essential
backtracking are so-called essential proof steps.

Definition 7 (Essential backtracking/proof step). Let
R1, . . . , Rn be instances of rules with the same prin-
cipal literal L1 applicable to a node of a derivation
in the connection calculus. If the literal L1 can be
solved by applying the rule Ri, but not by apply-
ing the rules R1, . . . , Ri−1, then backtracking over the
rules R2, . . . , Ri is called essential backtracking; back-
tracking over the rules Ri+1, . . . , Rn is called non-
essential backtracking. The application of one of the
rules R1, . . . , Ri is an essential proof step; the applica-
tion of one of the rules Ri+1, . . . , Rn is a non-essential
proof step.

Whereas essential backtracking is necessary to close
a branch in the connection calculus, non-essential
backtracking might additionally be required in order to
find alternative term substitutions.

Example 10 (Essential backtracking/proof step). Con-
sider the matrix in Example 8 after two extension
steps. There are five applicable rules with the princi-
pal literal ¬Pz, namely connections to Pa, Pb, Pc, Pd
and Pe. Since the connection to Pa already solves
the literal ¬Pz, backtracking over the other connec-
tions/rules is non-essential backtracking. Only the con-
nection to Pa is an essential proof step.

Of the 17 proofs for the problems of the AGT do-
main, 15 proofs contain only essential proof steps. Al-
though non-essential backtracking does happen dur-
ing the search for these proofs, the proofs itself could
be found using only essential backtracking. Only two
proofs involve non-essential proof steps and can only
be found using non-essential backtracking as well.

168 J. Otten / Restricting backtracking in connection calculi

To conclude the analysis all problem domains of the
TPTP library are now considered. The “regular” vari-
ant of leanCoP proves 1256 out of 5051 problems.
The statistics for these problems are given in Table 3.
For each domain the following information is given:
number of proved problems (second column), num-
ber of proofs that do not use backtracking for the start
step (third column), number of essential/non-essential
proof steps of the proofs (fourth/fifth column), and
number of proofs that contain only/not only essen-
tial proof steps (sixth/seventh column). The number of
(non-)essential proof steps include applications of the
lemma rule; the number of essential proof steps include
the start step. The 1256 proofs consist of 21,888 proof
steps, resulting in an average of about 17 proof steps
per proof. Of the 1256 problems 981 (78%) are proved
using the first start clause. 19,403 (89%) of these steps
are essential proof steps. 882 (70%) of the 1256 proofs
contain only essential proof steps.

Remarkable is the large number of essential proof
steps and the large number of proofs that contain only

Table 3

Backtracking in connection proofs for the TPTP problems

Domain # of 1st start Essent. Non-es. Essent. Non-es.

proofs clause steps steps proofs proofs

AGT 17 15 96 2 15 2

ALG 33 30 4489 1505 13 20

CAT 1 1 12 2 0 1

COM 1 1 127 6 0 1

CSR 93 87 605 57 75 18

GEO 153 84 1594 84 102 51

GRA 4 3 39 3 3 1

GRP 3 2 109 11 0 3

HAL 1 1 14 4 0 1

KRS 92 44 2752 144 60 32

LAT 1 0 26 1 0 1

LCL 26 26 219 63 8 18

MGT 35 30 877 66 15 20

MCS 2 2 40 6 1 1

NLP 8 8 810 6 5 3

NUM 36 32 254 16 25 11

PUZ 6 5 113 17 3 3

SET 193 141 2005 227 117 76

SEU 167 142 1997 167 99 68

SWC 14 14 54 0 14 0

SWV 160 117 1297 51 135 25

SYN 204 190 1734 41 189 15

TOP 6 6 139 6 3 3

total 1256 981 19,403 2485 882 374

[%] 100% 78% 89% 11% 70% 30%

essential proof steps. In the SWC domain even all 54
proof steps are essential and therefore the 14 proofs
contain only essential proof steps. Although for the
proof steps itself only essential backtracking is carried
out, in general a significant amount of non-essential
backtracking occurs during the actual proof search.
This suggests to restrict backtracking during the proof
search in a way that only allows essential backtracking.

4.3. Restricted backtracking

The main idea for restricting backtracking is to avoid
backtracking once a literal has been solved. This is
achieved by allowing only essential backtracking for
reduction, extension and lemma steps. Furthermore,
the start step can be restricted to the first start clause.

Definition 8 (Restricted backtracking/start step).

(1) Let R1, . . . , Ri, . . . , Rn be the instances of (re-
duction, extension or lemma) rules with princi-
pal literal L1 that are applicable to a node of a
derivation in the connection calculus and rule Ri

solves L1. Restricted backtracking does not ap-
ply the alternative rules Ri+1, . . . , Rn anymore.

(2) Let C ′
1, . . . , C ′

n be the possible start clause
C1 for the start rule. The restricted start step
does not consider the alternative start clauses
C ′

2, . . . , C ′
n anymore.

Restricted backtracking cuts off non-essential back-
tracking, while the restricted start step cuts off any al-
ternative start clause. Restricted backtracking and the
restricted start step preserve correctness of the connec-
tion calculus, but completeness is lost in either case.

Lemma 5 (Restricted backtracking/start step). A for-
mula M is valid if the proof search for M in the con-
nection calculus using restricted backtracking and/or
the restricted start steps succeeds. These search strate-
gies are incomplete in the sense that for some valid for-
mulae the proof search using restricted backtracking
or the restricted start step does not succeed.

Restricted backtracking and the restricted start step
preserve correctness as the proof search space is only
pruned. Completeness though is lost as the valid

J. Otten / Restricting backtracking in connection calculi 169

formulae (Px ∧ Qx) ∨ ¬Pa ∨ ¬Pc ∨ ¬Qc and
P ∨ Q ∨ ¬Q presented by the following matrices show:

After the first step using the connection {Px, ¬Pa}
with σ(x) = a solves Px in the left matrix, the con-
nection {Px, ¬Pc}, required for a proof, is not con-
sidered anymore. In the right matrix the restricted start
step prevents the use of the alternative start clause {Q}.

Example 11 (Restricted backtracking). Consider the
matrix in Fig. 10. After two extensions steps using the
connections {Pa, ¬Px} and {Qy, ¬Qb} with σ(x) =
a and σ(y) = b, and a reduction step using the connec-
tion {¬Pa, Pa}, the literal Ry cannot be solved any-
more. Backtracking will not consider the second con-
nection {Qy, ¬Qc} anymore as Qy has already been
solved. But the alternative connection {Pa, ¬Pa} for
the first extension step will still be considered as the
literal Pa was not solved so far.

To restrict backtracking in this way seems to be too
strict. But in Section 6 it is shown that this is not the
case. In fact the approach turns out to be very success-
ful in practice as the amount of backtracking is reduced
significantly. For example, for problem AGT016+2 the
“regular” proof takes 84 s and the proof search requires
312,831 inference steps. In contrast, the “restrict” vari-
ant of leanCoP (see Section 6.2) using restricted back-
tracking needs less than 0.3 s using only 427 inference
steps for the proof search.

It is important to notice that a successful proof
search using restricted backtracking is not limited to
problems whose “regular” proof contains only essen-
tial proof steps, e.g. it is not limited to the 882 TPTP
problems listed in Table 3. Proof search with restricted
backtracking is able to solve problems whose “regular”
proof contains non-essential proof steps as well. These
proofs might have different lengths and/or use different
connections. For example, of the 374 proofs that con-
tain non-essential proof steps (see Table 3), 218 prob-
lems can be solved with restricted backtracking as well
(within a time limit of 600 s). In addition 330 new
problems are solved for which the “regular” variant of
leanCoP was not able to find a proof. Section 6 pro-
vides more details about the performance of restricted
backtracking.

Fig. 10. Restricted backtracking.

5. An implementation

In this Section it is shown how the refined con-
nection calculus presented in Section 3 including re-
stricted backtracking from Section 4 can be specified
by a few lines of Prolog code. The resulting Prolog im-
plementation is the core of the leanCoP 2.0 theorem
prover. The program is developed step by step. The de-
scription starts with the basic connection calculus and
adds the additional techniques afterwards. See, e.g., [5]
for an introduction to Prolog.

5.1. The basic calculus

The implementation of the basic connection calculus
presented in Section 3.1 is shown in Fig. 11. A deriva-
tion for a formula in clausal form is generated by first
applying the start rule and then repeatedly applying the
reduction or the extension rule. Open branches are se-
lected in a depth-first way.

The tuple C, M , Path, Lem in the connection cal-
culus is represented by the Prolog lists Cla, Path
and Lem, which represent the open subgoal C, the ac-
tive path Path, and the set of lemmata Lem, respec-
tively. The matrix M is written into Prolog’s data-
base before the actual proof search starts. For every
clause C ∈ M and for every literal L ∈ C the fact
lit(L,C1,Grnd) is stored, where C1 = C\{L}
and Grnd is g if C is ground, otherwise Grnd is n
(see below for an example). Atoms are represented by
Prolog atoms, negation by “-”. The substitution σ is
stored implicitly by Prolog. The predicate

prove(Cla,Path,PathLim,Lem,Set)

implements the axiom, the reduction rule and the ex-
tension rule of the basic connection calculus of Fig. 1.
This predicate succeeds (using iterative deepening as
explained below) if, and only if, there is a connection
proof for the tuple represented by the lists Cla, Path,
Lem, and the matrix stored in Prolog’s database repre-
sented by the lit predicate with |Path| < PathLim
where PathLim is the maximum size of the active
Path. The setting Set is a list of options used to con-
trol the proof search and is explained in Section 5.5.

170 J. Otten / Restricting backtracking in connection calculi

(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)

prove([],_,_,_,_).

prove([Lit|Cla],Path,PathLim,Lem,Set) :-
% regularity

(-NegLit=Lit;-Lit=NegLit) ->
(% lemmata

%
member(NegL,Path), unify_with_occurs_check(NegL,NegLit)
;
lit(NegLit,Cla1,Grnd1),

% iterative deepening
%

prove(Cla1,[Lit|Path],PathLim,Lem,Set)
),

% restricted backtracking
prove(Cla,Path,PathLim,Lem,Set).

Fig. 11. The implementation of the basic connection calculus.

Line 1 implements the axiom, line 4 calculates the
complement of the first literal Lit in Cla, which is
used as the principal literal for the next reduction or
extension step. The reduction rule is implemented in
lines 7 and 15. In line 7 it is checked whether the active
path Path contains a literal NegL that unifies with the
complement NegLit of the principal literal Lit. In
this case the alternative lines after the semicolon are
skipped and the proof search for the premise of the re-
duction rule is invoked in line 15. The extension rule is
implemented in lines 9, 12 and 15. In line 9 the pred-
icate lit(NegLit,Cla1,Grnd1) is used to find
a clause that contains the complement NegLit of the
principal literal Lit.2 Cla1 is the remaining set of
literals of the selected clause and the new open sub-
goal of the left premise. The proof search for the left
premise of the extension rule, in which the active path
Path is extended by the principal literal Lit, is in-
voked in line 12. Afterwards the proof search for the
right premise is invoked in line 15. The lines imple-
menting regularity, lemmata, iterative deepening, and
restricted backtracking are added afterwards.

The start rule of the connection calculus is imple-
mented as follows:

(a)
(b)
(c)

prove(PathLim,Set) :-
prove([-(#)],[],PathLim,[],Set).

% restricted start step

When the matrix M is written into Prolog’s database
the special literal # is added to all positive clauses.

2Sound term unification has to be used when this predicate is
called. In ECLiPSe Prolog sound unification is switched on with
set_flag(occur_check,on).

The proof search is then started with the open subgoal
[-#] and an empty active path []. Thus by default
all positive clauses are used as possible start clauses.
The predicate

prove(PathLim,Set)

succeeds if, and only if, there is a connection proof for
the set of clauses stored in the database, for which the
size of the active path is smaller than PathLim. Again
Set is a list of search options described in Section 5.5.

Lean Prolog technology
The code in Fig. 11 is similar to the leanCoP 1.0

code [28]. In leanCoP 1.0 the matrix M is added as an
argument to the prove predicates. For the extension
step all clauses of the matrix M and all literals of each
clause are searched for a suitable literal NegLit.3 In
leanCoP 2.0 the clauses are stored in Prolog’s data-
base and the goal lit(NegLit,Cla1,Grnd1) is
used to find appropriate literals NegLit. This tech-
nique utilizes Prolog’s built-in indexing mechanism on
the first argument to quickly find connections. It inte-
grates the main advantage of the “Prolog technology
theorem proving” approach [37,38] into the lean the-
orem proving framework and improves performance
(see Section 6.2).

Example 12 (Lean Prolog technology). Consider the
matrix {{P , R}, {¬P , Qx}, {¬Qb, P}, {¬Qc, ¬P},

3For a matrix M this is can be achieved by using the following Pro-
log code: append(MA,[C1|MB],M), copy_term(C1,C2),
append(CA,[NegLit|CB],C2).

J. Otten / Restricting backtracking in connection calculi 171

{P , ¬R}} of Example 1. It is stored in Prolog’s data-
base in the following form:

lit(#,[p,r],g).
lit(p,[#,r],g). lit(r,[#,p],g).
lit(-p,[q(X)],n). lit(q(X),[-p],n).
lit(-q(b),[p],g). lit(p,[-q(b)],g).
lit(-q(c),[-p],g). lit(-p,[-q(c)],g).
lit(p,[-r],g). lit(-r,[p],g).

The special literal # is added to the (only) positive
clause {P , R}.

Iterative deepening
Prolog uses a simple depth-first search strategy to

explore the search space, which is incomplete.4 This
kind of incompleteness would result in a calculus that
hardly proves any formula. In order to obtain a com-
plete proof search in the connection calculus, iterative
deepening on the proof depth, i.e. the size of the ac-
tive path, is performed. It is achieved by inserting the
following lines into the code of Fig. 11:

(10)

(11)

(Grnd1=g -> true ; length(Path,K),
K<PathLim -> true ;

\+ pathlim -> assert(pathlim), fail),

and adding the following lines to the prove predicate
implementing the start rule:

(d)
(e)
(f)
(g)

prove(PathLim,Set) :-
% switch to complete strategy

retract(pathlim) ->
PathLim1 is PathLim+1,

prove(PathLim1,Set).

When the extension rule is applied and the new
clause is not ground, i.e. it does not contain any vari-
able, it is checked whether the size K of the active path
exceeds the current path limit PathLim (line 10).5

In this case the predicate pathlim is written into
Prolog’s database (line 11) indicating the need to in-
crease the path limit if the proof search with the cur-
rent path limit fails. If the proof search fails and the
predicate pathlim can be found in the database (line
f), then PathLim is increased and the proof search
starts again (line g). Together with regularity (see Sec-
tion 5.3) the resulting program is a decision procedure
for ground (e.g. propositional) formulae and it is also
able to refute some invalid first-order formulae.

4See, e.g., the query “?-a.” for the program “a:-a. a.”.
5The if-then-else construct Cond->Then;Else succeeds if

Cond and Then succeed, or if Cond fails and then Else succeeds.

5.2. Definitional clausal form

The definitional clausal-form transformation of Sec-
tion 3.2 was implemented in Prolog as well. The com-
plete translation consists of five steps:

(1) Renaming all term variables in the given for-
mula.

(2) Transforming the formula into a Skolemized
negation and/or definitional normal form.

(3) Transforming the negation and/or definitional
normal form into a disjunctive normal form.

(4) Transforming the disjunctive normal form into a
matrix.

(5) Reordering the clauses in the matrix (optional).

In the first step all term variables are renamed, so
that each variable name occurs only once in the given
formula. In the second step the formula is translated
into a negation or definitional normal form according
to Section 3.2. Additional options (see below) spec-
ify if the standard transformation or the definitional
transformation is used. During this step Skolemization
is performed as well: all universally quantified vari-
ables are substituted by a Skolem term (positive rep-
resentation!) and universal and existential quantifiers
are removed from the formula. The same Skolem term
is used for instances of the same subformula. This is
an optimization similar to the liberalized δ+-rule for
analytic tableaux [11]. As this kind of Skolemization
can be motivated in an entirely proof-theoretical way,6

it can also be adapted to, e.g., intuitionistic logic [26]
(see Section 7.2). In a third step the formula is trans-
lated into disjunctive normal form and the fourth step
transforms it into a matrix. Two simple optimizations
are applied in this step as well. If a literal L occurs
more than once in a clause, all syntactically identi-
cal duplicates of L are deleted. And if a clause con-
tains two identical atoms with different polarities, e.g.
P and ¬P , the clause is removed from the matrix. In
an optional fifth step the clauses of the matrix are re-
ordered using a simple perfect shuffle algorithm.

The clausal-form transformation is implemented by
the main predicate

make_matrix(Fml,Matrix,Set)

where Fml is a first-order formula, Matrix is the
returned matrix of the given formula, and Set is a

6Together with the occurs-check of the term unification, Skolem-
ization is a technique to check if the reduction ordering is acyclic;
see [4,45].

172 J. Otten / Restricting backtracking in connection calculi

list of options. The syntax of the formula Fml is
inductively defined as follows: a Prolog term, e.g.
p(f(c,X),g(Y)), is a (atomic) formula; if A and
B are formulae, then (∼A) (negation), (A;B) (dis-
junction), (A,B) (conjunction), (A => B) (implica-
tion), (A <=> B) (equivalence), (all X:A) (uni-
versal quantifier) and (ex X:A) (existential quanti-
fier) are formulae as well. The returned matrix is a list
of clauses where each clause is a list of literals.

The following options can be included in the list
Set: either def or nodef, conj and reo(I)where
I is a natural number. The options def and nodef
specify which transformation into clausal form is used:

(a) If none of the two options def or nodef are
specified (default transformation): if the given
formula has the form A ⇒ C, the standard
transformation is applied to A (usually the ax-
ioms), while the definitional transformation is
applied to (the conjecture) C; otherwise the de-
finitional transformation is applied to the whole
formula.

(b) If def is specified, the definitional transforma-
tion is applied to the whole formula.

(c) If nodef is specified, the standard transforma-
tion is applied to the whole formula.

If the option conj is included in Set and the given
formula has the form A ⇒ C, then the special literal #
is added to all clauses of the conjecture C to mark
them as start clauses. Otherwise, the literal # is added
to all positive clauses (see Section 5.1). If the option
reo(I) is specified, all clauses of the final matrix are
reordered I times using a perfect shuffle algorithm.

Example 13 (Definitional clausal form). Consider the
following first-order formula from Example 1:

(
((∃xQ(x) ∨ ¬Q(c)) ⇒ P)

∧ (P ⇒ (∃yQ(y) ∧ R))
)

⇒ (P ∧ R).

It is translated into (the default) clausal form by calling
the predicate make_matrix((((((ex X:q(X));
(∼q(c))) => p), (p => ((ex Y: q(Y)),
r))) => (p,r)), M,[]). It will return the ma-
trix M =[[p,r], [q(Z),-(p)],[-(q(c)),-
(p)],[p,-(q(1^ []))],[p,-(r)]], in which
1^[] is a (constant) Skolem term and Z is a new vari-
able.

The complete source code of the clausal-form trans-
formation is available on the leanCoP website.

5.3. Regularity and lemmata

The regularity condition of Section 3.3 is checked
whenever the reduction, extension or lemma rule is ap-
plied. The substitution σ is not modified, i.e. the regu-
larity condition is fulfilled if the open subgoal does not
contain a literal that is syntactically identical with a lit-
eral in the active path. It is implemented by inserting
the following line into the code of Fig. 11:

(3) \+ (member(LitC,[Lit|Cla]),
member(LitP,Path), LitC==LitP),

The Prolog predicate \+ Goal succeeds only if Goal
cannot be proven. In line 3 the corresponding Goal suc-
ceeds if the open subgoal [Lit|Cla] contains a lit-
eral LitC that is syntactically (“==”) identical with
a literal LitP in the active path Path. The (built-in)
predicate member is used to enumerate all elements
of a list. In leanCoP 1.0 a weaker form of regular-
ity, called strictness [18], was implemented: no ground
clause is used more than once on a branch.

The set of lemmata is represented by the list Lem.
The lemma rule as described in Section 3.3 is then im-
plemented by inserting the following lines:

(5)
(6)

(member(LitL,Lem), Lit==LitL
;

In order to apply the lemma rule the substitution σ is
not modified, i.e. the lemma rule is only applied if the
list of lemmata Lem contains a literal LitL that is syn-
tactically identical with the literal Lit. Furthermore,
the Literal Lit is added to the list Lem of lemmata in
the (left) premise of the reduction and extension rule
by adapting the following line:

(15) prove(Cla,Path,PathLim,[Lit|Lem],Set).

In the resulting implementation the lemma rule is
applied before the reduction and extension rules.

5.4. Restricted backtracking

According to Definition 8 in Section 4.3 backtrack-
ing is restricted by cutting off alternative rule applica-
tions once a solution for a literal is found. In Prolog the
cut (“!”) is used to cut off alternative solutions when
Prolog tries to prove a goal. The Prolog cut is a built-in
predicate, which succeeds immediately when first en-
countered as a goal. Any attempt to resatisfy the cut
fails for the parent goal, i.e. other alternative choices
are discarded that have been made from the point when
the parent goal was invoked. Consequently, restricted

J. Otten / Restricting backtracking in connection calculi 173

backtracking is achieved by inserting a Prolog cut after
the lemma, reduction, or extension rule is applied. It
is implemented by inserting the following line into the
code of Fig. 11:

(14) (member(cut,Set) -> ! ; true),

Restricted backtracking is switched on if the list
Set contains the option cut. The restricted start step
of Definition 8 in Section 4.3 cuts off alternative start
clauses and is implemented by adapting the following
lines of the start rule:

(b)

(c)

\+member(scut,Set) ->
prove([-(#)],[],PathLim,[],Set) ;

lit(#,C,_) ->
prove(C,[-(#)],PathLim,[],Set).

The restricted start step is used if the list Set in-
cludes the option scut. In this case (line c) the first
clause C containing the special literal # is selected and
the proof search starts with the open subgoal C; the ac-
tive path is set to {-#} in order to solve literals # that
might still be included in other start clauses. There is
no backtracking for the goal lit(#,C,_) as it oc-
curs in an if-then-else condition. Otherwise the proof
search starts in the usual way (line b).

As pointed out in Section 4.3, restricted backtrack-
ing and the restricted start step lead to an incomplete
proof search. In order to regain completeness, these
strategies can be switched off when the search reaches
a certain path limit. If the list Set contains the op-
tion comp(Limit), where Limit is a natural number,
the proof search is stopped and started again without
using these incomplete search strategies. It is imple-
mented by inserting the following lines:

(e)

(f)

member(comp(Limit),Set), PathLim=Limit
-> prove(1,[]) ;

(member(comp(_),Set);retract(pathlim)) ->

If the path limit reaches Limit, the proof search
starts again with an empty set of options, i.e. a com-
plete search strategy (line e). Until the Limit is
reached iterative deepening continues even if the cur-
rent path limit is not exceeded during the proof search
(line f). This is necessary to allow the incomplete
strategies, for which the path limit during the incom-
plete search might not be exceeded, to reach the path
limit Limit and to start a complete proof search.

5.5. Strategy scheduling

Different options in the list Set are used to control
the proof search. They determine if, e.g., a definitional

clausal-form transformation or restricted backtracking
should be used. The setting or strategy Set is a list of
options that is either empty or contains one or more of
the following options:

(1) nodef/def: The standard (nodef) or defini-
tional (def) transformation into clausal form is
carried out. If none of these two options is speci-
fied, the default transformation is used (see Sec-
tion 5.2).

(2) conj: The conjecture clauses of the formula are
used as start clauses (see Section 5.2).

(3) reo(I): The clauses in the matrix are reordered
I times (see Section 5.2).

(4) scut: The restricted start step is used (see Sec-
tions 4.3 and 5.4).

(5) cut: Restricted backtracking is used (see Sec-
tions 4.3 and 5.4).

(6) comp(I): The options scut and cut are
switched off when iterative deepening exceeds
the path limit I (see Section 5.4).

The option conj is complete only for formulae with
a provable conjecture7 and scut as well as cut are
complete only if used in combination with comp(I).

leanCoP 2.0 uses a fixed strategy scheduling. The
leanCoP 2.0 core prover shown in Fig. 12 is consec-
utively invoked by a shell script with different strate-
gies, each for a specific time. This increases the chance
to find a proof for a given problem, since most strate-
gies are only appropriate for certain kinds of problems.
For example, the definitional clausal-form transforma-
tion works well for problems that are not in clausal
form. But for problems that are “almost” in clausal
form this transformation might have a negative effect
on the proof search.

Practical evaluations suggest using the following
scheduling. The four strategies [cut,comp(7)],
[conj,cut], [def,scut,cut] and [nodef,
scut,cut] are each invoked for 2%, 60%, 16%
and 4% of the total time limit, respectively. The next
five strategies, each invoked for 2% of the total time
limit, are similar to the second and third strategies but
have the reo option added. For the remaining time the
complete strategy [] is invoked. As this last strategy
is complete the whole proof search is complete as well
(with respect to an arbitrary large total time limit).

7See, e.g., the valid formula (P ∧ ¬P) ⇒ Q, for which there is
no connection proof that starts with the clause {Q}.

174 J. Otten / Restricting backtracking in connection calculi

(a)
(b)
(c)
(d)
(e)
(f)
(g)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)

prove(PathLim,Set) :-
\+member(scut,Set) -> prove([-(#)],[],PathLim,[],Set) ;
lit(#,C,_) -> prove(C,[-(#)],PathLim,[],Set).

prove(PathLim,Set) :-
member(comp(Limit),Set), PathLim=Limit -> prove(1,[]) ;
(member(comp(_),Set);retract(pathlim)) ->
PathLim1 is PathLim+1, prove(PathLim1,Set).

prove([],_,_,_,_).
prove([Lit|Cla],Path,PathLim,Lem,Set) :-

\+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->

(member(LitL,Lem), Lit==LitL
;
member(NegL,Path), unify_with_occurs_check(NegL,NegLit)
;
lit(NegLit,Cla1,Grnd1),
(Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;

\+ pathlim -> assert(pathlim), fail),
prove(Cla1,[Lit|Path],PathLim,Lem,Set)

),
(member(cut,Set) -> ! ; true),
prove(Cla,Path,PathLim,[Lit|Lem],Set).

Fig. 12. The complete source code of the leanCoP 2.0 core prover.

6. Performance

At first the performance of different clausal-form
transformations is evaluated. Afterwards the impact
of the different pruning techniques described in Sec-
tions 3 and 4 on the performance of leanCoP 2.0 is
analysed. Finally leanCoP 2.0 is compared with other
well-known automated theorem proving (ATP) sys-
tems. For the tests all 5051 non-clausal, so-called FOF
problems of version 3.7.0 of the TPTP library [40] are
considered. For the comparison of leanCoP 2.0 with
other ATP systems all 6348 clausal, so-called CNF
problems of version 3.7.0 of the TPTP library are con-
sidered as well.

Some of these problems do not have a conjecture
and are either satisfiable or unsatisfiable. leanCoP and
some other ATP systems do only determine if a given
formula is valid or invalid. Since a formula F is unsat-
isfiable if, and only if, ¬F is valid, these formulae are
negated in order to determine if they are unsatisfiable
or satisfiable. For the ATP systems that do not have
built-in equality, e.g. leanCoP or leanTAP, the equal-
ity axioms are added to the problem formula using the
TPTP2X tool, which is included in the TPTP library.
All tests were performed on a 3 GHz Xeon system with
4 GB of RAM running Linux and ECLiPSe Prolog ver-
sion 5.10. The time limit for all tests is 600 s.

6.1. Comparing different clausal-form
transformations

Table 4 shows the results of the leanCoP 2.0
core prover (using the options [cut,comp(7)])
on different clausal form transformations. The fol-
lowing clausal-form transformations are evaluated: the
clausal-form transformation of the TPTP2X tool (using
the option -t clausify:tptp) of version 3.7.0 of
the TPTP library (which uses an algorithm combining
features of the Otter and the Quaife clausal transfor-
mations), the FLOTTER clausal-form transformation
of SPASS 3.0 [43], the clausal-form transformation of
E 1.0 [35], and the leanCoP 2.0 clausal-form transfor-
mation using the default transformation as well as the
def and the nodef options (see Section 5.2).

The rows of the table show: the total number (and
percentage) of proved problems, the number of prob-
lems proved within a certain time, the number and
percentage of proved problems within a certain dif-
ficulty rating, the number of proved problems con-
taining no equality and containing equality, the num-
ber of proved pure equality problems containing only
equality (these problems are included in the row “With
equality” as well), the number of refuted problems (i.e.
non-theorems), the number of problems for which the
time limit is exceeded, and the number of problems

J. Otten / Restricting backtracking in connection calculi 175

Table 4

TPTP benchmark results for different clausal-form transformations

TPTP FLOTTER E leanCoP 2.0

3.7.0 3.0 1.0 “def” “nodef” (default)

Proved 1205 1365 1369 1486 1514 1560

[%] 24% 27% 27% 29% 30% 31%

0–1 s 958 1072 1068 1144 1201 1230

1–10 s 119 136 133 163 148 144

10–100 s 84 91 104 112 101 109

100–600 s 44 66 64 67 64 77

Rating 0.0 481 499 503 529 522 531

Rating >0.0 724 866 866 957 992 1029

Rating 0.00 . . . 0.24 53% 56% 58% 62% 60% 62%

Rating 0.25 . . . 0.49 39% 47% 47% 52% 51% 53%

Rating 0.50 . . . 0.74 10% 16% 16% 17% 22% 24%

Rating 0.75 . . . 1.00 1% 1% 1% 1% 2% 2%

No equality 539 552 559 590 582 587

With equality 666 813 810 896 932 973

Pure equality 13 23 13 27 13 27

Refuted 35 53 36 33 36 35

Time out 3137 3101 3115 3099 2958 3017

Error 674 532 531 433 543 439

that produce an error. The TPTP rating [41] expresses
the relative difficulty of the problems from 0.0 (easy)
to 1.0 (very difficult). The error row includes prob-
lems that produce stack overflows or memory alloca-
tion errors. It also includes 102 problems for which
the TPTP2X tool could not generate the leanCoP for-
mat (due to their huge size). The time needed for the
clausal transformation is included in the timings for the
leanCoP transformation but is not included in the tim-
ings for the TPTP, FLOTTER and E transformations.

The default transformation of leanCoP 2.0, where
the standard transformation is applied to the axioms
and the definitional transformation is applied to the
conjecture, shows the best performance. The leanCoP
standard transformation solves slightly more problems
than the definitional transformation of leanCoP (both
applied to the whole formula). The definitional trans-
formation still proves 86 problems not solved by the
default transformation.

The performance of the FLOTTER and of the
E transformation are almost identical and better than
the TPTP transformation. These transformations might
be better suited for saturation-based proof calculi such
as resolution. For a better performance these transfor-
mations might also require the application of subsump-
tion, which is a basic technique of ATP systems based
on resolution, but not used in leanCoP at all.

6.2. Comparing different pruning techniques

Table 5 contains the results for the following vari-
ants of the leanCoP prover: leanCoP 1.0 [28], the
“basic” version of the leanCoP 2.0 core prover de-
scribed in Section 5.1, the “define” version enhanced
by the (default) definitional clausal-form transforma-
tions as described in Section 5.2, the “regular” ver-
sion that adds regularity and lemmata as described in
Section 5.3, the “restrict” version that adds restricted
backtracking as described in Section 5.4 and performs
a complete search from path limit seven, and the ac-
tual leanCoP 2.0 prover, which uses strategy schedul-
ing as described in Section 5.5. The “restrict” version
consists of the leanCoP 2.0 core prover using the op-
tions [cut,comp(7)]. The rows of Table 5 were
already explained in Section 6.1. An additional row
shows the average proof time for the set of problems
that are proved by all listed prover variants.

As a result of the lean Prolog technology (see
Section 5.1), the “basic” version is in general about
five times faster than leanCoP 1.0 (see row “Average
time”). But it solves fewer problems since it does not
use the strictness condition (see Section 5.3). The “de-
fine” version proves 46 problems not solved by the
“basic” version. But 38 problems are not proved any-

176 J. Otten / Restricting backtracking in connection calculi

Table 5

TPTP benchmark results for different techniques of leanCoP 2.0

leanCoP 1.0 basic define regular restrict leanCoP 2.0

Proved 1105 1086 1094 1256 1560 1797

[%] 22% 22% 22% 25% 31% 36%

0–1 s 861 866 867 972 1230 1220

1–10 s 95 92 100 122 144 133

10–100 s 87 76 79 106 109 250

100–600 s 62 52 48 56 77 194

Average time 12.2 s 2.6 s 2.8 s 3.6 s 2.6 s 6.1 s

Rating 0.0 458 450 446 501 531 554

Rating >0.0 647 636 648 755 1029 1243

Rating 0.00 . . . 0.24 51% 50% 50% 57% 62% 67%

Rating 0.25 . . . 0.49 37% 37% 36% 41% 53% 63%

Rating 0.50 . . . 0.74 4% 4% 6% 7% 24% 33%

Rating 0.75 . . . 1.00 0% 0% 0% 0% 2% 4%

No equality 532 526 515 552 587 616

With equality 573 560 579 704 973 1181

Pure equality 13 7 19 27 27 29

Refuted 1 14 10 35 35 35

Time out 3425 3432 3505 3321 3017 2501

Error 520 519 442 439 439 718

more. Even though this is only a modest improvement,
the definitional transformation works very well in con-
junction with restricted backtracking (see Section 6.2).
The “regular” version solves 173 problems not solved
by the “define” version. The “restrict” version (using
restricted backtracking) shows the biggest improve-
ment, in particular for problems that have a higher rat-
ing (rows “>0.0” and “Rating 0.50 . . . 0.74”) or that
contain equality (row “With equality”). The “restrict”
version solves 330 problems not solved by the “reg-
ular” version. A similar improvement can be seen for
the final leanCoP 2.0 prover using strategy scheduling.

6.3. Comparing leanCoP with other ATP systems

In Table 6 the performance of leanCoP 2.0 on the
FOF problems of the TPTP library is compared with
the performance of the ATP systems leanTAP [2] (the
first popular lean theorem prover), leanCoP 1.0 [28]
(the first version of leanCoP), SETHEO 3.38 [16] (one
of the fastest connection provers), Otter 3.3 [21,22]
(still used as the standard benchmark), version “2009-

8For SETHEO the options -dr (iterative deepening), -reg (regular-
ity) and -st (subsumption and tautology) were used, which showed
the best performance.

02A” of Prover9 [23] (the successor of Otter) and E 1.0
(“Temi”) [35] (one of the leading ATP systems).

In addition to the rows already shown in Tables 4
and 5, the number of proved problems for each prob-
lem domain [40] is given. The “Error” row now also
contains problems on which an ATP system gave up.
For example, Otter and Prover9 often gave up because
of an empty set-of-support.

leanCoP 2.0 proves significantly more problems
than leanCoP 1.0, Otter and SETHEO. One notices
again a high number of solved problems that are rated
difficult (row “Rating 0.50 . . . 0.74”) or that contain
equality (row “With equality”). Note that leanCoP has
no built-in inference rules for equality. leanCoP 2.0
proves more problems of the AGT and the NUM do-
main than E. Its performance is similar to that of E,
e.g., in the domains CAT, GEO, KRS, MED, MSC,
SET and SEU, but significantly lower for problems in,
e.g., the domains ALG, LCL and SWC. The tableau
prover leanTAP shows a good performance for easy
problems, e.g. in the SYN domain, but does not per-
form very well on larger, more difficult problems, e.g.
problems in the domains NUM, SET or SEU.

It general leanCoP 2.0 performs better than E on
problems where the goal-directed approach of the un-
derlying connection calculus is more likely able to

J. Otten / Restricting backtracking in connection calculi 177

Table 6

TPTP benchmark results for leanCoP and other ATP systems – FOF problems

leanTAP leanCoP SETHEO OTTER Prover9 leanCoP E

2.3 1.0 3.3 3.3 2009-02A 2.0 1.0

Proved 405 1105 1296 1389 1664 1797 2541

[%] 8% 22% 26% 27% 33% 36% 50%

0–1 s 379 861 941 1064 1285 1220 1912

1–10 s 13 95 217 184 200 133 258

10–100 s 12 87 73 107 126 250 270

100–600 s 1 62 65 34 53 194 101

Rating 0.0 228 458 497 507 450 554 610

Rating >0.0 177 647 799 882 1214 1243 1931

Rating 0.00 . . . 0.24 17% 51% 57% 64% 61% 67% 75%

Rating 0.25 . . . 0.49 18% 37% 46% 47% 71% 63% 92%

Rating 0.50 . . . 0.74 2% 4% 8% 3% 27% 33% 74%

Rating 0.75 . . . 1.00 0% 0% 0% 0% 1% 4% 12%

No equality 319 532 549 535 497 616 697

With equality 86 573 747 854 1167 1181 1844

Pure equality 12 13 13 47 69 29 168

AGT 0 17 17 16 17 24 20

ALG 11 14 18 61 86 34 173

BOO 0 0 0 0 0 0 0

CAT 0 1 0 1 0 3 4

COM 0 1 3 3 6 4 6

CSR 15 84 85 63 27 136 210

GEO 23 143 159 160 171 171 174

GRA 0 4 6 5 9 6 15

GRP 1 6 5 7 14 9 21

HAL 0 0 2 1 0 1 4

KRS 32 70 89 106 103 105 112

LAT 0 2 3 3 30 15 29

LCL 3 26 32 18 45 24 80

MED 0 0 1 5 1 7 9

MGT 11 31 41 54 60 45 67

MSC 1 2 2 2 2 3 3

NLP 3 3 7 6 11 13 22

NUM 1 34 58 30 43 60 58

PLA 0 0 0 0 0 0 0

PUZ 2 5 6 6 7 7 10

SET 22 160 187 214 247 318 324

SEU 8 141 143 170 259 329 359

SWC 14 14 66 84 98 81 325

SWV 55 142 154 157 178 177 225

SYN 201 200 205 211 239 217 278

TOP 2 5 7 6 11 8 13

Refuted 0 1 27 0 0 35 372

Time out 3502 3077 2510 681 1502 2501 2138

Error 1144 868 1218 2981 1885 718 0

178 J. Otten / Restricting backtracking in connection calculi

find a proof. leanCoP 2.0 performs in general better
than leanCoP 1.0 and SETHEO on problems that con-
tain many axioms and/or equality axioms. leanCoP 2.0
proves 506 problems not proved by Prover9 and 181
problems not proved by E. Conversely, Prover9 proves
378 problems and E proves 930 problems not proved
by leanCoP 2.0. As Prover9 is tuned towards algebraic
problems, it solves much more problems of the ALG
domain than leanCoP 2.0. iProver 0.5 [12] and Vam-
pire 10.0 [42], which were together with E among the
top ATP systems at the CASC-J4 system competition
[39], prove 2299 and 2699 problems, respectively.

Table 7 shows the performance results on the CNF
problems of the TPTP library for leanCoP 2.0 and the
other ATP systems of Table 6. For leanCoP 2.0 the
TPTP2X tool was used to transform all clausal-form
problems of the TPTP library into the first-order for-
mat (using the option -t fofify:obvious).

Again the performance of leanCoP 2.0 has improved
compared to leanCoP 1.0. But its relative performance
compared to SETHEO, Otter, Prover9 and E is not as
good as for the FOF problems. This might be due to
the fact that these ATP systems are better tuned to the
CNF problems of the TPTP library. Restricted back-
tracking, which works well in conjunction with the de-
finitional clausal-form transformation of leanCoP 2.0,
might have a less significant effect as well. iProver 0.5

and Vampire 10.0 prove 2743 and 3652 CNF problems,
respectively.

7. Improvements and extensions

The compact style of the leanCoP 2.0 core prover
makes it an ideal starting point for further improve-
ments and extensions. This section describes how the
proof search order of leanCoP can be randomized, how
leanCoP can be extended to deal with intuitionistic
logic, and how the leanCoP core prover performs on
different Prolog systems.

7.1. Randomizing the proof search order

Since restricted backtracking cuts off alternative
connections (see Section 4), it might cut off some con-
nections required for a proof. Therefore the benefit of
this approach strongly depends on the proof search or-
der. The proof search order, in turn, usually depends on
the order of clauses and literals in the given formula.
Whereas one order of clauses might be ideal to quickly
find a proof, it might be impossible to find a proof for
another order of the same clauses.

randoCoP [32] extends the leanCoP 2.0 implemen-
tation. It repeatedly: (a) reorders the axioms and literals

Table 7

TPTP benchmark results for leanCoP and other ATP systems – CNF problems

leanTAP leanCoP SETHEO leanCoP Otter Prover9 E

2.3 1.0 3.3 2.0 3.3 2009-02A 1.0

Proved 278 1391 1843 1906 2635 2966 3969

[%] 4% 22% 29% 30% 42% 47% 63%

0–1 s 248 957 1476 1362 2068 2320 2971

1–10 s 16 208 128 172 293 338 634

10–100 s 5 157 169 226 192 179 271

100–600 s 9 69 70 146 82 129 93

Rating 0.0 249 974 1175 1209 1595 1583 1666

Rating >0.0 29 417 668 697 1040 1383 2303

Rating 0.00 . . . 0.24 9% 41% 52% 53% 77% 80% 85%

Rating 0.25 . . . 0.49 1% 10% 17% 19% 22% 37% 71%

Rating 0.50 . . . 0.74 0% 6% 9% 10% 5% 19% 71%

Rating 0.75 . . . 1.00 0% 0% 0% 1% 0% 1% 13%

No equality 277 932 1058 1082 1119 1145 1412

With equality 1 459 785 824 1516 1821 2557

Pure equality 1 136 201 166 627 833 954

Refuted 0 6 23 109 0 0 423

Time out 5658 4896 4345 4328 0 976 1956

Error 412 55 137 5 3713 2406 0

J. Otten / Restricting backtracking in connection calculi 179

Fig. 13. Search strategies: Complete, restricted backtracking, re-
stricted backtracking with reordering.

of a given problem at random and (b) invokes the lean-
CoP 2.0 core prover. This increases the chance to find
a proof, in particular for the incomplete search strate-
gies. Figure 13 illustrates this search strategy. The tri-
angle represents the search space, the crosses mark the
solutions, and the grey shaded area is the search space
that can be traversed within a certain time limit and
is roughly the same for all three triangles. The com-
plete search strategy (left-hand side) does not reach
the search depth required for a solution. The search
with restricted backtracking (in the middle) reaches the
depth of the solutions but narrows the search space too
much and does not reach the required breadth. Only
the search strategy with restricted backtracking and a
repeated reordering of the axioms/clauses (right-hand
side) is able to find a proof. leanCoP 2.0 already con-
tains an option for reordering clauses (see Section 5.5).
But the effect on the proof search is rather small, since
the generated clause orders are not sufficiently diverse.
A random reordering mixes the order of clauses more
thoroughly.

randoCoP outputs a readable connection proof. An
additional argument is added to the prove predicate
of the leanCoP 2.0 core prover that records a compact
connection (tableau) proof. This compact connection
proof is then converted into a readable proof. rando-
CoP uses an additional module that translates problems
represented in the TPTP syntax into the leanCoP syn-
tax. This module also adds the required equality ax-
ioms.

The result of running randoCoP on all first-order
problems of version 3.7.0 of the TPTP library is shown
in Table 8. It proves more problems than leanCoP 2.0
in the domains AGT (36 proved problems), CSR (162),
NUM (70) and SEU (352). At the CASC-J4 system
competition randoCoP was ranked third out of 11 ATP
systems in the most important FOF division that output
a proof [39].

7.2. Intuitionistic logic

The matrix characterization of classical validity (see
Lemma 1) can be extended to some non-classical log-

ics, such as modal or intuitionistic logic [45]. To this
end a so-called prefix, i.e. a string consisting of vari-
ables and constants, which essentially encodes the
Kripke world semantics, is assigned to each literal. For
a complementary connection {L1 : p1, L2 : p2} not
only the terms of both literals need to unify under a
term substitution σ, i.e. σ(L1) = σ(L2), but also the
corresponding prefixes p1 and p2 are required to unify
under a prefix substitution σ′, i.e. σ′(p1) = σ′(p2).

ileanCoP is an automated theorem prover for intu-
itionistic first-order logic and implements a connection
calculus for intuitionistic logic, which adds a prefix to
each literal and is based on a clausal version of the ma-
trix characterization for intuitionistic logic [26]. It uses
the classical search engine of leanCoP and an addi-
tional prefix unification algorithm [29] to unify the pre-
fixes of the literals in every connection. This ensures
that the characteristics of intuitionistic logic are re-
spected and the given formula is intuitionistically valid
(see also [13,44,45]). As the intuitionistic characteris-
tics are captured in a separate prefix substitution, all
techniques and inference rules presented in Sections 3
and 4 can be adapted to work with the intuitionistic cal-
culus, e.g. the definitional clausal from translation and
regularity. Restricted backtracking can directly be used
without any modifications.

ileanCoP 1.2 [27] enhances ileanCoP 1.0 by in-
tegrating these new inference rules and search tech-
niques. Only a few additions are necessary to turn the
leanCoP 2.0 core prover into the ileanCoP 1.2 core
prover; see [27] for details. The prefix unification algo-
rithm requires another 26 lines of Prolog code; see [25,
29] for details. The full source code of ileanCoP 1.2 is
available on the leanCoP website.

ileanCoP 1.2 proves around three times more prob-
lems of version 3.3.0 of the TPTP library than any
other ATP system for intuitionistic logic [27]. A com-
prehensive evaluation of intuitionistic ATP systems is
also available in the ILTP library [33].9 The result of
running ileanCoP 1.2 on all first-order problems of ver-
sion 3.7.0 of the TPTP library is shown in Table 8.
Though theorem proving in intuitionistic logic is con-
sidered much more difficult than in classical logic,10

ileanCoP 1.2 proves almost as many problems as, e.g.,
SETHEO. It proves more problem than Prover9 in the
domains AGT (18 proved problems), CAT (1), CSR
(133), HAL (1), MED (3) and NUM (55).

9See the ILTP library website at http://www.iltp.de.
10Deciding if a propositional formula is valid is co − N P -

complete for classical logic [6], but P S P AC E -complete for intu-
itionistic logic [36].

180 J. Otten / Restricting backtracking in connection calculi

Table 8

TPTP benchmark results for randoCoP, ileanCoP and different Prolog systems

randoCoP leanCoP leanCoP 2.0 core ileanCoP

1.1 2.0 SWI-Prolog SICStus ECLiPSe 1.2

Proved 1827 1797 1603 1602 1548 1272

[%] 36% 36% 32% 32% 31% 25%

0–1 s 1223 1220 1185 1201 1196 851

1–10 s 268 133 156 173 157 101

10–100 s 229 250 163 148 124 100

100–600 s 107 194 99 80 71 220

Average time 2.7 s 13.1 s 5.0 s 4.0 s 4.3 s 72.9 s

Rating 0.0 546 554 533 534 530 480

Rating >0.0 1281 1243 1070 1068 1018 792

Rating 0.00 . . . 0.24 67% 67% 62% 63% 61% 55%

Rating 0.25 . . . 0.49 64% 63% 55% 54% 52% 37%

Rating 0.50 . . . 0.74 38% 33% 26% 25% 23% 18%

Rating 0.75 . . . 1.00 4% 4% 3% 3% 3% 1%

No equality 632 616 586 584 583 494

With equality 1195 1181 1017 1018 965 778

Pure equality 26 29 28 29 28 19

Refuted 30 35 35 35 35 71

Time out 3087 2501 3348 3360 2968 2684

Error 107 718 65 54 500 1024

7.3. Evaluating different Prolog systems

For leanCoP the performance and stability of the
used Prolog system have an impact on its performance
as well. In order to evaluate the performance of differ-
ent Prolog systems, the leanCoP 2.0 core prover (using
options [cut,comp(7)]) was tested with the fol-
lowing Prolog systems: ECLiPSe 5.10, SICStus 4.0.4
and SWI-Prolog 5.6.59.11 For these tests an additional
Prolog module is used that translates from the TPTP
problem syntax into the leanCoP syntax and also adds
the required equality axioms. The time for this transla-
tion is included in the proof time.

The results of running the leanCoP 2.0 core prover
on all FOF problems of version 3.7.0 of the TPTP li-
brary are shown in Table 8. The performance of the
three Prolog systems is essentially similar (see the “av-
erage time” row), but its static symbol table causes
the ECLiPSe system to crash on many of the huge
problems (500 errors compared to 54/65 errors for
SICStus/SWI-Prolog).

11More information about these Prolog systems can be
found on the websites http://www.eclipse-clp.org (ECLiPSe),
http://www.sics.se/isl/sicstuswww/site (SICStus), and http://www.
swi-prolog.org (SWI-Prolog).

8. Conclusion

Proof search in connection calculi requires in gen-
eral a large amount of backtracking. Limiting this
backtracking is crucial for a more effective proof
search. Restricted backtracking is a simple technique
for reducing the amount of backtracking significantly.
Though it is not a complete search strategy, it performs
very well in practice, in particular for problems that
contain many axioms. A definitional transformation
into clausal form was presented and shown to work
well with connection calculi, as it focuses on the num-
ber of connections instead of the number of clauses.
Regularity, lemmata and restricted backtracking are the
basis for a refined connection calculus. It was shown
how the basic connection calculus together with the
described techniques and inference rules can be con-
verted step by step into a compact Prolog implementa-
tion. Together with a fixed strategy scheduling, it is the
basis of the leanCoP 2.0 prover.12

The usefulness of the presented techniques has been
empirically evaluated. Comprehensive tests were run

12The source code of leanCoP 2.0 and more information is avail-
able on the leanCoP website at http://www.leancop.de.

J. Otten / Restricting backtracking in connection calculi 181

on all problems of the most recent version of the TPTP
library. The integration of regularity into the basic cal-
culus improves performance significantly. It confirms
the observation that regularity is one of the most suc-
cessful techniques for pruning the search space in con-
nection calculi [18]. The performance improvement of
restricted backtracking seems to be even greater, in
particular for problems that contain equality or a large
number of axioms. Thus, restricted backtracking is cur-
rently the single most effective technique for pruning
the search space in connection calculi. The presented
definitional clausal-form transformation yields better
results than other well-known transformations. Allto-
gether this leads to a significant performance improve-
ment of leanCoP 2.0 compared to leanCoP 1.0.

To sum up the main results of this paper:

• Restricting backtracking is crucial for an effective
proof search in connection calculi.

• Clausal-form transformations for connection cal-
culi need to consider the number of possible con-
nections; transformations that are optimized for
saturation-based calculi might not work as well
for connection calculi.

• The implementation language as well as the size
and complexity of an ATP system is not essential
for its performance.

The strong dependency of restricted backtracking on
the order of clauses can be reduced by randomly re-
ordering the axioms and clauses, as implemented in
randoCoP [32]. Restricted backtracking works well for
some other logics as well. By just adding prefixes and
an additional prefix unification algorithm, the imple-
mentation is turned into the theorem prover ileanCoP
for intuitionistic first-order logic [26,27].

For problems that are already in clausal form and
for some first-order problem domains of the TPTP li-
brary, some state-of-the-art ATP systems still solve
many more problems than leanCoP. To further im-
prove performance, additional techniques and strate-
gies need to be developed. The presented refined con-
nection calculus and its compact implementation are
an ideal starting point for the integration and evalua-
tion of such search techniques. Possible techniques in-
clude, e.g., the folding-up rule [18] and the selection of
a strategy according to the specific characteristics of a
given problem. It also needs to be investigated if and
how backtracking can be restricted in a way, such that
completeness is retained.

Future research also includes the integration of arith-
metic into the leanCoP implementation and the exten-

sion of the calculus and of the implementation to other
non-classical logics, e.g. modal logics, that are consid-
ered within the matrix characterization framework [13,
30,44,45].

Acknowledgements

The author would like to thank Thomas Raths
for providing the benchmark statistics for all tested
ATP systems and for testing the different clausal-form
transformations. The author would also like to thank
Christoph Kreitz, Paul Milkaitis and Stephan Schmitt
for their helpful feedback and the anonymous referees
for their comprehensive and useful comments.

References

[1] P. Baumgartner, N. Eisinger and U. Furbach, A confluent con-
nection calculus, in: 16th CADE, H. Ganzinger, ed., LNAI,
Vol. 1632, Springer, Heidelberg, 1999, pp. 329–343.

[2] B. Beckert and J. Posegga, leanTAP: lean, tableau-based theo-
rem proving, in: 12th CADE, A. Bundy, ed., LNAI, Vol. 814,
Springer, Heidelberg, 1994, pp. 793–797.

[3] W. Bibel, Matings in matrices, Communications of the ACM 26
(1983), 844–852.

[4] W. Bibel, Automated Theorem Proving, Vieweg, Wiesbaden,
1987.

[5] W. Clocksin and C. Mellish, Programming in Prolog, Springer,
Heidelberg, 1981.

[6] S.A. Cook, The complexity of theorem-proving procedures, in:
Proceedings of 3rd Annual ACM Symposium on the Theory of
Computing, Shaker Heights, OH, USA, 1971, pp. 151–158.

[7] E. Eder, Relative Complexities of First Order Calculi, Vieweg,
Wiesbaden, 1992.

[8] M.C. Fitting, First-order Logic and Automated Theorem Prov-
ing, Springer, Heidelberg, 1990.

[9] G. Gentzen, Untersuchungen über das logische Schließen,
Mathematische Zeitschrift 39 (1935), 176–210, 405–431.

[10] R. Hähnle, Tableaux and related methods, in: Handbook of Au-
tomated Reasoning, A. Robinson and A. Voronkov, eds, Else-
vier, Amsterdam, 2001, pp. 100–178.

[11] R. Hähnle and P. Schmitt, The liberalized δ-rule in free variable
semantic tableaux, Journal of Automated Reasoning 13 (1994),
211–221.

[12] K. Korovin, iProver – An instantiation-based theorem prover
for first-order logic (system description), in: IJCAR’2008,
A. Armando, P. Baumgartner and G. Dowek, eds, LNCS,
Vol. 5195, Springer, Heidelberg, 2008, pp. 292–298.

[13] C. Kreitz and J. Otten, Connection-based theorem proving in
classical and non-classical logics, Journal of Universal Com-
puter Science 5 (1999), 88–112.

[14] S.-J. Lee and D. Plaisted, Eliminating duplicates with the
hyper-linking strategy, Journal of Automated Reasoning 9
(1992), 25–42.

182 J. Otten / Restricting backtracking in connection calculi

[15] R. Letz, Properties and relations of tableau and connection cal-
culi, in: Intellectics and Computational Logic, S. Hölldobler,
ed., Kluwer, Amsterdam, 2000, pp. 245–261.

[16] R. Letz, J. Schumann, S. Bayerl and W. Bibel, SETHEO:
a high-performance theorem prover, Journal of Automated
Reasoning 8 (1992), 183–212.

[17] R. Letz, K. Mayr and C. Goller, Controlled integration of the
cut rule into connection tableaux calculi, Journal of Automated
Reasoning 13 (1994), 297–337.

[18] R. Letz and G. Stenz, Model elimination and connection
tableau procedures, in: Handbook of Automated Reasoning,
A. Robinson and A. Voronkov, eds, Elsevier, Amsterdam, 2001,
pp. 2015–2114.

[19] D. Loveland, Mechanical theorem proving by model elimina-
tion, Journal of the ACM 15 (1968), 236–251.

[20] A. Martelli and U. Montanari, An efficient unification algo-
rithm, ACM Transactions on Programming Languages and
Systems (TOPLAS) 4 (1982), 258–282.

[21] W. McCune, OTTER 2.0. in: CADE-10, M.E. Stickel, ed.,
LNCS, Vol. 449, Springer, Heidelberg, 1990, pp. 663–664.

[22] W. McCune, OTTER 3.0 reference manual and guide, Technical
Report ANL-94/6, Argonne National Laboratory, 1994.

[23] W. McCune, Release of Prover9, in: Mile High Conference
on Quasigroups, Loops and Nonassociative Systems, Denver,
2005.

[24] A. Nonnengart and C. Weidenbach, Computing small clause
normal forms, in: Handbook of Automated Reasoning,
A. Robinson and A. Voronkov, eds, Elsevier, Amsterdam, 2001,
pp. 335–367.

[25] J. Otten, ileanTAP: an intuitionistic theorem prover, in:
TABLEAUX’97, D. Galmiche, ed., LNAI, Vol. 1227, Springer,
Heidelberg, 1997, pp. 307–312.

[26] J. Otten, Clausal connection-based theorem proving in intu-
itionistic first-order logic, in: TABLEAUX’2005, B. Beckert,
ed., LNAI, Vol. 3702, Springer, Heidelberg, 2005, pp. 245–261.

[27] J. Otten, leanCoP 2.0 and ileanCoP 1.2: high performance
lean theorem proving in classical and intuitionistic logic, in:
IJCAR’2008, A. Armando, P. Baumgartner and G. Dowek, eds,
LNCS, Vol. 5195, Springer, Heidelberg, 2008, pp. 283–291.

[28] J. Otten and W. Bibel, leanCoP: lean connection-based the-
orem proving, Journal of Symbolic Computation 36 (2003),
139–161.

[29] J. Otten and C. Kreitz, T-string-unification: unifying prefixes
in non-classical proof methods, in: TABLEAUX’96, P. Migli-
oli, U. Moscato, D. Mundici and M. Ornaghi, eds, LNAI,
Vol. 1071, Springer, Heidelberg, 1996, pp. 244–260.

[30] J. Otten and C. Kreitz, A uniform proof procedure for classi-
cal and non-classical logics, in: KI-96: Advances in Artificial
Intelligence, G. Görz and S. Hölldobler, eds, LNAI, Vol. 1137,
Springer, Heidelberg, 1996, pp. 307–319.

[31] D. Plaisted and S. Greenbaum, A structure-preserving clause
form translation, Journal of Symbolic Computation 2 (1986),
293–304.

[32] T. Raths and J. Otten, randoCoP: randomizing the proof search
order in the connection calculus, in: IJCAR’08 Workshop on
Practical Aspects of Automated Reasoning (PAAR-2008), Syd-
ney, Australia, B. Konev, R. Schmidt and S. Schulz, eds, CEUR
Workshop Proceedings, 2008, pp. 94–102.

[33] T. Raths, J. Otten and C. Kreitz, The ILTP problem library for
intuitionistic logic, Journal of Automated Reasoning 38 (2007),
261–271.

[34] J.A. Robinson, A machine-oriented logic based on the resolu-
tion principle, Journal of the ACM 12(1) (1965), 23–41.

[35] S. Schulz, E – a Brainiac theorem prover, AI Communications
15(2) (2002), 111–126.

[36] R. Statman, Intuitionistic propositional logic is polynomial-
space complete, Theoretical Computer Science 9 (1979), 67–
72.

[37] M. Stickel, A Prolog technology theorem prover: implemen-
tation by an extended Prolog compiler, Journal of Automated
Reasoning 4 (1988), 353–380.

[38] M. Stickel, A Prolog technology theorem prover: a new exposi-
tion and implementation in Prolog, Theoretical Computer Sci-
ence 104 (1992), 109–128.

[39] G. Sutcliffe, The 4th IJCAR automated theorem proving sys-
tem competition, AI Communications 22 (2009), 59–72.

[40] G. Sutcliffe and C. Suttner, The TPTP problem library – CNF
release v1.2.1, Journal of Automated Reasoning 21 (1998),
177–203.

[41] G. Sutcliffe and C. Suttner, Evaluating general purpose
automated theorem proving systems, Artificial Intelligence
131(1,2) (2001), 39–54.

[42] A. Riazanov and A. Voronkov, The design and implementation
of Vampire, AI Communications 15(2,3) (2002), 91–110.

[43] C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev and
D. Topic, System description: SPASS version 3.0, in: CADE-
21, F. Pfenning, ed., LNCS, Vol. 4603, Springer, Heidelberg,
2007, pp. 514–520.

[44] A. Waaler, Connections in nonclassical logics, in: Handbook
of Automated Reasoning, A. Robinson and A. Voronkov, eds,
Elsevier, Amsterdam, 2001, pp. 1487–1578.

[45] L. Wallen, Automated Deduction in Nonclassical Logic, MIT
Press, Cambridge, 1990.

