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Normal forms Introduction

Introduction

I SAT is the problem of determining if a propositional formula (on
conjunctive normal form) is satisfiable.

I The DPLL (Davis-Putnam-Logemann-Loveland) procedure from 1962
[2] is an algorithm solving SAT.

I DPLL is a refinement of the DP (Davis-Putnam) procedure from 1960
[3].

I We present (a version of) DPLL as a calculus.

I DPLL is interesting because it works well in practice, ie. the best SAT
solvers are based on DPLL.
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Normal forms Normal forms

Preliminaries

A literal is a propositional variable or its negation.

Our connectives are ¬, ∧, ∨ and ⊃.

> and ⊥ are the truth constants.

We will use the following notation.

I propositional variables: P,Q,R, S (possibly subscripted)

I literals: x , y , z (possibly subscripted)

I general formulae: X ,Y ,Z

The complement of a literal is defined as follows.

I P = ¬P , and

I ¬P = P .
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Normal forms Normal forms

NNF

A formula is on negation normal form (NNF) if negations occur only in
front of propositional variables and implications does not occur at all.

Any formula can be put on NNF using the following rewrite rules.

¬¬X → X
X ⊃ Y → ¬X ∨ Y

¬(X ∧ Y )→ ¬X ∨ ¬Y
¬(X ∨ Y )→ ¬X ∧ ¬Y

Some additional rewrite rules are needed for formula containing > and ⊥.

We will assume that a formula X on NNF does not contain > or ⊥ unless
X = > or X = ⊥.
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Normal forms Normal forms

CNF and DNF

A formula is on conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals.

Example 1

(¬P ∨ Q) ∧ (P ∨ ¬Q ∨ R) ∧ (Q ∨ S) ∧ (P ∨ ¬R)

A formula on NNF can be put on CNF using the following rewrite rules.

(X ∧ Y ) ∨ Z → (X ∨ Z ) ∧ (Y ∨ Z )

Z ∨ (X ∧ Y )→ (Z ∨ X ) ∧ (Z ∨ Y )

A formula is on disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

DNF is like CNF, only with ∧ and ∨ exchanged.
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Normal forms Normal forms

Example

The following formula expresses “P ∧ Q or R ∧ S but not both,”
(ie. exclusive or).

((P ∧ Q) ∨ (R ∧ S)) ∧ (¬(P ∧ Q) ∨ ¬(R ∧ S))

NNF: ((P ∧ Q) ∨ (R ∧ S)) ∧ ((¬P ∨ ¬Q) ∨ (¬R ∨ ¬S))

CNF: (P ∨ R) ∧ (P ∨ S) ∧ (Q ∨ R) ∧ (Q ∨ S) ∧ (¬P ∨ ¬Q ∨ ¬R ∨ ¬S)

The NNF to CNF part is performed as follows.

(P ∧ Q) ∨ (R ∧ S)

→ (P ∨ (R ∧ S)) ∧ (Q ∨ (R ∧ S))

→ (P ∨ R) ∧ (P ∨ S) ∧ (Q ∨ (R ∧ S))

→ (P ∨ R) ∧ (P ∨ S) ∧ (Q ∨ R) ∧ (Q ∨ S)
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Normal forms Normal forms

Size increase

Rewriting a formula from DNF to CNF (or vice versa) may cause an
exponential increase in size.

(P1 ∧ P2) ∨ (P3 ∧ P4) ∨ (P5 ∧ P6)

On CNF:

(P1 ∨ P3 ∨ P5) ∧ (P1 ∨ P3 ∨ P6) ∧
(P1 ∨ P4 ∨ P5) ∧ (P1 ∨ P4 ∨ P6) ∧
(P2 ∨ P3 ∨ P5) ∧ (P2 ∨ P3 ∨ P6) ∧
(P2 ∨ P4 ∨ P5) ∧ (P2 ∨ P4 ∨ P6)
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Normal forms Clauses and clause sets

Clauses and clause sets
For the sake of notational simplicity, instead of using formula on CNF, we
will use clause sets.

A clause is a disjunction of literals.

A unit clause is a singleton clause.

A clause set is a finite set of clauses (interpreted conjunctively).

We will represent non-empty clauses by the set of its literals using a
Prolog-like notation.

I An empty clause is the empty disjunction ⊥.

I x1 ∨ · · · ∨ xn is represented by the set [x1 . . . xn], for n > 0 (n is the
length).

I We will sometimes write [] for ⊥.

Observe that [] 6= ∅ (see next foil).
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Normal forms Clauses and clause sets

Example

Some clauses:

1. [P ¬Q R]

2. [P ¬P]

3. [], the empty clause

Some clause sets:

1. {[P ¬Q R]}

2. {[P ¬P], [], [P ¬Q R]}

3. ∅, the empty clause set

4. {[]}, the clause set containing exactly the empty clause
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Normal forms Clauses and clause sets

Valuation
Let Γ be a clause set and C a clause.

As clauses are disjunctions, it follows that they are valuated as follows.

v(C ) = 1 iff v(x) = 1 for some x ∈ C .

We will interpret clause sets conjunctively, ie.

v(Γ) = 1 iff v(C ) = 1 for every C ∈ Γ.

Observe that

I if C is empty, then v(C ) = 0, while

I if Γ is empty, then v(Γ) = 1.

Thus we may use clause sets to represent formula on CNF.

Example:

v({[P ¬Q R], [¬P ¬R]}) = v((P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬R))
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Normal forms Clauses and clause sets

Subsumption

Let C1 and C2 be clauses. If C1 ⊆ C2, we say that C1 subsumes C2.

Lemma 2 (Subsumption)

If C1 subsumes C2, and v(C1) = 1, then v(C2) = 1.

Proof.

I If v(C1) = 1, then v(x) = 1 for some x ∈ C1.

I If C1 ⊆ C2, then x ∈ C2.

I Thus v(C2) = 1.

Example: |= P ⊃ (P ∨ Q) as [P] subsumes [P Q].
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Normal forms Clauses and clause sets

Subsumption
Define Γx = {C ∪ [x ] |C ∈ Γ}, ie. x is added to every clause.

Example

1. {[P Q], [¬Q], [¬P ¬Q]}x = {[P Q x ], [¬Q x ], [¬P ¬Q x ]}.

2. {[P Q], [¬Q], [¬P ¬Q]}P = {[P Q], [P ¬Q], [P ¬P ¬Q]}.

3. {⊥}x = {[]}x = {[x ]}.

4. ∅x = ∅.

Corollary 3 (of the Subsumption Lemma)

If v(Γ) = 1, then v(Γx) = 1.

Proof.

Every clause in Γ subsumes one in Γx .
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Normal forms Clauses and clause sets

Subsumption

A similar lemma for clause sets, only the other way as clause sets are
interpreted conjunctively and clauses disjunctively.

Lemma 4

Let Γ and ∆ be clause sets. If ∆ ⊆ Γ and v(Γ) = 1, then v(∆) = 1.

Proof.

I If v(Γ) = 1, then v(C ) = 1 for every C ∈ Γ.

I If ∆ ⊆ Γ, then v(C ) = 1 for every C ∈ ∆.

I Thus v(∆) = 1.
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Normal forms Clauses and clause sets

Some lemmata

Let Γ and ∆ be clause sets and C a clause.

I Γ,∆ means Γ ∪∆.

I Γ,C means Γ ∪ {C}.

I We say that x occurs in Γ if x ∈ C for some C ∈ Γ.

Lemma 5

Let Γ be a non-empty clause set without any occurence of x or x. If Γ is
satisfiable, there is some valuation v such that v(Γ, [x ]) = 1.
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Normal forms Clauses and clause sets

Some lemmata

Lemma 6

If v(x) = 1, then

1. v(Γx) = 1.

2. v(Γx) = v(Γ).

Proof.

1. If v(x) = 1, then

I v(C ∪ [x ]) = 1 for any clause C ,. . .

I . . . in particular every one in Γ.

I Thus v(Γx) = 1.

2. Left as exercise.
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Normal forms Clauses and clause sets

The core of DPLL

The preceding lemma comes close to the core of DPLL.

If we make x true, we can

1. remove every clause containing x , and

2. remove x from every clause containing it.

Example 7

Let Γ = {[P Q], [¬P ¬Q], [Q ¬R]}.

If v(P) = 1, then we can

1. remove [P Q], and

2. remove ¬P from [¬P ¬Q].

In other words, v(Γ) = v({[¬Q], [Q ¬R]}).
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DPLL Preliminaries

Preliminaries

The DPLL calculus operates not on general formulae but on a clause set Γ.

We start by removing from Γ

I any clause C such that {x , x} ⊆ C for some x .

This obviously does not affect satisfiability.

I If {x , x} ⊆ C , then v(C ) = 1, thus v(Γ) = v(Γ \ {C}).
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DPLL The rules

The rules

Let Γ, Λ and ∆ be clause sets without any occurence of x or x such that Γ
and Λ are non-empty.

Definition 8

An axiom is any clause set where the empty clause occurs, ie. of the form
⊥,∆.

Why are the axioms unsatisfiable?

I In terms of sequent calculus, that Γ is satisfiable may be expressed as
Γ 6` ⊥ or Γ 6` ∅.

I DPLL can be viewed as a left-calculus, ie. the right hand side of the
sequent is empty.

I Thus in sequent calculus terms, ⊥,∆ means ⊥,∆ ` ⊥, which is valid.
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DPLL The rules

Monotone literal fixing

If it’s the case that some x occurs in some clauses and x does not, we say
that x is monotone, and we make x true, because this makes the clauses x
occurs in true and does not affect the other clauses.

∆ Mon
Γx ,∆

This rule is sometimes called the Affirmative-Negative Rule.

Example: ¬Q is monotone.

[P ¬Q R], [¬P ¬R], [P ¬R]
Mon

[P ¬Q R], [¬P ¬R], [P ¬R]
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DPLL The rules

Unit subsumption

If it’s the case that

I the unit clause [x ] occurs,

I x occur in some other clauses, and

I x occurs in yet others,

[x ] subsumes the others where x occurs.

[x ],Λx ,∆
Sub

[x ], Γx ,Λx ,∆

Example: [Q] subsumes [¬P Q].

[Q], [¬P Q], [¬P ¬Q], [R]
Sub

[Q], [¬P Q], [¬P ¬Q], [R]

Espen H. Lian (Ifi, UiO) SAT and DPLL May 4, 2010 22 / 59



DPLL The rules

Unit resolution

If it’s the case that

I the unit clause [x ] occurs,

I x does not occur anywhere else but

I x does,

make x true.

Λ,∆
Res

[x ],Λx ,∆

Example:

[Q], [P ¬Q], [¬P ¬Q], [R]
Res

[Q], [P ¬Q], [¬P ¬Q], [R]
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DPLL The rules

Split

If it’s the case that

I some x occurs in some clauses, and

I x occurs in others,

we can make two branches: one where x is true and one where x is false.

Γ,∆ Λ,∆
Split

Γx ,Λx ,∆

Example: Split on P .

[P ¬Q], [¬P Q] [P ¬Q],[¬P Q]
Split

[P ¬Q], [¬P Q]
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DPLL Examples

Example 1
The following formula is valid.

(P ⊃ (Q ⊃ R)) ⊃ ((P ⊃ Q) ⊃ (P ⊃ R))

Its negation is equivalent to the following clause set.

{[P], [¬R], [¬P Q], [¬P ¬Q R]}

It is unsatisfiable, hence it should be provable.

We show unsatisfiability using only Res.

×
[P], [¬R], [¬P Q], [¬P ¬Q R]

Res
[P], [¬R], [¬P Q], [¬P ¬Q R]

Res
[P], [¬R], [¬P Q], [¬P ¬Q R]

Res
[P], [¬R], [¬P Q], [¬P ¬Q R]
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DPLL Examples

Example 2

{[¬P Q], [P ¬Q R], [Q S ], [P ¬R]} is satisfiable:

∅ Mon
[P R], [P ¬R]

∅ Mon
[¬R]

Res
[¬P], [P ¬R]

Split
[¬P Q], [P ¬Q R], [P ¬R]

Mon
[¬P Q], [P ¬Q R], [Q S ], [P ¬R]
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DPLL Derived rules

Derivable rules

Res is, in fact superfluous, and can be derived from Split:

×
⊥,∆ Λ,∆

Split
[x ],Λx ,∆

If we allow Γ and Λ to be empty, the following rule is called Unit
propagation (on x).

Λ,∆
Prop

[x ], Γx ,Λx ,∆

It can be derived from the other rules.
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DPLL Derived rules

Unit propagation

We can derive Prop as follows.

If Γ and Λ are non-empty:

Λ,∆
Res

[x ],Λx ,∆
Sub

[x ], Γx ,Λx ,∆

If Λ = ∅, then Λx = ∅:

∆ Mon
[x ], Γx ,∆

If Γ = ∅, then Γx = ∅:

Λ,∆
Res

[x ],Λx ,∆
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DPLL Termination

Termination

Lemma 9

A maximal derivation ends in an axiom or ∅.

Proof.

Assume the opposite: that there is a maximal derivation whose leaf node Γ
is neither an axiom nor ∅.

I Thus there is some x occurring in Γ.

I If x does not occur in Γ, Mon is applicable.

I If x does occur in Γ, Split (or in some cases Sub) is applicable.

In either case we get a contradiction, as the derivation is not maximal.
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DPLL Termination

Termination

Theorem 10 (Termination)

Any proof attempt terminates.

Proof.

I Sub and Mon both reduce the number of clauses.

I Split reduces the number of distinct variables.

I Both are finite, thus we have termination.
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DPLL Soundness and completeness

Soundness and completeness

Lemma 11 (Mon)

Γx ,∆ is satisfiable iff ∆ is satisfiable.

Proof.

Only if: Follows directly from Lemma 4.

If: Assume that ∆ is satisfiable.

I By Lemma 5, there is a v such that v(∆) = v(x) = 1.

I By Lemma 6(1), v(Γx) = 1.

I Thus v(Γx ,∆) = 1.
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DPLL Soundness and completeness

Soundness and completeness

Lemma 12 (Sub)

[x ], Γx ,Λx ,∆ is satisfiable iff [x ],Λx ,∆ is satisfiable.

Proof.

Only if: Follows directly from Lemma 4.

If: Follows from Lemma 6(1).

Lemma 13 (Split)

Γx ,Λx ,∆ is satisfiable iff Γ,∆ or Λ,∆ are satisfiable.

Proof.

Left as exercise.

Espen H. Lian (Ifi, UiO) SAT and DPLL May 4, 2010 32 / 59



DPLL Soundness and completeness

Soundness and completeness

Theorem 14 (Soundness)

If there exists a proof of Γ, then Γ is unsatisfiable.

Proof.

We show this contrapositively: if Γ is satisfiable, then Γ is not provable.

I Assume that Γ is satisfiable.

I Rules preserve satisfiability upwards.

I Thus any derivation π has at least one satisfiable leaf node Λ.

I As axioms are unsatisfiable, Λ is not an axiom, thus π is not a
proof.
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DPLL Soundness and completeness

Soundness and completeness
Theorem 15 (Completeness)

If Γ is unsatisfiable, there exists a proof of Γ.

Proof.

We show this contrapositively: if there exists no proof of Γ, then Γ is
satisfiable.

I Assume that there exists no proof of Γ.

I Then any maximal derivation has at least one open leaf node.

I Termination lets us assume that a derivation is maximal, hence with
an open leaf node ∅, which is satisfiable.

I Rules preserve satisfiability downwards.

I Thus Γ is satisfiable.
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Complexity NP-completeness

NP-completeness

The first problem to be proven NP-complete was SAT.

Theorem 16 (Cook’s Theorem)

SAT is NP-complete.

Proof.

Non-trivial. See [1] or [8].

We know from the previous lecture (in 2008 at least) that propositional
satisfiablity is NP-complete.

I NP-hardness: follows directly from Cook’s Theorem.

I NP-membership: a non-deterministic machine can guess a satisfying
valuation and verify it in polynomial time.
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Complexity Size

Size

A problem (instance) is an instance of SAT, ie. a clause set. If

I the number of clauses is n,

I there occurs m distinct propositional variables, and

I every clause is of length 6 c ,

the problem size is represented by the triple

n ×m × c .

Example. The following problem has size 2× 4× 3.

{[P ¬Q R], [Q R ¬S ]}
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Complexity Reduction to CNF

Reduction to CNF

As mentioned, reducing a propositional formula to CNF can cause
exponential increase in size.

A formula of the form (x1 ∧ y1) ∨ · · · ∨ (xn ∧ yn) reduced to CNF has size

2n × 2n × n,

that is 2n clauses of length n.

Example 17

If n = 3, we get a 8× 6× 3 problem:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ y3) ∧ (x1 ∨ x3 ∨ y2) ∧ (x1 ∨ y2 ∨ y3) ∧
(x2 ∨ x3 ∨ y1) ∧ (x2 ∨ y1 ∨ y3) ∧ (x3 ∨ y1 ∨ y2) ∧ (y1 ∨ y2 ∨ y3)

But the reason for using DPLL in the first place is effectivity!
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Complexity Equivalence

Equivalence

I Two formulae X and Y are equivalent if

v(X ) = v(Y ) for every valuation v .

I Equivalence can be expressed in our logical language.

I Let (X ≡ Y ) denote (X ⊃ Y ) ∧ (Y ⊃ X ).

I So far we have reduced a formula to an equivalent one on CNF:

I X → Y , where

I X and Y are equivalent, and

I Y is on CNF.

I This, in fact, is not strictly necessary.
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Complexity Equisatisfiability

Equisatisfiability

I For our purposes, it suffices that X and Y are equisatisfiable:

X is satisfiable iff Y is satisfiable.

I Until now, the procedure for generating input to DPLL has been

I X NNF−−−→ Y CNF−−−→ Z Clause−−−−→ Γ, where

I X , Y , Z and Γ are equivalent, and

I Z may be exponentially larger than Y .

I Our next approach is as follows.

I X NNF−−−→ Y Tseitin−−−−→ Γ, where

I Y and Γ are not equivalent, and

I Γ is no more than polynomially larger than X .
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Complexity Tseitin encoding

Tseitin encoding

Problem given an arbitrary formula on NNF, find an equisatisfiable
formula on CNF (or the corresponding clause set).

Solution Represent each subformulae (except for literals) with a
propositional variable, recursively.

Usually attributed to Tseitin [9].

Example 18

((P ∧ ¬Q) ∨ R) has two non-literal subformulae, one of which is itself.

P1︷ ︸︸ ︷
((P ∧ ¬Q)︸ ︷︷ ︸

P2

∨R)
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Complexity Tseitin encoding

Tseitin encoding

I For each new variable Pk , we generate a formula expressing that Pk is
equivalent to the formula it represents:

I (P1 ≡ (P2 ∨ R))

I (P2 ≡ (P ∧ ¬Q))

I In addition we want the variable expressing the entire formula, in our
case P1 to be true.

I Let ϕ denote the following conjunction.

P1 ∧
(P1 ≡ (P2 ∨ R)) ∧
(P2 ≡ (P ∧ ¬Q))

I Then ϕ is equisatisfiable to ((P ∧ ¬Q) ∨ R).
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Complexity Tseitin encoding

Tseitin encoding

I In fact |= ϕ ⊃ ((P ∧ ¬Q) ∨ R).

I If v(ϕ) = 1, then v makes the three conjuncts true:

1. v(P1) = 1

2. v(P1 ≡ (P2 ∨ R)) = 1

I Thus v(P1) = v(P2 ∨ R) = 1.

I Thus v(P2) = 1 or v(R) = 1.

3. v(P2 ≡ (P ∧ ¬Q)) = 1

I Thus v(P2) = v(P ∧ ¬Q).

I If v(P2) = 1, then v(P ∧ ¬Q) = 1.

I Hence v((P ∧ ¬Q) ∨ R) = 1.

I Observe that 6|= ((P ∧ ¬Q) ∨ R) ⊃ ϕ.
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Complexity Tseitin encoding

Tseitin encoding

In order to convert ϕ to CNF, we use the following functions.

〈x ∧ y〉P = {[¬P x ], [¬P y ], [P x y ]}
〈x ∨ y〉P = {[P x ], [P y ], [¬P x y ]}
〈x ⊃ y〉P = {[P x ], [P y ], [¬P x y ]}

Lemma 19 (Clause representation)

〈X 〉P is equivalent to (P ≡ X ).

E.g., {[P x ], [P y ], [¬P x y ]} is equivalent to P ≡ (x ∨ y).
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Complexity Tseitin encoding

Tseitin encoding

Recall that ϕ is the formula

P1 ∧ (P1 ≡ (P2 ∨ R)) ∧ (P2 ≡ (P ∧ ¬Q)).

Using the lemma, ϕ is equivalent to the clause set

{{[P1]} ∪ 〈P2 ∨ R〉P1 ∪ 〈P ∧ ¬Q〉P2},

which again equals

{[P1],

[P1 ¬P2], [P1 ¬R], [¬P1 P2 R],

[¬P2 P], [¬P2 ¬Q], [P2 ¬P Q]}.
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Complexity Tseitin encoding

Tseitin encoding

Is this any better than the original CNF translation?

I We will use the number of binary connectives (n) as a measure of the
size of our original formula on NNF.

I We let m denote the number of distinct propositional variables.

I Then the size of the equisatisfiable clause set generated is

(3n + 1)× (m + n)× 3.

Hence we obtain an instance of 3SAT with a linear (in n) number of
clauses, with n new variables.
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DPLL Implementation Pseudocode algorithm

Pseudocode algorithm
DPLL can be implemented as follows, where DPLL(Γ) = true iff Γ is
satisfiable.

proc LookAhead(Γ)

while Γ contains unit clause [x ]

perform unit propagation on x

proc DPLL(Γ)

LookAhead(Γ)

if Γ = ∅ return true
if ⊥ ∈ Γ return false
x := ChooseLiteral(Γ)

return DPLL(Γ, [x ]) or DPLL(Γ, [x ])
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Jeroslow Wang heuristic

I The only non-deterministic part is which literal is chosen.

I Picking the optimal literal is in general NP-hard and coNP-hard [7].

I Thus it is harder than deciding satisfiability of the formula!

I But there exists heuristics.

I Let Γ(x) denote the subset of Γ where x occurs.

I Pick the x that maximizes w(Γ(x)), where w is the weight function

w(Γ) =
∑
k>1

n(Γ, k)

2k ,

and n(Γ, k) is the number of clauses in Γ of length k .

I “Pick an x that occurs in many short clauses.”
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DPLL Implementation Jeroslow Wang heuristic

Example 2

Let Γ = {[¬P Q], [P ¬Q R], [Q S ], [P ¬R]}.

What is DPLL(Γ)?

I Γ contains no unit clause.

I We calculate w(Γ(x)) for each x occurring in Γ.

x ¬P P ¬Q Q ¬R R ¬S S

w(Γ(x)) 2
8

3
8

1
8

4
8

2
8

1
8

0
8

2
8

I Q has the highest weight in Γ.

I DPLL(Γ) is true if DPLL(Γ, [Q]) or DPLL(Γ, [¬Q]) are.
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DPLL Implementation Jeroslow Wang heuristic

Example 2

I Unit propagation is performed on Γ, [¬Q]:

[P R], [P ¬R]
Prop

Γ, [Q]

I Let Γ′ = {[P R], [P ¬R]}.

x ¬P P ¬R R

w(Γ′(x)) 0
4

2
4

1
4

1
4

I P has the highest weight in Γ′.
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DPLL Implementation Jeroslow Wang heuristic

Example 2

I DPLL(Γ) is true if

I DPLL(Γ′, [P]) or

I DPLL(Γ′, [¬P]) or

I DPLL(Γ, [¬Q]) are.

I Unit propagation is performed on Γ′, [P]:

∅ Prop
[¬R]

Prop
Γ′, [P]

I DPLL(Γ′, [P]) returns true, thus

I DPLL(Γ) returns true, which means

I Γ is satisfiable.
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DPLL Implementation MiniSAT

MiniSAT

MiniSAT won the following categories at SAT Competition 2005:

I Industrial SAT+UNSAT

I Industrial UNSAT

I Industrial SAT

I Crafted UNSAT

It didn’t do that well at SAT Competition 2007 though.

We can try it on an 3358× 1015× 3 problem.
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DPLL Implementation MiniSAT

MiniSAT

villasayas: MiniSat_v1.14> ./minisat ../DIMACS/par16-5.cnf
==================================[MINISAT]===================================
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Clauses Literals | Limit Clauses Literals Lit/Cl | |
==============================================================================
| 0 | 2218 6602 | 739 0 0 nan | 0.000 % |
| 102 | 2218 6602 | 812 102 953 9.3 | 38.227 % |
| 252 | 2218 6602 | 894 252 3313 13.1 | 38.227 % |
| 477 | 2218 6602 | 983 477 5729 12.0 | 38.227 % |
| 814 | 2218 6602 | 1081 814 9112 11.2 | 38.227 % |
| 1321 | 2218 6602 | 1190 1321 13584 10.3 | 38.227 % |
| 2081 | 2218 6602 | 1309 1292 10791 8.4 | 38.227 % |
| 3220 | 2220 6602 | 1440 1576 12234 7.8 | 38.227 % |
==============================================================================
restarts : 8
conflicts : 4670 (11121 /sec)
decisions : 4911 (11695 /sec)
propagations : 1075868 (2561981 /sec)
conflict literals : 39668 (36.40 % deleted)
Memory used : 2.97 MB
CPU time : 0.419936 s

SATISFIABLE
villasayas: MiniSat_v1.14>
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