## HOMEWORK #7For Friday, March 11

- 1. Finish reading Chapter 1 of van Dalen and start reading Sections 2.1–2.3.
- $\star$  2. Do parts a, b, and e of problem 3 on page 39 of van Dalen.
  - 3. Do problem 4 on page 39. Hints: For 4a, remember that if  $\alpha$  and  $\beta$  are any formulas, from  $\beta$  you can conclude  $\alpha \rightarrow \beta$ . 4b is tricky, because it is not intuitionistically valid; you will need to use RAA. Note that from  $\neg \alpha$  you can conclude  $\alpha \rightarrow \beta$  using *ex falso* (show how).
  - 4. Do problems 5, 7, and 8 on pages 39-40.
- ★ 5. Do problem 1 on page 47. If you claim the set is inconsistent, show that you can prove a contradiction from those assumptions. If you claim the set is consistent, demonstrate this by providing a valuation under which all the formulas are true. (Note that the completeness theorem implies that if a set of formulas is consistent, there will always be such a valuation.)
  - 6. Do problems 2 and 3 on page 47.
  - 7. A formula  $\varphi$  is said to be *independent* of a set of formulas  $\Gamma$  if  $\Gamma \not\vdash \varphi$  and  $\Gamma \not\vdash \neg \varphi$ . Suppose  $\Gamma$  is a consistent set of formulas,  $\varphi$  is independent of  $\Gamma$ , and  $\psi$  is independent of  $\Gamma \cup \{\varphi\}$ . Show that there are at least three different maximally consistent sets containing  $\Gamma$ .
- \* 8. Find a consistent set Γ that is not maximally consistent, but has the property that there is only one maximally consistent set containing it. In fact, find such a set Γ with the additional property that for some natural number k, every formula in Γ has length at most k.
- $\circ$  9. Do problem 4 on page 47 of van Dalen.
- 0 10. Do problem 5 on page 48. In effect, you will be describing a computer program that prints out propositional formulas ad infinitum, in such a way that every propositional formula is printed sooner or later.
- \* 11. Do problem 6 on page 48. Van Dalen's wording is awkward. What you need to prove is this: Suppose  $\Gamma$  is a consistent set of formulas with the property that for every formula  $\varphi$ , either  $\varphi \in \Gamma$  or  $\neg \varphi \in \Gamma$ . Then  $\Gamma$  is maximally consistent.

- \* 12. Show that if  $\Gamma$  is any consistent set, and  $\varphi$  is any formula, then either  $\Gamma \cup \{\varphi\}$  or  $\Gamma \cup \{\neg\varphi\}$  is consistent. (Hint: suppose they are both inconsistent...)
  - 13. Say that a set of formulas  $\Gamma$  is finitely satisfiable if every finite subset of  $\Gamma$  is satisfiable. Note that the compactness theorem states

For every set of formulas  $\Gamma$ , if  $\Gamma$  is finitely satisfiable then  $\Gamma$  is satisfiable.

Prove (directly) that if  $\Gamma$  is a finitely satisfiable set of formulas and  $\varphi$  is any formula, then either  $\Gamma \cup \varphi$  or  $\Gamma \cup \{\neg \varphi\}$  is finitely satisfiable.

- 14. Do problems 8 and 9 on page 48.
- 15. Do problem 11 on page 48.