INF3170 Logikk Spring 2011

* 1.

HOMEWORK #4B
For Friday, February 18

The set of propositional formulas in prefix form is defined inductively,
as follows (the underlying set consists of strings of variables and logical
symbols):

e | is a prefix formula

e any variable p; is a prefix formula

e if © is a prefix formula, so is ¢

e if p and v are prefix formulas, so is Ay
e if p and v are prefix formulas, so is Vo
e if v and v are prefix formulas, so is — Y

e if v and v are prefix formulas, so is <> Y

Intuitively, this is just another notation for propositional formulas in
which the connectives come in front of the arguments, instead of in
between them. For example, one writes Ap;ps instead of (p1 Apz). Notice,
however, that in this representation no parentheses are used.

a. Convert A — p1—ps V p3p4 to a regular propositional formula.
b. Convert ((p1 V p2) — ((—p3) V p4)) to a prefix formula.

c. Define a function recursively that maps prefix propositional formulas
to regular ones (you can assume that the set of prefix formulas is
freely generated).

d. Define a function recursively that maps regular propositional formu-
las to prefix ones.

Prove unique readability for prefix formulas, i.e. that the set of prefix
formulas is freely generated. This amounts to showing that there is only
one way to “parse” a given formula.

In the programming language of your choice, define a data structure to
represent propositional formulas as trees. (That is, a propositional for-
mula is either a variable, or an operation with pointers to its arguments).
Write a parser for propositional formulas, that is, a program that takes
a string as input and turns it into a parse tree. The routine should print
“ok” if successful, or “error” if the string is not a formula.

* D.

Now write routines that convert a formula to prefix form; that take
an assignment of truth values to the variables as input and determine
whether or not the resulting formula is true; and that determine whether
there is any assignment that makes the formula true.

Do problems 1 and 2 on page 14 of van Dalen.

Do problem 3 on page 14. In other words, show that for every 6, 1,
and ¢, if ¢ is a subformula of ¢ and 3 is a subformula of 8, then ¢
is a subformula of #. (Hint: use induction on 6, and state the relevant
property of 6 clearly.)

Do problem 4 on page 14. In other words, show that if ¢ is a subformula
of ¢ and 0g, 01, ..., 0; is a formation sequence for ¢, then for some i < k,
p = 0;. Be precise: use the definitions of PROP, formation sequences,
and subformulas presented in class.

Do problem 5-8 on page 14-15.

Do problem 9 on page 15. Note that the “number of connectives” in
o counts all the occurences of A, V, —, <>, and L; this can be defined
more formally by recursion on ¢. (Hint: use induction on ¢ to show
that the number of subformulas of ¢ is always at most twice the number
of connectives plus one.)

Show that if is any propositional formula, there is a formation sequence
for ¢ that involves only subformulas of .

o 10. Do problem 11 on page 15.

