INF3170 Logikk Spring 2012

Homework #12For Tuesday, May 1

* 1. Assuming $\theta(x)$ and η are any formulas and x is not free in η , prove $\exists x \ \theta(x) \to \eta$ from $\forall x \ (\theta(x) \to \eta)$.

 \star 2. Suppose φ and $\psi(x)$ are any formulas, and x is not free in φ . Prove

$$(\varphi \to \exists x \ \psi(x)) \leftrightarrow \exists x \ (\varphi \to \psi(x))$$

using the following steps:

- a. First prove the \leftarrow direction.
- b. From $\exists x \ \psi(x)$, prove $\exists x \ (\varphi \to \psi(x))$.
- c. From $\neg \exists x \ \psi(x)$ and $\varphi \to \exists x \ \psi(x)$, conclude $\exists x \ (\varphi \to \psi(x))$. (Hint: from the hypotheses, show that φ implies anything.)
- d. Put parts (b) and (c) together with a proof of $\exists x \ \psi(x) \lor \neg \exists x \ \psi(x)$ (you don't have to write out the latter) to obtain a proof the \to direction.

Note that this \rightarrow direction of this problem, together with problem 11, are used in the proof of van Dalen's Lemma 3.1.7.

- * 3. Let L_1 , L_2 , and L_3 be languages, with $L_1 \supseteq L_2 \supseteq L_3$. (In other words, L_1 has all the constant, function, and relation symbols of L_2 , and possibly more; and similarly for L_2 and L_3 .) Suppose T_1 , T_2 , and T_3 are theories in the languages L_1 , L_2 , and L_3 respectively. Show that if T_1 is a conservative extension of T_2 , and T_2 is a conservative extension of T_3 , then T_1 is a conservative extension of T_3 . (You can find the definition of "conservative extension" on page 104 in van Dalen, Definition 3.1.5.)
 - 4. Consider the following two statements of the completeness theorem:

Version A: If Γ is any consistent set of sentences, then Γ has a model.

Version B: If Γ is any set of sentences, φ is any sentence, and $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.

Show directly that these two statements are equivalent, i.e. that each one implies the other. (Hint: to show that B implies A, take φ to be \perp .)