INF3170 Logikk Spring 2012

HOMEWORK #5 For Tuesday, February 21

Oppgave 1–12 går på semantikk og komplette mengder av konnektiver. Dette er oppgaver som man ikke trenger å gjøre, men som det anbefales å i hvert fall ta en titt på og spørre om i gruppetimen om noe er uklart. Oppgave 13–16 er deduksjonsoppgaver fra van Dalen som man absolutt bør gjøre! Oppgave 14 er oblig (til Oblig 2, ikke til Oblig 1!).

- 1. A binary truth function is a function f(x,y) that takes values of x and y in the set $\{0,1\}$ to a value in the set $\{0,1\}$. Note that a binary truth function is defined uniquely by its truth table.
 - a. How many different binary truth functions are there?
 - b. Two binary truth functions don't depend on any of their arguments: the constant 0 function and the constant 1 function. How many binary truth functions depend only on one of their two arguments?
 - c. We've already seen a number of binary truth functions that depend on both arguments, namely those corresponding to the connectives $\land, \lor, \rightarrow, \leftrightarrow, \oplus$ (exclusive or), | (nand, or the sheffer stroke), and \downarrow (nor). (The last three are defined by $p \oplus q \equiv \neg(p \leftrightarrow q)$, $p|q \equiv \neg(p \land q)$, $p \downarrow q \equiv \neg(p \lor q)$.)

What are the remaining ones? You can define them in words, in terms of the other connectives, or with truth tables.

- 2. Do problems 4 and 5 on page 28 of van Dalen. In other words, if $\varphi \mid \psi$, read " φ nand ψ ," means that φ and ψ are not both true, and $\varphi \downarrow \psi$, read " φ nor ψ ," means that neither φ nor ψ is true, show that $\{\mid\}$ and $\{\downarrow\}$ are complete sets of connectives.
- 3. Do problem 6 on page 28. In other words, show that these are the only two binary connectives that have this property.
- 4. Show that $\{\rightarrow, \bot\}$ is a complete set of connectives.
- 5. a. Show that $\{\rightarrow, \lor, \land\}$ is not a complete set of connectives. (Hint: show that any formula involving only these connectives is true when all the variables are true.)
 - b. Conclude that $\{\rightarrow, \lor, \land, \leftrightarrow, \top\}$ is not a complete set of connectives. (Hint: define the last two in terms of the others.)

- 6. a. Show that $\{\bot, \leftrightarrow\}$ is not a complete set of connectives. (Hint: show that any formula involving only these connectives and the variables p_0 and p_1 is equivalent to one of the following: \bot , \top , p_0 , p_1 , $\neg p_0$, $\neg p_1$, $p_0 \leftrightarrow p_1$, or $p_0 \oplus p_1$.)
 - b. Conclude that $\{\bot, \top, \neg, \leftrightarrow, \oplus\}$ is not complete. (Hint: see the previous problem.)
- 7. How many ternary (3-ary) complete connectives are there?
- o 8. Do problem 7 on page 28.
 - 9. Do problem 8 on page 28. (Hint: it might help to read problem 7.)
 - 10. Make up a truth table for a ternary connective, and then find a formula that represents it.
 - 11. Do problems 9 and 10 on page 28.
 - 12. Using the property $\varphi \lor (\psi \land \theta) \approx (\varphi \lor \psi) \land (\varphi \lor \theta)$, and the dual statement with \land and \lor switched, put

$$(p_1 \wedge p_2) \vee (q_1 \wedge q_2) \vee (r_1 \wedge r_2)$$

in conjunctive normal form. (Hint: try it with $(p_1 \wedge p_2) \vee (q_1 \wedge q_2)$ first.)

- * 13. Do problem 1 on page 39 of van Dalen. Remember that we are taking $\varphi \leftrightarrow \psi$ to abbreviate $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$.
 - 14. (**Oblig.**) Do problem 2 on page 39.

There is a parenthesis missing in part (b); it should read $[\varphi \to (\psi \to \sigma)] \leftrightarrow [\psi \to (\varphi \to \sigma)]$. Here the square brackets are only used to make the formula more readable; they are no different from parentheses.

- \star 15. Do problem 3 on page 39.
- \star 16. Do problem 7 on page 55.