INF3170 Logikk Spring 2012

HOMEWORK #7
For Tuesday, March 6

Problem 1 is Oblig. Problems 2-6 have to do with a more explicit proof
of the restricted version of the completeness theorem: if = ¢, then - .
Problem 7 is relevant for the next lecture, so have a look at it.

1.

3.

(Oblig) The purpose of this exercise is to show that the RAA rule is
equivalent to the Law of Excluded Middle (LEM) and to Double Nega-
tion Elimination (DNE). Use our usual system where we treat L, V, A,
— as primitive and —, <> as defined.

a.

DNE is the rule that from ——¢ you can conclude ¢. Use this rule
together with the other rules (but not RAA) to show RAA, that is,
show that if you have a deduction with —¢ as a premise and L as the
conclusion, then you can produce a proof using the new DNE rule
which has —¢ as a cancelled premise and ¢ as the conclusion.

Using the RAA rule, show - ¢ V ¢ (Hint: Show first that
{=(oV —9),d} F o)

LEM is the rule that from anything (or nothing) you can conclude
¢V —¢. Show that from LEM we can get DNE by showing, without
using the RAA rule, that ¢ V —¢ - =—¢ — ¢.

Using the proof of Theorem 1.3.8 in van Dalen, describe an algorithm
that converts any formula ¢ to formulas ¢¥ and ¢”, in disjunctive and
conjunctive normal form, respectively.

a.

Remember that a formula ¢ is satisfiable if there is a truth assignment
v such that [¢], = 1. ¢ is unsatisfiable if it is not satisfiable. Show
that for any formula ¢, ¢ is unsatisfiable if and only if = —p.

Now suppose ¢ is of the form

Y1V V...V

in disjunctive normal form, so that each formula ¢; is a conjunction
of atomic formulas and their negations. Show that ¢ is satisfiable
if and only if one of the conjunctions ¢; does not contain an atomic
formula p; together with its negation —p;.



o 4.

c. Use this, together with the previous problem, to give an algorithm
to determine whether or not a formula ¢ is valid.

This problem outlines a more constructive approach to the following
special case of the completeness theorem: if |= ¢, then - ¢.

a. Modify the algorithm of problem 5 so that given ¢, it outputs not
only a formula ", but also a proof of ¢ < ¢”.

b. Show that if ¢” is valid, it is easy to prove. (The previous problem
is relevant.)

If ¢ is any formula, show that
length(gpv) < 2length(<p)+3‘

(Use the definition of ¢ implicit in Theorem 1.3.9 on page 26.)

a. Assuming ¢ has length n, what is the worst-case running time of the
algorithm in part (c) of the problem 67

b. Another way to determine if a formula ¢ is a tautology is to com-
pute its value on every truth assignment (the “truth table” method).
What is the worst-case running time of this algorithm?

c. Come up with a polynomial-time algorithm for determining if a
propositional formula ¢ is a tautology or not, or prove that no such al-
gorithm exists. (Note: a successful solution to this problem amounts
to settling the famous open question, P = NP?.)

Treating the connectives A, V, —, and L as basic (i.e. V is not defined
from other connectives, but —, <>, and T are), we get intuitionistic
(propositional) logic by deleting RAA from our set of inference rules.
The remaining rules, then, are A intro and elim; V intro and elim; —
intro and elim; and L elim (that from L you can conclude anything).
We show that RAA does not follow from these rules by constructing a
sound semantics for intuitionistic logic in which RAA does not hold. Let
I be the closed unit interval,

I=00,1]={zeR0<z<1}

a. Given a valuation
(% {p07p17"'} — 1

justify briefly that there is a unique function

[~]» : PROP — I



such that

[L], =0 (1)
[[¢ A ¢]]v = mln{[w)]]v, [w)]]v} (2)
[¢VPlo = maz{[]o, [¢]0} (3)

1, if [¢]v < [¥]o
[]v, otherwise

[[@b%lﬁ]]v:{

b. Define semantic consequence with respect to valuations in I by

{61,..., 00} EL ¥ & if min{é1,...,én} < [¢]w

for all valuations v : {pg,p1,...} — I, where I is a finite set of for-
mulas. (Accordingly, ¢ is valid, F! ¢, iff [¢], = 1 for all valuations
v.) Show by induction on derivations that this defines a sound se-
mantics for intuitionistic logic. The induction step has one case for
each derivation rule, do at least two such cases. (The V-elim case is
tricky, so you might want to avoid that one.)

c. Do all cases in the induction proof above.

d. Use the definition of [—], to compute [¢ V =¢],. Conclude that RAA
does not follow from the other deduction rules.

e. Is this semantics complete? That is, is it the case that
el ¢=Tk¢

for I' a finite set of formulas? Justify your answer.



