

CF: Department of Informatics Networks and Distributed Systems (ND) group

INF 3190 (mostly) Wireless Communication

Michael Welzl

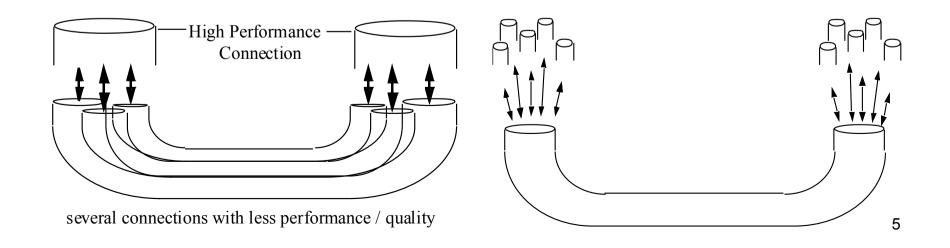
Wireless: not exactly a minor side topic...

- Cellular Networks (3G/4G/LTE), WLAN, WPAN, WMAN, Software-Defined / Cognitive Radios, Smart Antennas / MIMO Systems, Adhoc Wireless Networks, Wireless Mesh Networks, Wireless Sensor Networks, Vehicular Networks, Satellites (GEOs, LEOs, MEOs),
 - and usage scenarios! Context-Aware Services, Ubiquitous Computing, Smart Spaces, Delay-Tolerant Networking, …
 - and issues! Cross-layering (e.g. "TCP-over-X"), efficient routing, energy saving, …
- Hence, can only provide:
 - Some technical foundations that are common to many systems above
 - Translates into: layers 1-2
 - We'll focus on layer 2
 - A brief overview of some examples

Technical foundations and WLANs

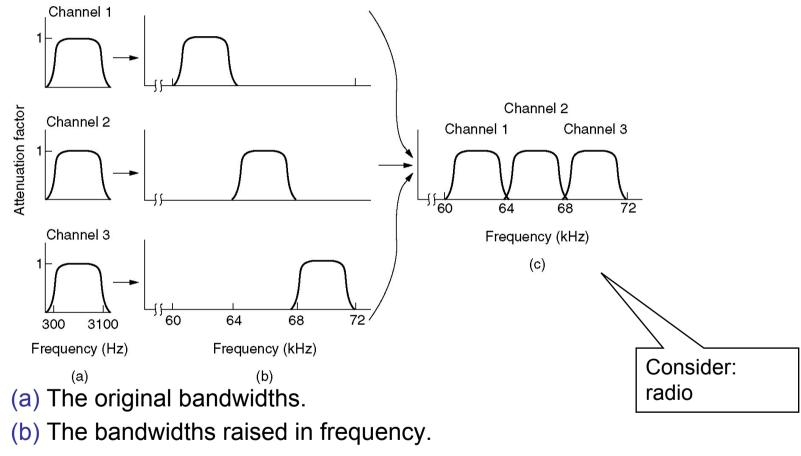
Channel Access: Frequency Hopping Spread Spectrum (FHSS)

- Signal broadcast over seemingly random series of frequencies
- Receiver hops between frequencies in sync with transmitter
- Eavesdroppers hear unintelligible blips
- Jamming on one frequency affects only a few bits
- Rate of hopping versus Symbol rate
 - Fast Frequency Hopping: One bit transmitted in multiple hops.
 - Slow Frequency Hopping: Multiple bits are transmitted in a hopping period
- Adaptive variant (trying to avoid "bad" frequencies) used in Bluetooth (79 channels, 1600 hops/s)


ifi

Multiplexing (MUX)

- Transmission of several data flows (logical connections) over one medium
 - Realize individual "connections", *normally* with deterministic properties (throughput, delay)
 - Terminology: ??M ("".. Multiplexing") or ??MA (".. Multiple Access")
- Also:

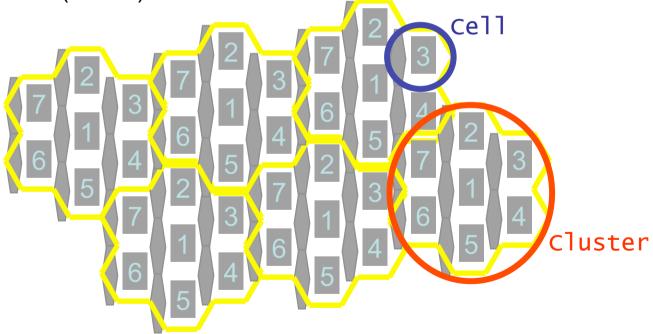

Transmission of one data flow (logical connection) over several media

(increase performance and/or reliability)

Frequency Division Multiplexing (FDM(A))

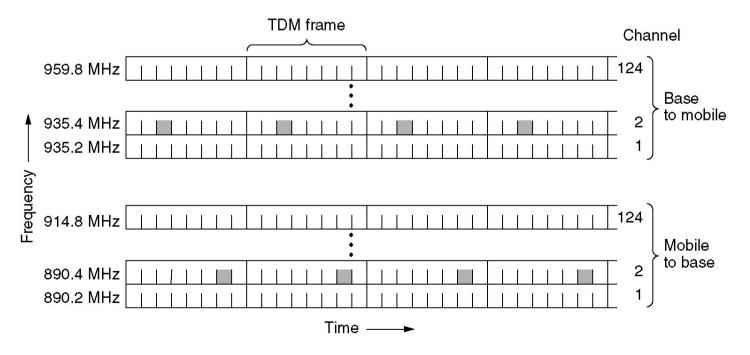
(b) The multiplexed channel.

- FDM in optical domain: Wavelength Division Multiplexing (WDM)
- FDM with orthogonal signals, allwing closer placement of frequencies: OFDM


Time Division Multiplexing (TDM(A))

- Time slots used to differentiate between data flows
- can only be used for digital data
- synchronization required; typically: signaling bit(s)
- throughput not always deterministic (statistical TDM)
- TDM formed the basis for ATM
 - Connection oriented behavior emulated via forwarding ("switching") of fixed-size cells
 - Realized Virtual Paths containing Virtual Channels with various QoS guarantees
 - Not wireless at all (fiber required), but 802.16 (wimax) provides similar QoS services and ATM compatibility...

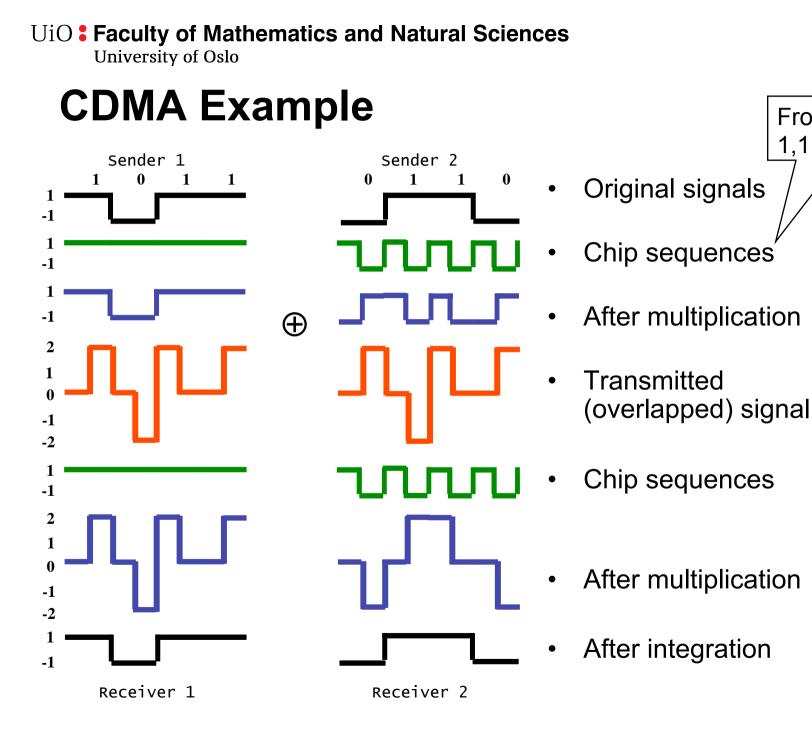
Space Division Multiplexing (SDM(A))


- Wired transmission: multiple cables
- Wireless transmission: reuse of (bunches of) frequencies
 - already used in First-Generation (analog) Advanced Mobile Phone System (AMPS)

Cluster size (No. of cells) k, cell radius r, distance d between base stations sharing the same frequencies: $d = r \sqrt{3k}$

Example: Global System for Mobile Communications (GSM)

- Second Generation (digital voice)
- Cell phone transmits on freq. X, receives on freq. X+55 MHz
 - uses: FDM + TDM (frame hierarchy)


US counterpart: Digital Advanced Mobile Phone System (D-AMPS)

Code Division Multiplexing (CDM(A))

- Simultaneous transmission using a single frequency!
 - Method explained below is called Direct-Sequence Spread Spectrum (DSSS)
- Signal in bipolar notation: $1 \Rightarrow 1, 0 \Rightarrow -1$
 - Multiply with individual chip sequence
 - Sequence length = duration of one symbol (1 bit consists of n chips)
- Chip sequences are orthogonal:
 - seq. 1: $x = (x_1, x_2, ..., x_n)$, seq. 2: $y = (y_1, y_2, ..., y_n)$ $\sum_{i=1}^{n} x_i y_i = 0$
 - ensures reconstructability!
 - Common choice: Walsh sequence line of Walsh-Hadamard matrix:

$$H_n = \begin{bmatrix} H_{n/2} & H_{n/2} \\ H_{n/2} & -H_{n/2} \end{bmatrix}$$

Reconstruction: multiply overlapping signals with chip sequence + integrate

ifi

From H_2 :

1,-1

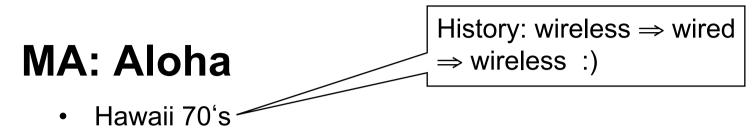
1,1

11

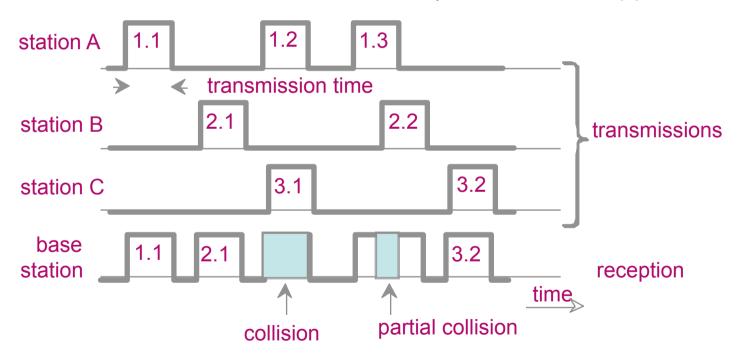
CDMA properties

- Example: 1 signal with 2 symbols \Rightarrow 2 signals with 3 symbols
- Transmission of chips: higher data rate than bits!
 - more bandwidth required thus, spread spectrum technology
- Reconstruction requires tight synchronization
- Used within GPS
- Proposal by Ericsson: Wideband CDMA (W-CDMA)
 - 5 MHz bandwidth
 - designed to interwork with GSM networks (not downward compatible, phone can move from GSM to W-CDMA without losing call)
 - used within Universal Mobile Telecommunications System (UMTS)

Multiplexing vs. Multiple Access Control (MUX vs. MAC)


- Multiplexing -
 - multiple processes per wire
 - map connections onto connections
 - long-distance "trunk" wire

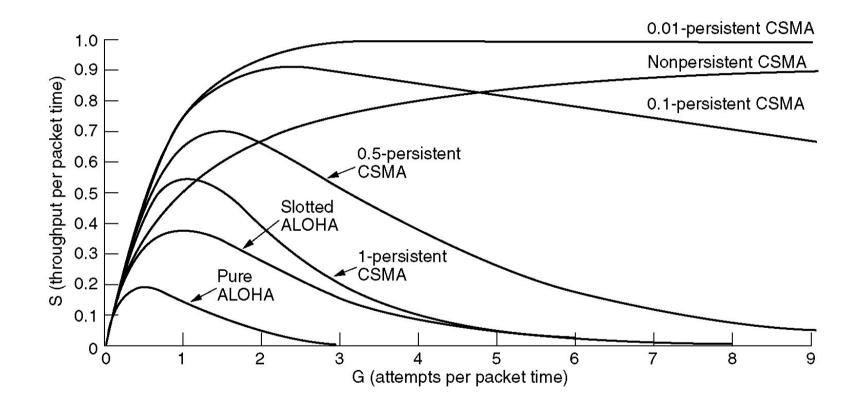
- Multiple Access (MA): usually, equals "media access": multiple stations per cable / per wireless cell
 - centralized: e.g., host → terminal controllers, master/slave (outdated)
 - 2. decentralized:
 - a) concurrent: simpler, good for wireless, few "guarantees"
 - b) controlled: next sender "elected" unambiguously



ifi

• collisions resolved via timeout (base station supposed to ack)

- Variant: slotted Aloha
 - fixed time slots, fixed size frames no partial collisions


Carrier Sense Multiple Access (CSMA)

- Listen (CS) Before Talk (LBT):
 - channel idle: transmit entire frame
 - channel busy: defer transmission

- What happens if two senders do this?
- 1-Persistent CSMA: retry immediately when channel becomes idle
- P-Persistent CSMA: retry immediately with probability p when channel becomes idle
- Non-persistent CSMA: retry after random interval
- Human analogy: don't interrupt others!
 - Politicians are sometimes 1-Persistent...
- Collisions
 - sender 1 may not immediately see 2's transmission (propagation delay)
 - entire frame transmision time wasted

Persistent and Nonpersistent CSMA

Comparison of channel utilization versus load for various random access protocols.

CSMA/CD (Collision Detection): wired only

time

А

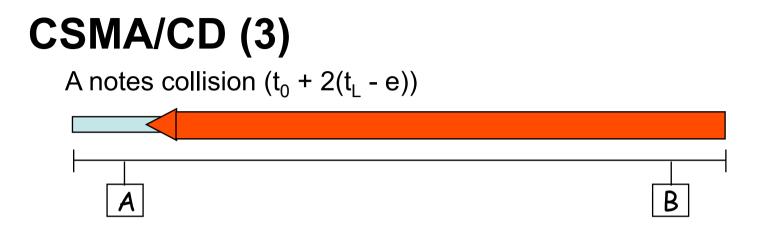
- CD: signal sent = signal on wire?
 must Listen While "Talking" (LWT), requires minimum message size
- Colliding transmissions aborted = reducing channel wastage
 - Retry: binary exponential backoff
- Doesn't work in wireless
 - a radio can usually not transmit and receive at the same time
 - signal strength decreases proportionally to the square of the distance or even more; not every radio signal is equally strong
 - sender might not "hear" the collision, i.e., CD does not work, e.g. if a terminal is "hidden" (to be explained)

ifi

space

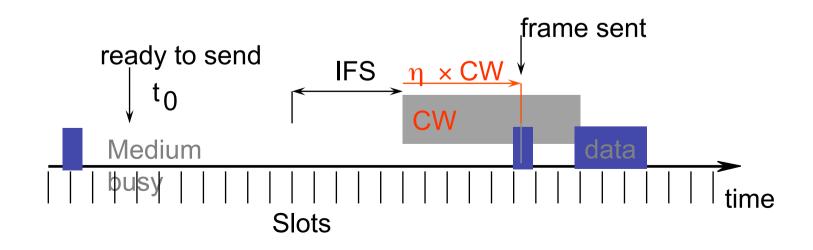
collision

detect/abort time


CSMA/CD (2)

A starts transmission (t_0)

B starts transmission $(t_0 + t_L - e)$; note: after $t_0 + t_L$, B would not send at all (LBT)

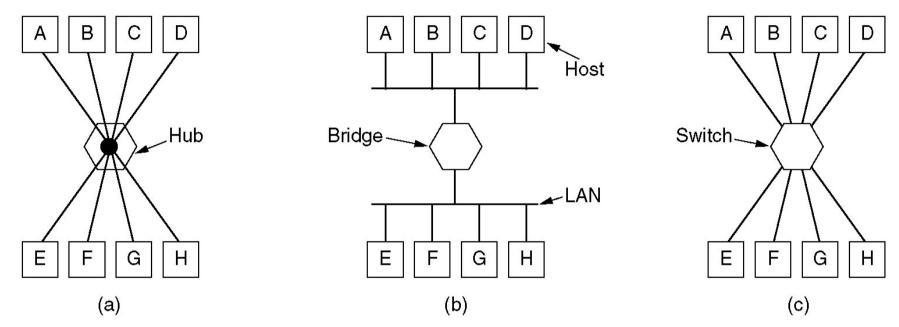


- To notice collision, A must still be sending
- t_L : propagation delay A \rightarrow B; 2 t_L : round trip delay
- max. distance A-B for "thick" Ethernet ~ 2.5 km, including repeaters (5 segments w/ 500m each)
- roundtrip delay: $5x10^3$ m / (2 x 10^8 m/s) = $2.5x10^{-5}$ s (25 µs)
- min. packet size: 10⁷ bit/s x 2.5x10⁻⁵s = 250 bit
- repeater delay, security, ... \rightarrow min. packet size = 512 bit

802.11 DCF: CSMA/CA (Collision Avoidance)

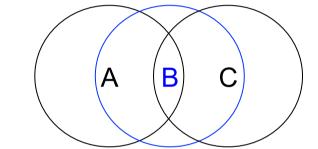
Uses a CW: Contention Window ("dangerous" time after busy)

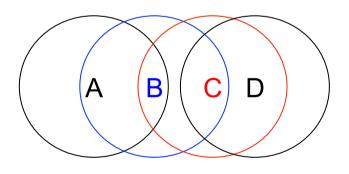
- IFS: interframe spacing (3 sub-intervals for short/prio/data msgs.)
- if ready to send, station draws random η from [0,1]
- computes No. of Slots n to wait when medium available: n = IFS + $\eta \times CW$
- decreases n as slots pass by, n=0: transmit!
- if other station precedes (recognized via LBT):
 - keep old n (already decreased)!



CSMA/CA (2)

- Contention Window
 - small: greater chance of collision, but high throughput when small load
 - large: smaller chance of collision, but less throughput
- CSMA/CA reduces chance of collision, but cannot prevent it
 - Exponential backoff: CW duplicated in response to error
- Collision detected via acknowledgement
 - Receiver sends ACK when frame arrives (sender timeout = error)
 - ACK has high priority (smaller IFS), but can also collide

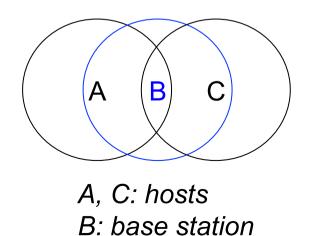

Collision domains in wired topologies



- (a) Hub: Physical layer device (i.e. unaware of + unnoticed by frames)
 - received bits on one interface copied to all other interfaces
 - Emulates bus (collisions)! cheap device
 - Can be arranged in a hierarchy, with backbone hub at its top
- (b) Bridge: Link layer device (i.e. unaware of + unnoticed by (e.g., IP) packets)
 - Isolates collision domains, selectively forwards using buffer
- (c) Switch: ______ Switch, Gateway, Router: ambiguous terminology
 - Similar to bridge, main difference: topology, more common nowadays, new features

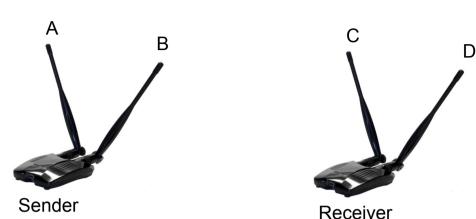
Collision domains in wireless topologies

- Hidden Terminal problem:
 - A and C send to B. They only see B, but B sees A and C; at B, A's traffic can collide with C's traffic.
- Exposed Terminal problem:
 - B wants to send to A and C wants to send to D; one of them must unnecessarily (!) wait because traffic collides between B and C only.
- Optional fix for both (but overhead): Request to Send (RTS) / Clear to Send (CTS) frames



Network coding

- Based on linear combinations of orthogonal vectors in finite fields
 - Commonly explained with XOR
- Various applications; in wireless, exploits overhearing
- Major gains claimed... but: significant overhead
 - Decoding: Inverting m x m-matrix (m = size of variable vector)
 - this needs time $O(m^3)$ and memory $O(m^2)$


Example - goal: A => C and C => A	
Without NC:	With NC:
1. A => B	1. A => B 2. C => B
2. B => C (A hears this)	2. C => B
3. C => B	3. B broadcasts
4. B => A (C hears this)	A's msg. XOR C's msg. 2

802.11 Rate Adaptation

- Wireless channel characteristics: noise, interference, fading, shortterm variation in channel condition (bursty bit errors)
- Lower PHY transmission rate => more robust to noise
 - 802.11b: 1 11 Mbit/s (4 PHY rates)
 - 802.11g: 6 54 Mbit/s (8 PHY rates)
- Rate Adaptation (RA) method left to the vendor; various schemes exist
 - based on PHY (e.g. SNR or Received Signal Strength Indication (RSSI)) or link layer metrics
 - Common: Auto-Rate Fallback (ARF) and derivatives: assumes that consecutive packet loss = probably not due to collision

802.11n Features

• MIMO

 Because signals
 A=>C, A=>D, B=>C, B=>D will be phase shifted, cumulative signal can be de-multiplexed at the receiver

- Frame aggregation
 - Consider e.g. only one sender transmitting 3 frames in a row: contention period between frames is a waste of time
 - Better to transfer them as a single "superframe" (but limited in max size for fairness reasons)
 - ("Block") ACKs sent in between blocks of the superframe

Some examples of wireless systems

UMTS and all that (2G, 2.5G, 3G, 4G)

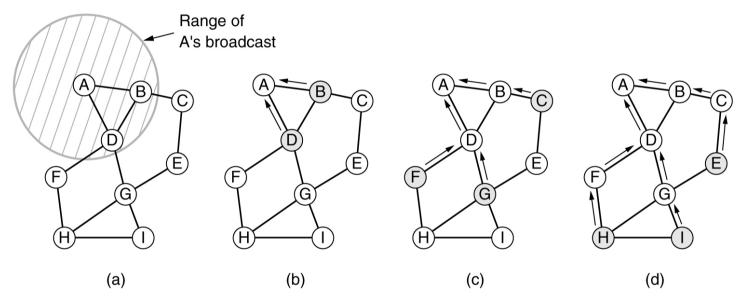
- Third Generation Mobile Phones: Digital Voice and Data
- ITU-Standard "International Mobile Telecommunications" (IMT-2000):
 - High-quality voice transmission
 - Messaging (replace email, fax, SMS, chat, etc.)
 - Multimedia (music, videos, films, TV, etc.)
 - Internet access (web surfing + multimedia)
- Single worldwide technology envisioned by ITU, but:
 - Europe: GSM-based UMTS
 - US: IS-95 based CDMA2000 (different chip rate, frame time, spectrum, ..)
- Intermediate solutions (2.5G):
 - Enhanced Data rates for GSM Evolution (EDGE): GSM with more bits per baud
 - General Packet Radio Service (GPRS): packet network over D-AMPS or GSM
- Now there's also 4G, based on the Open Wireless Architecture (OWA)
 - 3GPP Long Term Evolution (LTE) is based on GSM/EDGE and UMTS/HSPA; sometimes called 3.9G because it doesn't satisfy 4G requirements. LTE Advanced does

IMT-2000

ifi

WiMAX (802.16)

- MAN technology, but frequencies auctioned off country wide in many cases
 => eliminates main business case?
- Connection oriented
 - QoS per connection; all services applied to connections
 - managed by mapping connections to "service flows"
 - bandwidth requested via signaling
- Three management connections per direction, per station
 - basic connection: short, time-critical MAC / RLC messages
 - primary management connection: longer, delay-tolerant messages authentication, connection setup
 - secondary management connection: e.g. DHCP, SNMP
- Transport connections
 - unidirectional; different parameters per direction
- Convergence sublayers map connections to upper technology
 - two sublayers defined: ATM and "packet" (Ethernet, VLAN, IP, ..)



Mobile Ad Hoc Networks (MANETs)

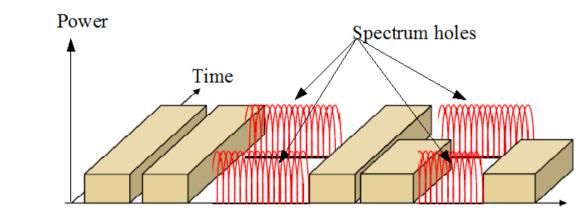
- Mobile devices, also acting as routers
- Memory and CPU restrictions
- Flexible environment, changing topology
- Proactive routing
 - continuously make routing decisions
 - numerous efforts examples: DBF, DSDV, WRP, ...
- Reactive routing
 - determine routes when needed
 - numerous efforts examples: TORA, DSR, ABR, RDMAR, AODV, ...

Example: Ad hoc On-Demand Distance Vector (AODV) algorithm - route discovery

- (a) Range of A's broadcast.
- (b) After B and D have received A's broadcast.
- (c) After C, F, and G have received A's broadcast.
- (d) After E, H, and I have received A's broadcast.

Shaded nodes are new recipients. Arrows show possible reverse routes.

From MANETs to WMN...


- MANET used to be a hype, is now a "cold topic"
- Not too many realistic usage scenarios
 - When do you not have a base station but want to connect anyway?
 - Military battlefield was a common example scenario is it the only real use case?
 - For anything else, what's the user incentive for type of net?
 - Better to incorporate base stations and consider the (somewhat less mobile) network formed by the heterogeneous equipment connected in this way
 - Wireless Mesh Network (WMN)

... and DTN

- Real "ad hoc" situations are often intermittent
 - We meet in the hallway and talk for 5 minutes
 - You then meet a common friend 2 hours later
 - There will never be e.g. a TCP connection between me and this friend ... but your device could still carry my packets, like you could deliver a letter for me?
- DTN was originally "Interplanetary Internet"
 - intermittent connectivity inherent, e.g. moon not always visible...
 - On earth, DTN has been proposed for rural connectivity (the bus or a motorcycle carry packets) - e.g. KioskNet: <u>http://blizzard.cs.uwaterloo.ca/tetherless/index.php/KioskNet</u>

Cognitive Radio

- Spectrum utilization depends strongly on time and place
 Could do better than always use the same allocated frequencies
- Idea: let unlicensed ("secondary") users access licensed bands without interfering with licensed ("primary") users
 - Ideally, access a database which maintains a common view of who uses which spectrum
 - Many issues
 (e.g. security, incentives for cooperating, ..)

Wireless Sensor Networks (WSNs)

- Based on 802.15.4
 - Some devices: ZigBee (802.15.4 PHY+MAC + layers 3 / 7)
 - uses CSMA/CA
 - Many devices can run TinyOS or Contiki OSes
- Specific scenarios alarm based systems, regular measurements, ... => specific improvements possible
 - e.g. static topology, regular updates: can do special routing; can put nodes to sleep when they don't communicate
 - transport: sometimes per-hop reliability
 - often: one static sink => "funneling effect" of traffic going "up the tree", earlier battery depletion of nodes near the sink
 - Solution: mobile sink (e.g. radio controlled helicopter)