UiO s Faculty of Mathematlcs and Natural Sclences
University of Oslo

o H Department of Informatics
C Networks and Distributed Systems (ND) group

INF 3190
The Transport Layer

Michael Welzl

University of Oslo

UiO ¢ Faculty of Mathematics and Natural Sciences

Where we are in the stack...

Host 2

Application
(or session)
layer

[T1

Transport

Host 1
Application
(or session) Application/transport
layer Transport | interface
T «— address |/~
TPDU
Transport 1
entity Transport
l protocol
Network — R
address Transport/network
interface

Network layer

entity

l

Network layer

UiO ¢ Faculty of Mathematics and Natural Sciences -

University of Oslo

Ambiguities: bandwidth

Traditional, “real”
definition!
Mirriam-Webster online (http://www.m-w.com):

e Main Entry: band*width, Pronunciation: 'band-"width

Function: noun, Date: circa 1937
— 1:arange within a band of wavelengths, frequencies, or energies; especially : a range of radio
frequencies which is occupied by a modulated carrier wave, which is assigned to a service, or over
which a device can operate
— 2 :the capacity for data transfer of an electronic communications system <graphics consume more
bandwidth than text does>; especially : the maximum data transfer rate of such a system

e Unit: definition 1 - “Hz“, definition 2 - “bit/s“ (bps) “Information rate”

e Common interpretation in CN context:
How many bits/sec can be transferred (“how thick is the pipe”)

UiO ¢ Faculty of Mathematics and Natural Sciences °

University of Oslo c

Ambiguities: bandwidth /2

e Various wooly “bandwidth” terms
— Nominal bandwidth: Bandwidth of a link when there is no traffic

— Available bandwidth: (Nominal bandwidth - traffic) ... during a specific
interval

— Bottleneck bandwidth: smallest nominal bandwidth along a path, but
sometimes also smallest available bandwidth along a path

e Throughput: bandwidth seen by the receiver

e Goodput: bandwidth seen by the receiving application
(e.g. TCP: goodput !=throughput)

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Ambiguities: delay

e Latency - time to transfer an "empty" message
— also: “propagation delay”
— limit: speed of light!

e End2end delay = latency + msg_length [bottleneck bandwidth
+ queuing delay

— just a rough measure; e.g., processing delay can also
play a role, esp. in core routers (CPU = scarce resource!)

e Jitter - delay fluctuations, very critical for most real-time applications

e Round-trip time (RTT) - time a messages needs to go from sender to
receiver and back

UiO ¢ Faculty of Mathematics and Natural Sciences °

University of Oslo c

More ambiguities

mbit / mb / Mb / Mbit ... ?

Latency: sometimes end2end-delay

link: physical connection between one or more hosts or routers, or
link between IP routers (may consist of multiple physical links!)

capacity: often physical capacity, but different if you talk about TCP

In general:
make sure you know which layer you are talking about!

UiO ¢ Faculty of Mathematics and Natural Sciences

University of Oslo

Addressing

Host 1

Application TSAP 1208
process /

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

Host 2

Server 1

I

Server 2

T

7
\
TSAP 1522\\

\

’

TSAP1836

/

NSAP

N)

TSAPs, NSAPs and transport connections

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Connection establishment

Host 1 Host 2 Host 1 Host 2
Layer
Process Process
Server Server

7T\ AN
. /
TSAP

J _

(a) (b)
How a user process in host 1 could establish a connection with a
time-of-day server in host 2

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

The Internet transport layer

e Services are (mostly) defined by two protocols

— UDP (connectionless): sends a “datagram”

— TCP (connection oriented): transfers a reliable bytestream

e Addressing: port numbers

— Choosing a service during connection establishment: well-known ports

Primitive Meaning
SOCKET Create a new communication end point
BIND Attach a local address to a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives
CONNECT | Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

Berkeley sockets:
TCP service primitives

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Focus on the Internet

e |nteresting transport layer thanks to “end-to-end argument”
(simple, too strict interpretation: “keep the network dumb”)

e Internet transport layer includes many necessary functions
— developed as “patches” over the years

— TCP has grown and grown and grown... should be robust
against everything!
— some complementary functions inside the net

e The Internet’s design has been criticized a lot
— especially recently: a lot of funding for “future Internet”

— butit’s very hard to change it now

You have now safely shutdown the Internet.

Source: http://www.turnofftheinternet.com/ 10

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Internet terminology

e PDU, SDU, etc.: OSI terminology

— Internet terminology: datagram, segment, packet

e Theoretically, 1 TCP segment could be split into
multiple IP packets
— hence different words used

e |n practice, this is inefficient and not often done

— hence segment = packet

11

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Speaking of packet splitting...

e (IP) fragmentation = inefficient
— But small packets have large header overhead

e Path MTU Discovery: determine the largest packet that does
not get fragmented

— originally (RFC 1191, 1990): start large, reduce upon reception of ICMP
message = black hole problem if ICMP messages are filtered

— now (RFC 4821, 2007): start small, increase as long as transport layer
ACKs arrive =2 transport protocol dependent

e Network layer function with transport layer dependencies

12

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

UDP and UDP Lite

32 Bits

A

\/

Source port Destination port

UDP length UDP checksum

e UDP=IP + 2 features:

— Ports: identify communicating instances with similar IP address
(transport layer)

— Checksum: Adler-32 covering the whole packet
e checksum field = 0: no checksum at all! = is this useful?

e =>solution: UDP Lite (length := checksum coverage)
— advantage: e.g. video codecs can cope with bit errors, but UDP drops whole packet
— critical: app‘s depending on UDP Lite can depend on lower layers

— usefulness: often, link layers do not hand over corrupt data

e Usage of UDP: unreliable data transmission (DNS, SNMP, real-time streams, ..)

13

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Standard TCP

14

UiO ¢ Faculty of Mathematics and Natural Sciences o B

University of Oslo c

What TCP does for you (roughly)

UDP features: multiplexing + protection against corruption
— ports, checksum
connection handling
— explicit establishment + teardown
stream-based in-order delivery
— segments are ordered according to sequence numbers
— only consecutive bytes are delivered
reliability
— missing segments are detected (ACK is missing) and retransmitted
flow control
— receiver is protected against overload (“sliding window“ mechanism)
congestion control
— network is protected against overload (window based)
— protocol tries to fill available capacity
full-duplex communication
— e.g., an ACK can be a data segment at the same time (piggybacking)
15

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

TCP Header

source Port Destination Port

Sequence Number

fcknowledgement Number

CIE|U|L|P|R|S|F
Header ,
Begserved [IW|C|R|CIS S|V]I Window
Length
EIE|GIK|H|T|N|N
Checksunm Urgent Pointer

Options (if any)

Data (if any)

e Flags indicate connection setup/teardown, ACK, ..
e |f no data: packet is just an ACK

e Window = advertised window from receiver (flow control)

— Field size limits sending rate in today’s high speed environments; solution:
Window Scaling Option — both sides agree to left-shift the window value by N bit

UiO ¢ Faculty of Mathematics and Natural Sciences o H
University of Oslo c

TCP Connection Management

e 1 CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED heavy solid line:
: CLOSE-) normal path for a client
LISTEN/- | | CLOSE/-
SYN/SYN + ACK 1 .
(Step 2 /51 the S-way handshake) | LISTEN heavy ldashzdf line:
: normal path for a server
oy RST/-) K SEND/SYN S
RCVD . SENT . .
T SYN/SYN + ACK (simultaneous open) nght lines:
i unusual events
i (Data transfer state)

R ACK/~ SYN + ACK/ACK ~_/

"""""""""""" & ESTABLISHED (Step 3 of the 3-way handshake) .
LOBEEN ; Connection
)
CLOSEFIN % FINIACK setup teardown
(Active close) (PassivL‘g close)
R I I """"""""""""""""""""" H R Jor 1
: FINJACK : | 'SE : SYN FIN
i FIN i ! CLO! i
; WAIT1 — Goste ! | WAIT :
i i ! T i
i i ! i ACK
: ACK/— ACK/— i : E CLOSE/FlN: SYN, ACK
i i ! t |
[IN + ACK/A 1
: =y FIN + ACK/ACK s i i LAST i / FIN
' | \ ACK I
: WL FIN/ACK WAL ! | !
! ! | . ! ACK
Eipistenre R e Lo eaged J bnoressmens fRiziausi J ACK
(Timeout/) '
1
51 ACK/- 4
CLOSE i- -------------------- (a) Host 1 Host 2 (b) Host 1 Host 2
(Go back to start)

17

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Connection establishment

e Sequence number synchronization (“SYN”)

— avoid mistaking packets that carry the same sequence number but don’t
belong to the intended connection

e TCP SYN sets up state (“that was the number,
| sent a SYN/ACK, now | wait for a response”)
— exploited by SYN flood DoS attack
— This is why data from a SYN must not be used before handshake is over

— Solution: put state in packets (“cookie”)

e Can be implemented without changing the protocol, by encoding it in sequence
numbers (SYN cookie)

e TCP Fast Open (RFC 7413, Dec. 2014): allows HTTP GET on SYN (special usage of
sockets to deal with possible duplicates)

e Works with Google server + Linux + Chrome; enable using URL chrome://flags/ 18

UiO ¢ Faculty of Mathematics and Natural Sciences o B
University of Oslo c

Connection release

e No way to do it without timeouts...

Blue
B army

White army

B
b
j% ﬂﬂ;

19

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Error control: Acknowledgement

e ACK (“positive” Acknowledgement)

e Purposes:
— sender: throw away copy of data held for retransmit
— time-out cancelled
— msg-number can be re-used

e TCP counts bytes, not segments; ACK carries “next expected byte” (#+1)

e ACKs are cumulative
— ACK n acknowledges all bytes “last one ACKed” thru n-1

e ACKs should be delayed

— TCP ACKs are unreliable: dropping one does not cause much harm

— Enough to send only 1 ACK every 2 segments, or at least 1 ACK every 500 ms
(often set to 200 ms)

20

UiO ¢ Faculty of Mathematics and Natural Sciences °

University of Oslo c

Error control: Timeout

Go-Back-N behavior in response to timeout

Retransmit Timeout (RTO) timer value difficult to determine:
— too long = bad in case of msg-loss; too short = risk of false alarms
— General consensus: too short is worse than too long; use conservative estimate

Calculation: measure RTT (Seg# ... ACK#) , then:
original suggestion in RFC 793: Exponentially Weighed Moving Average (EWMA)

— SRTT =(1-0) SRTT + o RTT
— RTO = min(UBOUND, max(LBOUND, 8 * SRTT))

Depending on variation, result may be too small or too large; thus, final algorithm
includes variation (approximated via mean deviation)

— SRTT =(1-0) SRTT + o RTT

— 8=(1-PB)*8+p *[SRTT-RTT]

— RTO=SRTT+4*9§

21

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

RTO calculation

e Problem: retransmission ambiguity
— Segment #1 sent, no ACK received = segment #1 retransmitted

— Incoming ACK #2: cannot distinguish whether original or retransmitted segment #1
was ACKed

— Thus, cannot reliably calculate RTO!

e Solution 1 [Karn/Partridge]: ignore RTT values from retransmits

— Problem: RTT calculation especially important when loss occurs; sampling theorem
suggests that RTT samples should be taken more often

e Solution 2: Timestamps option
— Sender writes current time into packet header (option)
— Receiver reflects value
— At sender, when ACK arrives, RTT = (current time) - (value carried in option)
— Problems: additional header space; facilitates NAT detection

22

UiO ¢ Faculty of Mathematics and Natural Sciences o H
University of Oslo c

Window management

Window
p A N Sender buffer

----------p ----------

E]234I[E@

/T N

Sent, Can) .
Sent and not ACKed be sent Must wait until

acknowledged window moves

e Receiver “grants” credit (receiver window, rwnd)
— sender restricts sent data with window
e Receiver buffer not specified

— i.e. receiver may buffer reordered segments (i.e. with gaps)

23

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

A simple router model

Switching
Fabric
Inl
In?2
In3

e Switch(ing) fabric forwards a packet (dest. addr.)
if no special treatment necessary: “fast path® (hardware)

e Queues grow when traffic bursts arrive
e low delay = small queues, low jitter = no queue fluctuations

o Packets are dropped when queues overflow (“DropTail queueing®)

e low loss ratio = small queues

Out 1
Out 2

24

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

I I I Throlughput atAIr —t—
110 Throughput at 5 ---x-—-
"Knee"
100 B \ 57 ALY PR TR AKT
] X
— XX
5 : ‘x
> 9 "Cliff— | -
-] |
Qo \
L X
(o)} \
8 80 B X —
IS X
= X
X
70 B \\ N
X
A
X
60 %
]]]]] \
0 10 20 30 40 50 60
Time (s)

25

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Global congestion collapse

Craig Partridge, Research Director for the Internet Research Department
at BBN Technologies:

Bits of the network would fade in and out, but usually only for TCP. You could ping. You could
get a UDP packet through. Telnet and FTP would fail after a while. And it depended on

where you were going (some hosts were just fine, others flaky) and time of day (I did a lot of
work on weekends in the late 1980s and the network was wonderfully free then).

Around 1pm was bad (I was on the East Coast of the US and you could tell when those
pesky folks on the West Coast decided to start work...).

Another experience was that things broke in unexpected ways - we spent a lot of time
making sure applications were bullet-proof against failures. (..)

Finally, | remember being startled when Van Jacobson first described how truly awful
network performance was in parts of the Berkeley campus. It was far worse than | was
generally seeing. In some sense, | felt we were lucky that the really bad stuff hit just where
Van was there to see it.

26

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Internet congestion control: history

e around 1986: first congestion collapse

e 1988: "Congestion Avoidance and Control" (Jacobson)

Combined congestion/flow control for TCP
(also: variation change to RTO calculation algorithm)

e |dea: packet loss = congestion, so throttle the rate; increase otherwise

e Goal: stability - in equilibrum, no packet is sent into the network until
an old packet leaves

— ack clocking, “conservation of packets” principle
— made possible through window based stop+go - behaviour

e Superposition of stable systems = stable 2
network based on TCP with congestion control = stable

27

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

TCP Congestion Control: Tahoe

e Distinguish:
— flow control: protect receiver against overload

(receiver "grants" a certain amount of data ("receiver window" (rwnd)))
— congestion control: protect network against overload

"congestion window" (cwnd) limits the rate: min(cwnd,rwnd) used!)

e Flow/Congestion Control combined in TCP. Two basic
algorithms:

— Slow Start: for each ack received, increase cwnd by 1 packet
(exponential growth) until cwnd >= ssthresh

— Congestion Avoidance: each RTT, increase cwnd by at most 1 packet
(linear growth - "additive increase®)

28

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

TCP Congestion Control: Tahoe /2

. Timeout e |f a packet or ackis lost
. (timeout), set cwnd =1,
, A Congestion — ssthresh = cwnd / 2
_6 [Avoidance (“multiplicative
E) |\ decrease") -
24 / \ exponential backoff
i j |
2 / VL V/ e Actually, “Flightsize/2"
; ' S instead of cwnd/2
1 3 5 7 SowStart 13 15 because cwnd might
time not always be fully used

29

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Background: AIMD

MIMD

N
P
c
.0
—
®
O
i)
<
N
—
m .
ch . .
Starting S
Point R
X S e .
. AR 4 Desirable
Ve
. S 4
ROAOK 4 .
: ihop? Starting
: ::::,‘}O Point
Dle
- p?
4

User 1 Allocation x1

'4
4
4

L4 .
Re Fairness
Line

Efficiency
Line

30

UiO ¢ Faculty of Mathematics and Natural Sciences o B
University of Oslo c

Connection startup

e Slow start: 3 RTTs for 3 packets =
inefficient for very short transfers

e Example: HTTP Requests

e Thus, initial window
IW = min(4*MSS, max(2*MSS, 4380 byte))
— why these values?

— worked well a long time ago; recently
increased to 10

— Adopted in Linux as default since kernel 2.6.39 .
(I\/Iay 2011) Sender : Receiver

31

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Fast Retransmit / Fast Recovery (Reno)

Reasoning: slow start = restart; assume that network is empty
But even similar incoming ACKs indicate that packets arrive at the receiver!

Thus, slow start reaction = too conservative. : Con.gestion
Congestion Avoidance
_ _ _ o .~ Avoidance
1. Upon reception of third duplicate ACK (DupACK):
ssthresh = FlightSize/2 Slow Start

| I
[\

2. Retransmit lost segment (fast retransmit);
cwnd = ssthresh + 3*SMSS
("inflates" cwnd by the number of segments (three)

that have left the network and which the receiver
has buffered)

bandwidth

o —_ N w I (@)] [0}

3. For each additional DupACK received: cwnd += SMSS — —
(inflates cwnd to reflect the additional segment that T 3 5 7 9
has left the network) time

Slow Start

4. Transmit a segment, if allowed by the new value of cwnd and rwnd

5. Upon reception of ACK that acknowledges new data (“full ACK“):
"deflate" window: cwnd = ssthresh (the value set in step 1) 32

UiO ¢ Faculty of Mathematics and Natural Sciences o B
University of Oslo c

Multiple dropped segments

] * Sender cannot detect loss of multiple
_________ segments from a single window

ACK1 .
1] 2[5 [< n S .
S \ * Insufficient information in DupACKs
1f2(d4 5] A
- * NewReno:
EE E 5 — — stay in FR/FR when partial ACK arrives

after DupACKs
— retransmit single segment
— only full ACK ends process

ACK 1

e |mportant to obtain enough ACKs to

avoid timeout
ACK 1 o)
— Limited transmit: also send new segment

FR/FR for first two DupACKs

Sender Receiver 33

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Selective ACKnowledgements (SACK)

Kind = 6 Length

Left Edge of 1st Block

Eight Edge of 1st Block

Left Edge of nth Block

Eight Edge of nth Block

e Example on NewReno slide: send ACK 1, SACK 3, SACK 5 in response to segment #4

e Better sender reaction possible
— Reno and NewReno can only retransmit a single segment per window
— SACK can retransmit more (RFC 3517 — maintain scoreboard, pipe variable)
— Particularly advantageous when window is large (long fat pipes)

e but: requires receiver code change

e Extension: DSACK informs the sender of duplicate arrivals

34

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Spurious timeouts

e Possible occurrence in e.g. wireless scenarios
(handover): sudden delay spike

e (Can lead to timeout
- slow start
— But: underlying assumption: “pipe empty“ is wrong!
(“spurious timeout”)

— 0Old incoming ACK after timeout should be used to
undo the error

e Several methods proposed
Examples:
— Eifel Algorithm: use timestamps option to check:
timestamp in ACK < time of timeout?
— DSACK: duplicate arrived

— F-RTO: check for ACKs that shouldn't arrive after
Slow Start

121345

1323145

1/203{4s

112/ '8as]

Timeout

120345

Sender Receiver

| Delay spike
begins

35

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Appropriate Byte Counting

e Increasing in Congestion Avoidance mode: common implementation
(e.g. Jan’05 FreeBSD code): cwnd += SMSS*SMSS/cwnd for every ACK
(same as cwnd += 1/cwnd if we count segments)

— Problem:e.g.cwnd=2:2+1/2 +1/(2+1/2)) =2+0.5+0.4=2.9
thus, cannot send a new packet after 1 RTT

— Worse with delayed ACKs (cwnd = 2.5)

— Even worse with ACKs for less than 1 segment (consider 1000 1-byte ACKs)
- too aggressive!

e Solution: Appropriate Byte Counting (ABC)
— Maintain bytes_acked variable; send segment when threshold exceeded
— Works in Congestion Avoidance; but what about Slow Start?

e Here, ABC + delayed ACKs means that the rate increases in 2*SMSS steps

e If a series of ACKs are dropped, this could be a significant burst (“micro-
burstiness®); thus, limit of 2*SMSS per ACK recommended

36

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Maintaining congestion state

« TCP Control Block (TCB): information such as RTO, scoreboard, cwnd, ..

« Related to network path, yet separately stored per TCP connection
— Compare: layering problem of PMTU storage

« TCB interdependence: affects initialization phase
— Temporal sharing: learn from previous connection
(e.g. for consecutive HTTP requests)
— Ensemble sharing: learn from existing connections

here, some information should change -
e.g. cwnd should be cwnd/n,

Application g

n = number of connections; but less *
aggressive than "old" implementation 'UDP e - .Sche:luler
« Congestion Manager TEP - ’T esti
e o w |- Congestion
— One entity in the OS maintains all the TCP controller
— congestion control related state v
— Used by TCP's and UDP based applications IP

— Hard to implement, not really used 37

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

Active Queue Management

e Monitor queue, not only drop upon overflow = more intelligent decisions

— Qavg=(1-Wqg)xQavg + Qinst x Wq
(Qavg = average occupancy, Qinst = instantaneous occupancy,
Wq = weight - hard to tune, determines how aggressive RED behaves)

e Goals: keep average queue low, eliminate phase effects, manage fairness,
("punish" flows that are too aggressive)

— Aggressive flows have more packets in the queue; thus, dropping a random one is
more likely to affect such flows

— Also possible to differentiate traffic via drop function(s)

e Explicit Congestion Notification (ECN): instead of dropping, set a bit

A A
Marking 1 Marking L [S LT R PR
probability probability
max,, MAX)} oo
0 - 0 - >
min,, maX ming, maXy, 2 max,,
Average queue size Average queue size
RED RED in "gentle” mode

38

UiO ¢ Faculty of Mathematics and Natural Sciences

University of Oslo

TCP History

SACK-based
loss recovery

Timestamps,
PAWS,
Slow start + congestion avoidance, | | Window scaling DSACK —
: SWS avoidance/Nagle, Larger initial | NewReno
Basics | | g7 calculation, delayed ACK | [SACK ¢ window
z \ RFC 2883
i | \ LBTO | o7/2000 l
14 4 Ta y
RFC 793 RFC 1122 RFC 1323 RFC 2018 RFC 2988 RFC 3390 RFC 3782
09/1981 10/1989 05/1992 10/1996 11/2000 10/2002 04/2004
RFC 2581 RFC 3042 RFC 3517
v 04/1999 01/2001 04/2003 -
/// V\\
Full specification of RFC 3168 . :
Standards track TCP RFCs that Slow start, 09/2001 Limited transmit |
congestion avoidance,
FR/FR
ECN

influence when a packet is sent
(status: October 2007)

39

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

TCP ...beyond the standard

ch

40

UiO ¢ Faculty of Mathematics and Natural Sciences 'c B

University of Oslo

TCP with High-Speed links

« TCP over “long fat pipes”: large bandwidth*delay product

— long time to reach equilibrium, MD = problematic
— from RFC 3649 (HighSpeed RFC, Experimental):

For example, for a Standard TCP connection with 1500-byte packets and a
100 ms round-trip time, achieving a steady-state throughput of 10 Gbps
would require an average congestion window of 83,333 segments, and a
packet drop rate of at most one congestion event every 5,000,000,000
packets (or equivalently, at most one congestion event every 1 2/3

hours). This 1s widely acknowledged as an unrealistic constraint.
A 2t
bandwidth e
Theoretically, A
utilization bandwidth t /
independent of — .
ca p ac-ity A s A r -
Area:

But: longer Area: 6ct

3ct |

» 41

convergence time . .
time time

UiO ¢ Faculty of Mathematics and Natural Sciences
University of Oslo

Slow convergence animation

Fast link

Slow link

/\/\/\/

42

UiO ¢ Faculty of Mathematics and Natural Sciences °

University of Oslo c

Proposed solutions

« Standards: larger initial window / window scaling option, TCP SACK

« Scalable TCP: increase/decrease functions changed
— cwnd := cwnd + 0.01 for each ack received while not in loss recovery

— cwnd :=0.875 * cwnd on each loss event
(probing times proportional to rtt but not rate)

: e n el —0g(0.875)
Rate (p/RTT) i i Rate (p/RTT) L ! log(1.02)

2X lomoo e E __________ E _______________________ 2% b i.___i ____________________________________
0.875*2x

x 0.875%2x |- MMV WV VLML

x VIt ¥ ¥ Y 1]
Time (RTT] Time (RTT)

Standard Source: http://www.deneholme.net/tom/scalable/ Scalabe

TCP TCP

UiO ¢ Faculty of Mathematics and Natural Sciences o B

University of Oslo c

Proposed solutions /2

Rate Standard TCP recovery time Scalable TCP recovery time
1Mbps 1.7s 2.7s
10Mbps 17s 2.7s
100Mbps 2mins 2.7s
1Gbps 28mins 2.7s
10Gbps 4hrs 43mins 2.7s

 HighSpeed TCP (RFC 3649 includes Scalable TCP discussion):
— response function includes a(cwnd) and b(cwnd), which also depend on loss ratio
— less drastic in high bandwidth environments with little loss only
— Significant step!
— Previously, either TCP-friendly or better-than-TCP; no combinations!

« TCP Westwood+
— different congestion response function (proportional to rate instead of g = 1/2)
— Proven to be stable, tested in real life experiments, available in your Linux

44

UiO ¢ Faculty of Mathematics and Natural Sciences - B

University of Oslo c

Proposed solutions /3

FAST TCP
— Variant based on window and delay
— Delay allows for earlier adaptation (awareness of growing queue)
— Proven to be stable
— Commercially announced + patent protected, by Steven Low's CalTech group

— another delay-based example: TCP Vegas
» Vegas = impractical because less aggressive than standard TCP

BIC, CUBIC

— BIC (Binary InCrease TCP) uses binary search to find the ideal window size:
» when loss occurs, current window = max, new window = min
» check midpoint;
e if noloss = new min, increase; else new window = new max

— CUBIC = BIC++ using cubic function; growth does not depend on RTT

45

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

High-speed TCP reality check

« After major press release (Slashdot: "BIC-TCP 6000 times quicker
than DSL"), BIC became default TCP CC. in Linux in mid-2004

— Later replaced with CUBIC

« Compound-TCP (CTCP) = default TCP CC. in Windows Server 2008
— For testing purposes; disabled by default in standard release

 How do these protocols interact?
— Standards desirable

* Process devised to evaluate proposals in IETF with pre-evaluation in
IRTF Internet Congestion Control Research Group (ICCRG)

— CTCP and CUBIC proposals on the table, but activity stopped

46

UiO ¢ Faculty of Mathematics and Natural Sciences - B
University of Oslo c

TCP over Satellite and PEPs

« Satellites combine several problems
— Long delay
— High capacity
— Wireless (but usually not noisy (for TCP) because of link layer FEC)
— Can be asymmetric (e.g. direct satellite downlink, 56k modem uplink)

 Thus, TCP over satellite is a major research topic
— Transparent improvements ("Performance Enhancing Proxies") common
— Figure: split connection approach: 2a / 2b instead of control loop 1

— Many possibilities - e.g. Snoop TCP: monitor + buffer; in case of loss,
suppress DupACKs and retransmit from local buffer

O

Receiver

47

University of Oslo

Pacing

"Micro burstiness" can lead to
packet drops

Generally, packet gap dictated by
bottleneck link; but incoming
stream at bottleneck can be bursty
(e.g. from slow start)

— Put the "pacing device" (PEP)
close to bottleneck

Pacing is hard at high speeds
(clock granularity)

Various solutions

— e.g. "gap frames" that are later
dropped by a link layer device

— Burst control mechanisms in Linux

UiO ¢ Faculty of Mathematics and Natural Sciences

Sender

Sender

D D Rer

(i) with pacing

48

