
INF3190 – Data Communication University of Oslo

INF3190 – Data Communication
Multimedia Protocols

Carsten Griwodz

Email: griff@ifi.uio.no

INF3190 – Data Communication University of Oslo

Media
Medium: "Thing in the middle“
§  here: means to distribute and present information

Media affect human computer interaction

The mantra of multimedia users
§  Speaking is faster than writing
§  Listening is easier than reading
§  Showing is easier than describing

INF3190 – Data Communication University of Oslo

Dependence of Media

§  Time-independent media
−  Text

−  Graphics

−  Discrete media

§  Time-dependent media
−  Audio

−  Video

−  Animation

−  Multiplayer games

−  Continuous media

§  Interdependant media
−  Multimedia

§  "Continuous" refers to the

user’s impression of the
data, not necessarily to its
representation

§  Combined video and audio is
multimedia - relations must
be specified

INF3190 – Data Communication University of Oslo

Continuous Media

Fundamental
characteristics

§  Typically delay sensitive

§  Often loss tolerant:
infrequent losses cause
minor glitches that can be
concealed

§  Antithesis of discrete media
(programs, banking info,
etc.), which are loss
intolerant but delay tolerant

Classes of MM
applications

§  Streaming stored audio and
video

§  Streaming live audio and
video

§  Interactive real-time audio
and video

§  Interactive real-time event-
driven applications

INF3190 – Data Communication University of Oslo

Multimedia in networks

Streaming stored MM
§  Clients request audio/video files

from servers and pipeline
reception over the network and
display

§  Interactive: user can control
operation (pause, resume, fast
forward, rewind, etc.)

§  Delay: from client request until
display start can be 1 to 10
seconds

Unidirectional Real-Time
§  similar to existing TV and radio

stations, but delivery over the
Internet

§  Non-interactive, just listen/view

Interactive Real-Time
Phone or video conference

§  More stringent delay requirement
than Streaming & Unidirectional
because of real-time nature

§  Audio: < 150 msec good,
 < 400 msec acceptable

§  Video: < 150 msec acceptable
[Note: higher delays are feasible, but
usage patterns change (!)]

Games (but also high-speed trading)

§  Role playing games: < 500 msec

§  First person shooter (FPS) games:
< 100 msec (may be too high)

§  Cloud gaming FPS: < 40 msec
(estimated)

INF3190 – Data Communication University of Oslo

Multimedia in networks

Streaming stored MM
§  Clients request audio/video files

from servers and pipeline
reception over the network and
display

§  Interactive: user can control
operation (similar to VCR: pause,
resume, fast forward, rewind, etc.)

§  Delay: from client request until
display start can be 1 to 10
seconds

Unidirectional Real-Time
§  similar to existing TV and radio

stations, but delivery over the
Internet

§  Non-interactive, just listen/view

Interactive Real-Time
Phone or video conference

§  More stringent delay requirement
than Streaming & Unidirectional
because of real-time nature

§  Audio: < 150 msec good,
 < 400 msec acceptable

§  Video: < 150 msec acceptable
[Note: higher delays are feasible, but
usage patterns change (!)]

Games (but also high-speed trading)

§  Role playing games: < 500 msec

§  First person shooter (FPS) games:
< 100 msec (may be too high)

§  Cloud gaming FPS: < 40 msec
(estimated)

Viewers$with$beWer$connecQvity$have$less$
paQenceforstartup$delay$and$abandon$sooner.$

Slides by Prof. Ramesh Sitaraman, UMass, Amherst (shown with permission)
“Video Stream Quality Impacts Viewer Behavior: Inferring Causality using Quasi-Experimental Designs”, S.
S. Krishnan and R. Sitaraman, ACM Internet Measurement Conference (IMC), Boston, MA, Nov 2012

INF3190 – Data Communication University of Oslo

Quality of service - QoS
A term that is used in all kinds of contexts.

Be careful what it means when you hear it.

In this lecture: 3 classical
parameters of network QoS:

§  end-to-end delay

§  packet loss

§  jitter

end-to-end delay

§  transmission time

§  Σ propagation time on link l�
sum of propagation times over all links l

§  Σ queueing time on router r �
sum of queueing times at all routers’
queues r

packet loss

§  probability of a packet to get lost

§  1 – (TT (P(queue at r not full)))�
1 – product of probabilities for all r that
queue at r is not full

jitter

§  variance of end-to-end delay

§  estimated for several packets

§  reasons
−  link layer retransmissions

−  queue length variation

INF3190 – Data Communication University of Oslo

Multimedia Networking

Internet without network QoS support
§  Internet applications must cope with networking problems

−  Application itself or middleware

−  "Cope with" means either "adapt to" or "don’t care about“

−  "Adapt to" must deal with TCP-like service variations

−  "Don’t care about" approach is considered "unfair“

−  "Don’t care about" approach cannot work with TCP

Internet with network QoS support
§  Application must specify their needs

§  Internet infrastructure must change – negotiation of QoS parameters

§  Routers need more features

−  Keep QoS-related information

−  Identify packets as QoS-worthy or not

−  Treat packets differently keep routing consistent

•  approach seemed “dead” for many
years

•  revival with recent Software Defined
Networking (SDN) idea

•  not yet mainstream again

INF3190 – Data Communication University of Oslo

Non-QoS
Multimedia Networking

Basics

INF3190 – Data Communication University of Oslo

Making the best of best effort

Mitigating the impact of “best-effort” in the Internet

Use UDP to avoid TCP and its
slow-start phase

Buffer content at client and
control playback to remedy jitter

We can timestamp packets, so
that receiver knows when the
packets should be played back

Adapt compression level to
available bandwidth

We can send redundant
packets to mitigate the effects
of packet loss

... but TCP is changing (removing
slow start, larger initial
windows)

... but not for event-based
multimedia (games)

... but applications may ignore
this and look for timestamps in
content

... but not for event-based
multimedia

... but retransmission and TCP
may be more efficient

INF3190 – Data Communication University of Oslo

Streaming over best-effort networks: audio conferencing

Packet loss Packet delay Jitter

a “talk spurt”

INF3190 – Data Communication University of Oslo

end-to-end delay

§  end-to-end delay can seriously
hinder interactivity; the smaller the
better

packet loss

§  UDP segment is encapsulated in IP
datagram

§  datagram may overflow a router
queue

§  TCP can eliminate loss, but
−  retransmissions add delay

−  TCP congestion control limits
transmission rate

§  redundant packets can help

delay jitter

§  consider two consecutive packets
in talk spurt

§  initial spacing is 20 msec, but
spacing at receiver can be more
or less than 20 msec

removing jitter

§  sequence numbers

§  timestamps

§  delaying playout

Streaming over best-effort networks: audio conferencing

INF3190 – Data Communication University of Oslo

Receiver attempts to playout
each chunk at exactly q msecs
after the chunk is generated
§  If chunk is time stamped t, receiver

plays out chunk at t+q
§  If chunk arrives after time t+q,

receiver discards it

Sequence numbers not
necessary

Strategy allows for lost packets

Tradeoff for q:
§  large q: less packet drop/loss

(better audio quality)

§  small q: better interactive
experience

Jitter compensation

INF3190 – Data Communication University of Oslo

Jitter compensation

packets

time

packets
generated

packets
received

loss

r
p p'

playout schedule
p - r

playout schedule
p' - r

Sender generates packets every 20 msec during talk spurt

First packet received at time r
First playout schedule: begins at p
Second playout schedule: begins at p’

INF3190 – Data Communication University of Oslo

Jitter compensation: Adaptive playout delay
Estimate network delay and adjust playout delay at the beginning of each talk spurt

Silent periods are compressed and elongated as needed

Chunks still played out every 20 msec during talk spurt

Dynamic estimate of average delay at receiver:

where u is a fixed constant (e.g., u = .01)

packet th receivingafter delay network average of estimate
packet thfor delay network

receiverat played is packet timethe
receiverby received is packet timethe

packet th theof timestamp

id
itr

ip
ir
it

i

ii

i

i

i

=

=−

=

=

=

)()1(1 iiii trudud −+−= −

INF3190 – Data Communication University of Oslo

Jitter compensation: Adaptive playout delay

Also useful to estimate the average deviation of the delay, vi :

||)1(1 iiiii dtruvuv −−+−= −

The estimates di and vi are calculated for every received packet, although they
are only used at the beginning of a talk spurt

For first packet in talk spurt, playout time is:

iiii Kvdtp ++=

where K is a positive constant

qi = pi − ti = di +Kvi

application chooses the
safety margin Kvi

Playout delay is

for this and all other packets in this talk spurt

Deviation: How strongly
does the queue length change?

INF3190 – Data Communication University of Oslo

Jitter compensation: Adaptive playout delay

How to determine whether a packet is the first in a
talkspurt?

§  If there were never loss, receiver could simply look at the
successive time stamps
− Difference of successive stamps > 20 msec, talk spurt begins

§  But because loss is possible, receiver must look at both
time stamps and sequence numbers
− Difference of successive stamps > 20 msec and sequence

numbers without gaps, talk spurt begins

INF3190 – Data Communication University of Oslo

Loss compensation

forward error correction (FEC): simple
scheme

§  for every group of n chunks create
a redundant chunk by exclusive OR-
ing the n original chunks

§  send out n+1 chunks, increasing
the bandwidth by factor 1/n.

§  can reconstruct the original n
chunks if there is at most one lost
chunk from the n+1 chunks

§  Playout delay needs to be fixed to
the time to receive all n+1 packets

§  Tradeoff:
−  increase n, less bandwidth waste

−  increase n, longer playout delay

−  increase n, higher probability that
2 or more chunks will be lost

Basic assumption

§  we have very little time to loose in audio conferencing

§  every packet carries dozens of samples

§  adding several packets delay for complex schemes is not viable

INF3190 – Data Communication University of Oslo

Loss compensation

2nd FEC scheme

•  “piggyback lower
quality stream”

•  send lower resolution
audio stream as the
redundant information

•  for example, nominal
stream PCM at 64 kbps
and redundant stream
GSM at 13 kbps.

•  Sender creates packet by
taking the nth chunk from
nominal stream and appending
to it the (n-1)st chunk from
redundant stream.

•  Whenever there is non-consecutive loss, the
receiver can conceal the loss.

•  Only two packets need to be received before
playback

•  Can also append (n-1)st and (n-2)nd low-bit rate
chunk

INF3190 – Data Communication University of Oslo

Loss compensation

Interleaving

§  chunks are broken
up into smaller units

§  for example, 4
5 msec units per
chunk

§  interleave the chunks as shown
in diagram

§  packet now contains small
units from different chunks §  Reassemble chunks at receiver

§  if one packet is lost, still have
most of every chunk

INF3190 – Data Communication University of Oslo

Loss compensation

Receiver-based repair of damaged
audio streams

§  produce a replacement for a
lost packet that is similar to the
original

§  can give good performance for
low loss rates and small
packets (4-40 msec)

§  simplest: repetition

§  more complicated:
interpolation

INF3190 – Data Communication University of Oslo

Non-QoS
Multimedia Networking

Application Layer Framing &

Integrated Layer Processing

INF3190 – Data Communication University of Oslo

Multimedia Content Processing
§  Problem: optimize transport of multimedia content

§  It is application-dependent and specific
−  Application-layer processing has high overhead
−  Application processes data as it arrives from the network

§  Impact of lost and mis-ordered data
−  Transport layer tries to recover from error

•  Prevents delivery of data to application
•  Prevents immediate processing as data arrives
•  Application must stop processing

−  Transport layer ignores error
•  Application experiences processing failures
•  Application must stop processing

INF3190 – Data Communication University of Oslo

Application Level Framing
[Clark/Tennenhouse 1990]

Give application more control
§  Application understands meaning of data

§  Application should have the option of dealing with a lost data
−  Reconstitute the lost data (recompute/buffer by applications)

−  Ignore the lost data

Application level framing
§  Application breaks the data into suitable aggregates
−  Application Data Units (ADUs)

§  Lower layers preserve the ADU frame boundaries

§  ADU takes place of packet as the unit of manipulation

INF3190 – Data Communication University of Oslo

ALF: Application Data Units

ADUs become the unit of error recovery
§  Should be upper bounded
−  loss of large ADUs is more difficult to fix

§  Lower bounded
−  application semantics define smallest sensible unit
−  small ADUs mean larger protocol overhead

§  Segmentation/reassembly
−  try to avoid
−  multi-TPDU ADU is wasted because one packet is lost

ADU “name”
§  Sender computes a name for each ADU (e.g. sequence number)

§  Receiver uses name to understand its place in the sequence of
ADUs

§  Receiver can process ADUs out of order

INF3190 – Data Communication University of Oslo

Integrated Layer Processing
Layered engineering is not fundamental
§  Assignment of functions to layers in OSI

is not following fundamental principles

§  Specific application may work better with
different layering of functions or no
layering at all

§  Sequential processing through each
layer

à Not an efficient engineering

à Processing all functions at once
saves computing power

Integrated Layer Processing
§  Vertical integration

§  Performing all the manipulation steps in
one or two integrated processing loops,
instead of serially

INF3190 – Data Communication University of Oslo

Integrated Layer Processing
§  Ordering constraint
−  Data manipulation can only be done after specific control steps
−  Data manipulation can only be done once the data unit is in order
−  Layered multiplexing (extract the data before it can be demultiplexed)

§  Minimize inter-layer ordering constraints imposed on
implementors
−  Implementors know best which data must be ordered

§  Drawback: complex design due to fully customized implementation

INF3190 – Data Communication University of Oslo

Non-QoS
Multimedia Networking

RTP – Real-Time Transfer Protocol

INF3190 – Data Communication University of Oslo

Real-time Transport Protocol (RTP)
§  Real-time Transport Protocol (RTP)
−  RFC 3550 (replaces RFC 1889)

−  Designed for requirements of real-time data transport
−  NOT real-time
−  NOT a transport protocol

§  Two Components
−  Real-Time Transfer Protocol (RTP)
−  RTP Control Protocol (RTCP)

§  Provides end-to-end transport functions
−  Scalable in multicast scenarios
−  Media independent
−  Mixer and translator support
−  RTCP for QoS feedback and session information

INF3190 – Data Communication University of Oslo

Real-time Transport Protocol (RTP)

§  No premise on underlying
resources
−  layered above transport protocol
−  no reservation / guarantees

§  Integrated with applications

§  RTP follows principles of

−  Application Level Framing and

−  Integrated Layer Processing

Application

media
encapsulation

RTP RTCP

TCP

ST-2

ATM

AAL5
ATM Ethernet

IPv4/6

UDP

INF3190 – Data Communication University of Oslo

WebRTC	/	rtcweb	

figure from http://petersalerno.com/webrtc-101/

STUN (Session Traversal
Utilities for NAT)
session travels for NAT
negotiates NAT traversal for
streaming applications

TURN (traversal using relays
around NAT)
relays data stream directly
when STUN negotiations fails

ICE (interactive connectivity
establishment)
port negotiation for RTP

figure from http://petersalerno.com/webrtc-101/

In the last 5 years,

RTP was nearly killed by HTTP Adaptive Streaming (HAS)

but Google brought it back

WebRTC

§  free, open project

§  adopted by Google, later Mozilla Foundation, Opera, ...

§  Real-Time Communications (RTC) for browsers and mobile devices through
HTML5 and JavaScript APIs

rtcweb

§  Real Time Collaboration on the World Wide Web

§  effort standardize infrastructure for real-time communication in Web browsers

§  IETF: formats and protocols

§  W3C: APIs for control

INF3190 – Data Communication University of Oslo

RTP
§  RTP services are
−  sequencing
−  synchronization

−  payload identification

−  QoS feedback and session information

§  RTP supports
−  multicast in a scalable way

−  generic real-time media and changing codecs on the fly
−  mixers and translators to adapt to bandwidth limitations

−  encryption

§  RTP is not designed for
−  reliable delivery

−  QoS provision or reservation

INF3190 – Data Communication University of Oslo

RTP Functions

§  RTP with RTCP provides
−  support for transmission of real-time data

−  over multicast or unicast network services

§  Functional basis for this
−  Loss detection – sequence numbering

−  Determination of media encoding

−  Synchronization – timing

−  Framing - “guidelines” in payload format definitions

−  Encryption

−  Unicast and multicast support

−  Support for stream “translation” and “mixing” (SSRC; CSRC)

INF3190 – Data Communication University of Oslo

RTP Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | SEQ |
 +-+
 | TST |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |

+-+
| header extension |

 +-+
| payload (audio, video, ...) |
| |
+-+

Typical IETF RFC bit-exact representation

a byte

a longword (32 bit)

INF3190 – Data Communication University of Oslo

RTP Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | SEQ |
 +-+
 | TST |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |

+-+
| header extension |

 +-+
| payload (audio, video, ...) |
| |
+-+

4 bit CSRC count, indicates the number of
contributing sources in the header

Marker bit
Meaning depends on payload profile,
e.g. frame boundary

Version number,
Always 2

Padding indicator bit
if set, number of padding bytes is in
last byte of payload

Header extension bit
True if header extension is present

7 bit payload type
Allows identification of the
payload’s content type

INF3190 – Data Communication University of Oslo

RTP Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | SEQ |
 +-+
 | TST |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |

+-+
| header extension |

 +-+
| payload (audio, video, ...) |
| |
+-+

16 bit sequence number

Several 32 bit CSRC
Contribution source identifier, the number is indicated

by CC
A mixer copies the original sources’ SSRCs here

32 bit timestamp

32 bit SSRC
Synchronization source identifier, a random number

identifying the sender

Header extension
multiples of 32 bit

INF3190 – Data Communication University of Oslo

RTP Architecture Concepts
Integrated Layer Processing
§  Typical for layered processing
−  Data units sequentially processed by each layer

§  Integrated layer processing
−  Adjacent layers tightly coupled

§  Therefore, RTP is not complete by itself: requires application-layer functionality/
information in header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | SEQ |
 +-+
 | TST |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |

+-+
| header extension |

 +-+
| payload (audio, video, ...) |
| |
+-+

16 bit sequence number 32 bit timestamp

7 bit payload type
Allows identification of the
payload’s content type

Marker bit
Meaning depends on payload profile,
e.g. frame boundary

INF3190 – Data Communication University of Oslo

RTP Packet Format
§  Relatively long header (>40 bytes)
−  overhead carrying possibly small payload
−  header compression
−  other means to reduce bandwidth (e.g. silence suppression)

§  No length field
−  Exactly one RTP packet carried in UDP packet
−  When you use RTP with TCP or SCTP or RTSP or ATM AAL5:

•  do-it-yourself packaging

§  Header extensions for payload specific fields possible
−  Specific codecs
−  Error recovery mechanisms

INF3190 – Data Communication University of Oslo

RTP Profile (RFC 1890)

§  Set of standard encodings and payload types
−  Audio: e.g. PCM-u, GSM, G.721

(for WebRTC G.711 and Opus are mandatory)

−  Video: e.g. JPEG, H.261
 (for WebRTC H.264 and VP8 are mandatory)

§  Number of samples or frames in RTP packet
−  Sample-based audio: no limit on number of samples

−  Frame-based audio: several frames in RTP packet allowed

§  Clock rate for timestamp
−  Packetized audio: default packetization interval 20 ms

−  Video: normally 90 kHz, other rates possible

INF3190 – Data Communication University of Oslo

RTP Profiles
§  Payload type identification
−  RTP provides services needed for generic A/V transport

•  Particular codecs with additional requirements
•  Payload formats defined for each codec: syntax and semantic of RTP payload

−  Payload types
•  Static: RTP AV profile document
•  Dynamic: agreement on per-session basis

§  Profiles and Payload Formats in RTP Framework

RTP / RTCP

AV Profile

Additional
Profiles

Payload
Formats

Dynamic Payload Types

PT mapping outside RTP
(e.g. SDP)

INF3190 – Data Communication University of Oslo

RTP Profile for MPEG-1 Video Payload

Picture headers (frame headers) GOP header

Note: MPEG-4 profile for RTP exists, but is much more complex
due to H.264’s 16-way dependencies.

INF3190 – Data Communication University of Oslo

RTP Profile for MPEG-1 Video Payload
§  Fragmentation rules
−  Video sequence header

•  if present, starts at the beginning of an RTP packet

−  GOP sequence header
•  Either at beginning of RTP packet

•  Or following video sequence header

−  Picture header
•  Either at beginning of RTP packet

•  Following GOP header

−  No header can span packets

§  Marker Bit
−  Set to 1 if packet is end of picture

INF3190 – Data Communication University of Oslo

RTP Profile for MPEG-1 Video Payload

§  MPEG-1 Video specific payload
header

§  TR
−  Temporal reference
−  The same number for all packets of

one frame
−  For ordering inside an MPEG GOP

§  MBZ
−  Must be zero

§  S
−  1 if sequence header is in this packet

§  B
−  1 if payload starts with new slice

§  E
−  1 if last byte of payload is end of slice

§  P
−  3 bits that indicate picture type

(I, P, B or D)

§  FBV, BFC, FFV, FFC
−  Indicate how a P or B frame is related

to other I and P frames
(copied from last frame header)

MPEG Video Profile
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MBZ | TR |MBZ|S|B|E| P | | BFC | | FFC |
 +-+
 FBV FFV

INF3190 – Data Communication University of Oslo

RTP-enabled Quality Adaptation

§  Component interoperations for control of quality

§  Evaluation of sender and receiver reports

§  Modification of encoding schemes and parameters

§  Adaptation of transmission rates

§  Hook for possible retransmissions (outside RTP)

Application Application

UDP UDP

RTP RTCP RTCP RTP

Encoding Encoding Decoding Decoding

one-way example

INF3190 – Data Communication University of Oslo

RTP Control Protocol (RTCP)
Companion protocol to RTP (tight integration with RTP)
§  Monitoring
−  of QoS
−  of application performance

§  Feedback to members of a group about delivery quality, loss, etc.
−  Sources may adjust data rate
−  Receivers can determine if QoS problems are local or network-wide

§  Loose session control
−  Convey information about participants
−  Convey information about session relationships

§  Automatic adjustment to overhead
−  report frequency based on participant count

Typically, “RTP does ...” means “RTP with RTCP does ...”

INF3190 – Data Communication University of Oslo

RTCP Packets

§  Several RTCP packets carried in one compound packet

§  RTCP Packet Structure
−  SR Sender Report (statistics from active senders:

 bytes sent -> estimate rate)

−  RR Receiver Report (statistics from receivers)

−  SDES Source Descriptions (sources as “chunks” with
 several items like canonical names, email, location,...)

−  BYE explicit leave

−  APP extensions, application specific

R SR / RR BYESDES APP

Compound (UDP) Packet

INF3190 – Data Communication University of Oslo

RTP Mixer

Mixer idea
§  If everybody in a large conference talks at the same time, understand it anyway

impossible

§  Implement in conference bridges

§  Reduce bandwidth in large conferences by mixing several speakers into one
stream

Mixer tasks
§  Reconstruct constant spacing generated by sender (jitter reduction)

§  Translate audio encoding to a lower-bandwidth

§  Mix reconstructed audio streams into a single stream

§  Resynchronize incoming audio packets
−  New synchronization source value (SSRC) stored in packet

−  Incoming SSRCs are copied into the contributing synchronization source list (CSRC)

§  Forward the mixed packet stream

INF3190 – Data Communication University of Oslo

RTP Translator

Translation between protocols

§  e.g., between IP and ST-2

Translation between encoding of data

§  e.g. H.265 to H.263

§  for reduction of bandwidth without adapting sources

No resynchronization in translators

§  SSRC and CSRC remain unchanged

ATM UDP

Protocol
Translator

MPEG
Source

MPEG
Sink

H.263
Sink

Profile
Translator

INF3190 – Data Communication University of Oslo

RTP Identifiers

S1 S3

S2 S4

M1 M2 T1 R1

S1:10

S2:1

M1:33 (10,1) M1:33 (10,1)

S4:13

S4:13

S3:19

M2:17 (19,13,33)

SSRC chosen by sender S1

Translators keep SSRCs and CSRCs

SSRC chosen by mixer M1

CSRCs from mixed sources S1 and S2

CSRCs contain previous SSRCs, but not previous CSRCs

INF3190 – Data Communication University of Oslo

Protocol Development

§  Changes and extensions to RTP
− Scalability to very large multicast groups

− Congestion Control

− Algorithms to calculate RTCP packet rate

− Several profile and payload formats

− Efficient packetization of Audio / Video

− Loss / error recovery

INF3190 – Data Communication University of Oslo

Co-existing with TCP

Adapt audiovisual quality to your
bandwidth share

INF3190 – Data Communication University of Oslo

Application Application

RTP Quality Adaptation

Application level framing idea
−  application knows best how to adapt

−  protocol (i.e. RTP) provides information about the network

Application can
−  evaluate sender and receiver reports

−  modify encoding schemes and parameters

−  adapt its transmission rates

UDP UDP

RTP RTCP RTCP RTP

Encoding Encoding Decoding Decoding

INF3190 – Data Communication University of Oslo

Loss-Delay Adjustment Algorithm

§  LDA
− An algorithm to stream with RTP in a TCP-friendly way

− use RTCP receiver reports (RR)
•  RTCP sends RR periodically

Application Application

UDP UDP

RTP RTCP RTCP RTP

Encoding Encoding Decoding Decoding

“The Loss-Delay Based Adjustment Algorithm: A TCP-
Friendly Adaptation Scheme ”,
D. Sisalem, H. Schulzrinne, NOSSDAV 1998

INF3190 – Data Communication University of Oslo

Sender

Loss-Delay Adjustment Algorithm

§  LDA
− An algorithm to stream with RTP in a TCP-friendly way

− use RTCP receiver reports (RR)
•  RTCP sends RR periodically

− works like TCP's AIMD
•  but RRs are rare

§  max 5% of RTP BW, max ¾ of this RR, equally shared among receivers

•  can't adapt every time

− step one: estimate the bottleneck bandwidth b

− use packet size and gap sizes
Receiver

b = 1
n

packetsize(i)
time(i+1)− time(i)i=1

n

∑

INF3190 – Data Communication University of Oslo

Loss-Delay Adjustment Algorithm

§  LDA
− An algorithm to stream with RTP in a TCP-friendly way

− use RTCP receiver reports (RR)
•  RTCP sends RR periodically

− works like TCP's AIMD
•  but RRs are rare

•  can't adapt every time

− no loss:
•  use "AIR" – additive increase rate

•  but never more than 1 packet/RTT

−  loss:
•  RTCP counts losses,

l is fraction of lost packets

•  guess 3 of those losses in one RTT

rt+1 = rt *(1− l *3)

AIRt = AIR* 1−
rt
b

"

#
$

%

&
'

rt+1 = rt + AIRt

current rate

new rate

