
INF3190
A critical look at the Internet /
alternative network architectures

Michael Welzl

What’s the problem?
•  The Internet works!

•  Could be faster
•  Could be safer
•  Could be more reliable
•  (Internet): could be simpler / easier to manage

I work, too!

Reliable?

•  “The Internet started as a military network
designed to survive a nuclear attack”
–  You can find this in lists of “Internet myths”,

next to “Al Gore invented the Internet”

•  The Internet (then ARPANET) was the first
large packet network
–  As such, it redirects in case of failure

•  But how reliable is packet forwarding?

Path failures

•  Internet routing: based on informing neighbours
–  Reason: scalability – no computer can store all

information about all links on the Internet

•  Common default value for these updates:
30 seconds

•  Packets are dropped until routing reconverges

Link down! Link down! Link down!

!

Route around congestion

•  The Internet does not do this.
–  No it really doesn’t. This is another myth.

•  Explanation
–  Path A congested
è Take Path B.

–  Path B congested
è Take Path A.

–  Dividing traffic well:
must know A and B
è Scalability problem

I have seen
it here.

More problems with routing

•  Internet routing / forwarding is hierarchical
1)  è Oslo
2)  è Blindern

•  The Internet grows fast
–  Number of “Cities” (Autonomous Systems (AS))

grows roughly exponentially
–  Problem for memory in core routers

•  Old routers may cease to work

–  Larger routing tables è slower convergence

Another problem with Internet growth

•  We’re running out of addresses!

•  Internet addresses are hierarchical
(Norway è Oslo è Street è house number)
–  The last top-level address was given out on 3.2.2011

•  Solution: update address format (more bits)
–  IPv6 (replacing the old “Internet Protocol”, IPv4)
–  First standardized 1998
–  Still a cool new thing. Do you use it?

Another problem with IP addresses

•  I moved from Bogstadveien to Thorvald Meyers Gate
–  I registered to have mail forwarded for a month for free

(postens flyttehjelp)
–  This gives me time to inform everyone about my new address

(posten offers an easy service to do that)
–  After this month, I have no more business with the old address

•  Imagine a world without addresses
–  But where, instead, my name is Michael Bogstadveien Welzl
–  Moving: use “postens flyttehjelp” forever!
–  Imaging changing from world 1 to world 2 or vice versa… easy?

Multihoming (slides by John Day, adapted)

•  Internet addresses name the interfaces. Let’s see what this does
•  Assume: A wants to send a PDU to H, so it goes to DNS and looks

up the address and gets 9. Now these nodes have been running a
routing algorithm and the route is A, B, D, F, H.

•  So what do the router tables look like? (next slide)

G

A

B

C E

D

F

H

1

2
6

5

8

3 14

18
17 16

15

19

21

13

20
9

11

10

12

4

7

22

A PDU is sent with
destination address 9 from A

•  A consults its Forwarding Table and sends it on outgoing address 1, next
hop 22.

•  B consults its FT and sends it on outgoing address 7, next hop 15.
•  D consults its FT and sends it on outgoing address 14, next hop 20.
•  F consults its FT and sends it on outgoing address 11, next hop 9.
•  Now another PDU is sent from A to address 9, just after it leaves, the

interface goes down.

G

A

B

C E

D

F

H

1

2
6

5

8

3 14

18
17 16

15

19

21

13

20
9

11

10

12

4

7

22

What happens when link F - H fails?

•  What happens if the link with address 9 goes down?
–  In a few 10s of ms, a routing update is done, and Addresses 9 and 11 are

eliminated from the forwarding table.
–  After several seconds and many retries, A determines that Address 9 is not

responding,
–  All TCP connections with Address 9 are terminated.
–  All PDUs enroute to 9 are lost.
–  Hopefully, there is a second DNS entry that lists H as also at Address 10.
–  Connections are re-established using address 10. Several seconds have

elapsed.

G

A

B

C E

D

F

H

1

2
6

5

8

3 14

18
17 16

15

19

21

13

20
9

11

10

12

4

7 22

Now: node addresses

•  Since we want to emphasize that we are naming nodes, lets just use
the letters for addresses. But we still have to say which wire to send
them on.

–  There are two cases in general:
•  Point-to-point Wire: No need for lower layer addresses use local identifiers.
•  Multi-access wired or wireless: Here we need addresses, use MAC addresses

–  We have only wires, so lets assign small integers as the local interface
identifiers.

•  Now lets say that A wants to send a PDU to H, so it goes to DNS and
looks up the address and gets 9. Now these nodes have been running
a routing algorithm and the route is A, B, D, F, H.

•  So what do the router tables look like? (see next slide)

G

A

B

C E

D

F

H
1

2

3

1

2

1

3

4

1
2

3

1
2

3

1 2

3

1

1

2

2
2

Sending a PDU from A to H

•  A has a PDU addressed to H:
–  A consults its Forwarding Table and sends the PDU on interface 2 to B.
–  B consults its Forwarding Table and sends the PDU on interface 2 to D.
–  D consults its Forwarding Table and sends the PDU on interface 2 to F.
–  F consults its Forwarding Table and sends the PDU on interface 2 to H.

G

A

B

C E

D

F

H1

2

3

1

2

1

3

4

1
2

3

1
2

3

1 2

3

1

1

2

2
2

•  What happens if just after the PDU is sent the Link from F to H fails?
–  In a few 10s of ms, a routing update is done, and a new Routing Table is generated.
–  The PDU gets to D after the routing update has concluded and is delivered to H as if

nothing happened.
–  PDUs that might have been between B, D, and F might get re-routed. Only PDUs on

the wire from F to H would be lost.

G

A

B

C E

D

F

H1

2

3

1

2

1

3

4

1
2

3

1
2

3

1 2

3

1

1

2

2
2

What happens when link F - H fails?

The new Internet solution to this: MPTCP

•  A and H initially tell each other about all their addresses
(A: 1, 2; H: 9, 10)

•  MPTCP subflows are established; how many, depends on the path
manager configuration

–  E.g. fullmesh: 4 subflows (1-9, 1-10, 2-9, 2-10)
–  Then, normally: use all of them (schedule traffic, e.g. round-robin or preferring

least-RTT path until cwnd full; “cautious” congestion control – be at most as
aggressive as 1 TCP across a common bottleneck)

•  F-H link goes down: one subflow becomes unavailable, no TCP
failure for application

•  This is done e.g. by iPhones since iOS 7:
https://support.apple.com/en-us/HT201373

G

A

B

C E

D

F

H

1

2
6

5

8

3 14

18
17 16

15

19

21

13

20
9

11

10

12

4

7

22

Keeping up with growing speed
•  TCP (Transmission Control Protocol):

–  Linear increase doesn’t scale well with capacity
–  Short flows often terminate in Slow Start; when capacity is large,

limitation is RTT; keeping it low becomes key!
–  Many flows compete for capacity; no coordination, even when

they share bottlenecks... but the diversity of capacities grows...

Slow link

Fast link

Why is security so hard?

•  There is no “best layer”
–  e.g. authenticate user or IP address? each has value

•  A lot of hard decisions for the app programmer

NEAT 21

There have been a number of efforts to develop middleware that can supplement UDP/TCP’s basic services.
Examples include those noted in section 1.3 along with BEEP, ACE, Qsockets, etc.; [17] provides a good
summary of the state of the art in this area. socket.io15 allows real-time applications to operate over different
transport protocols in a uniform way, as an application-layer library in JavaScript. However, it limits
communication to TCP and UDP, and it explicitly binds applications to one of these protocols via the type of
socket created, which is exactly what NEAT intends to fix. Further down in the protocol stack, the oft cited
“shim-layer” by Bickhart [1] and the “withsctp” command that is available as a part of the Linux Kernel
SCTP implementation LKSCTP provide a resilience improvement via SCTP’s multi-homing, but no
performance gain.

The above work provides incoherent fragmented solutions that are not sufficiently composable for many
problems. As an example native SCTP establishment must be serialized with a security layer (e.g. TLS). This
interaction has low performance - but to date the existing alternatives are rollups of one possible solution
space (e.g. QUIC) without providing separable building blocks for applications with different needs.

A more encompassing architecture has been explained by NEAT’s technical manager [29], with other
examples of this type of solution including [4], [12] and [25]. Although these provide general directions for a
possible solution to the “vicious circle”, to date no concrete solutions have been built. In contrast, NEAT will
create an open source transport system and deploy it in large-scale testbeds, including using the Firefox pre-
release user base and telemetry back end to gather anonymised performance measurements of NEAT
implementations.

2) Today’s reality

The static binding between applications and TCP and UDP via today’s socket interface has hard-coded these
two protocols in the interior network infrastructure – the transport layer has become ossified, and the
Internet “only just works” [10]. Designers of protocols like MPTCP have to jump through many hoops to
make their protocol operate, derailing their time and energy from the actual task at hand – the transport
development that should yield a benefit for applications and their users. At the same time, the job of
application programmers gets harder and harder; as an example, Table 1 shows some layering choices when
using IETF-standardized security mechanisms. Clearly, “built-in security and privacy” is not easy to
achieve, but handing over these choices to the NEAT transport system based on the security requirements of
the application can make the programming job significantly easier, thereby motivating programmers to make
more and better use of security.

Table 1: Some layering choices to incorporate security. Note: (D)TLS is a transport security method (could also use
TCPcrypt); IPSec is either EH or AH negotiated, doubling the number of choices related to IPSec.

Transport Service Example Protocol Stacks

Reliable Stream TLS/TCP, TCP/IPSec, TLS/TCP/IPSec

Message Stream DTLS/SCTP, SCTP/IPSec, DTLS/SCTP/IPSec, SCTP/DTLS/UDP/IP,
DTLS/SCTP/DTLS/UDP/IP, SCTP/DTLS/UDP/IPSec

Datagram
DTLS/UDP, UDP/ IPSec, DTLS/UDP/ IPSec, DTLS/DCCP, DCCP/ IPSec,
DTLS/DCCP/ IPSec, DCCP/UDP, DTLS/DCCP/UDP, DCCP/UDP/ IPSec,
DTLS/DCCP/IPSec/UDP

Error-Tolerant DTLS/UDPL, UDPL/IPSec, DTLS/UDPL/IPSec

Today it is widely known that IP addresses function as both locator and identifier, and many proposals for
fixing this semantic overload have been made over the last decade(s). However, still many applications are
dealing with IP addresses directly. By allowing to address hosts only by a name and maintaining a transport
abstraction that does not depend on the IP address, NEAT enables generalised mobility, where
communication is maintained even if an IP address changes, in a way that is transparent to applications.

15 http://socket.io

Conclusion on Internet criticism

•  A lot of work needed to make the Internet
–  Faster
–  More reliable
–  Survive J while remaining affordable

•  And this was only scratching the surface…

Alternative Network Architectures

“Alternative”? What’s the point?

•  Alternative architecture X can be overlay,
underlay, or used on a part of a path

–  X-over-IP
–  IP-over-X
–  IP – translate – X – translate – IP
–  Endpoint: X – translate – IP
–  Endpoint: IP – translate – X

•  Note: a lot of this is happening with IPv6

Software-Defined Networking (SDN)

•  Potential as enabling technology for many ideas

•  Decoupling of forwarding plane from control
plane; enables efficient hardware

•  Centralized controller instructs switches on what
to do with traffic via an open interface (best
known: OpenFlow)

•  Makes network easier configure / manage

Network Functions Virtualization (NFV)

•  Today, there are special boxes for e.g. NAT,
firewalling, DNS, caching, etc.

•  NFV envisions generic boxes where “Virtualized
Network Functions” (VNFs) – NAT, firewalling,
DNS, caching, etc. – can be installed

•  Somehow related to SDN but different focus

Example “new architecture” #1: ICN

•  Criticism: Internet establishes circuits (telephone
model), does not match usage (WWW is not
telephony, browser cares about content, not a
physical server)

•  Information-Centric Networking (ICN)
–  Also: Content-Centric Networking (CCN),

Named Data Networking (NDN)

ICN: pub/sub as basic primitive

•  Publish: advertise content; Subscribe: request content

•  Decoupling in time & space: publisher, subscriber don’t have
to know each other’s location or be online at the same time

•  In ICN, pub/sub…
–  is not a Distributed System over the Internet, but the way the whole

network operates
–  has different names (REGISTER / FIND etc.)
–  only operates on the name
–  Contains a one-time fetch variant of “subscribe”

(but often also typical “subscribe”)

ICN: caching and security

•  Interior nodes (routers) get a request
–  Content in cache? Then send it
–  Else, forward request onward… (intermediate nodes

will cache)

•  Node that publishes content cannot be used for
security anymore è content is digitally signed

ICN: issues and directions

•  Consumer must know:
–  name of content
–  public key of provider

•  …and ICN system must be able to connect them
•  How to do name-based routing? (Internet-like or

totally different?) Inter-domain: policies or not?
•  End-to-end congestion control no longer

reasonable…
•  HTTP caching is very common today

–  Is ICN much better, or even needed?

Example “new architecture” #2: RINA

•  Recursive InterNetwork Architecture
–  Layers only provide scope

1.1 Concept and Objectives April 16, 2013

Figure 2: The current theoretical computer networking model (left), an example of the complex reality (center) and RINA
(right)

RINA unifies distributed computing and networking, since networking is just a distributed application: dis-
tributed computing specialized to provide IPC services. In RINA applications can request communication ser-
vices to other applications by specifying the application name and the characteristics required for the service,
without having to know the internal details of the network (DIF) that is providing this communication service,
and without having to know where the destination application is executing. Virtualization is nothing special
and part of the architecture, understanding virtualization as a mechanism to isolate a security and/or resource
allocation domain (this is exactly what a DIF is). Furthermore, the behaviour of each DIF can be customized
to optimally adapt to its operating conditions (as shown in the next section). All-in-all, RINA provides a bet-
ter framework and toolset to support distributed computing. PRISTINE will use RINA to develop practical,
demonstrable, and commercially exploitable solutions to address networking limitations associated to per-
formance, efficiency, security, robustness and management. As such, the top-level objectives of PRISTINE
are:

• To investigate the application of this recursive, programmable framework in a set of industry-lead, hetero-
geneous usage scenarios from different parts of the networking value-chain.

• To program mechanisms and techniques that will provide enhanced network performance, security, relia-
bility and management; ultimately benefitting all the stakeholders in the networking ecosystem.

• To demonstrate the benefits that the PRISTINE paradigm can offer today, showing that a clean-slate
architecture can be deployed in the current infrastructure and interoperate with the current Internet.

1.1.2 RINA architecture: introduction and programmable behaviour

The principles behind RINA, were first presented by John Day in his book “Patterns in Network Architecture:
A return to Fundamentals” [33]. Since the book was published in 2008, several organizations have stated their
interest in further researching RINA, as well as into turning the theory into practice by deploying RINA in the real
world. The Pouzin Society (PSOC) [91] was formed in 2009 to coordinate all the international activities around
RINA research and development. Some of these activities have been funded by the National Science Foundation
and the European Commission [28].

RINA takes as a starting point the basic premise that “networking is inter-process communication (IPC) and only
IPC” [34]. Networking provides the means by which processes on separate computer systems communicate,
generalizing the model of local inter-process communications. A DIF is an organizing structure, grouping together
application processes that provide IPC services and are configured under the same policies. A DIF can be seen
as what we generally refer to as a “layer”. According to this view, networking is not a layered set of different
functions but rather a single layer of distributed IPC that repeats over different scopes, i.e. providing the same
functions/mechanisms but tuned under different policies to operate over different ranges of the performance space
(e.g. capacity, delay, loss). Figure 3 provides more details of the RINA architecture. Not only the structural blocks
(the DIFs) and interfaces between them are identified, but also the components within them. The instantiation of a

Call Identifier: FP7–ICT–2013–11 3

RINA: DIF: Distributed IPC Facility
(IPC: Inter Process Communication)

1.1 Concept and Objectives April 16, 2013

DIF within a system (a computer) is an IPC Process, an application that provides distributed IPC Services. Each
IPC Process can have the following components (“can”, because not all IPC Processes will require to have all of
them):

Figure 3: Model of the RINA architecture and the components of an IPC Process

Component Brief description
IPC API Defines the service available form the DIF (flows to support application communication)
SDU Delimiting Delimit SDUs so that they are delivered to the receiver as they were sent by the sender
EFCP The data transfer protocol (Data transfer + state vector + data transfer control)
RMT The relaying and multiplexing tasks (multiplexing and forwarding)
SDU Protection Processes the PDU in order to protect it during its path through the N-1 DIF (FECs, encryption,

hopcounts)
CACEP The procedure that two applications have to follow in order to establish an application connection

(before being able to exchange information).
CDAP The Common Distributed Application Protocol. An object-oriented application protocol used by

IPC Processes to communicate.
RIB & RIB Daemon The logical representation of the information known by an IPC Process (object tree)
Enrollment Takes care of the tasks related to joining a DIF, or assisting other IPC Processes in joining
Flow Allocation Processes flow allocation and deallocation requests, locating applications and negotiating data

transfer parameters
Resource allocation Decides how to allocate the IPC Process resources, and monitors its use
Forwarding Table
Generator

Computes the forwarding table using a routing algorithm

Table 1: Short overview of the DIF components

A more detailed overview of the IPC Process components can be found in Annex 4. Each of the IPC Process
components can be customized to adapt each DIF to its operational requirements. In essence, each component
defines a set of programmable behavior, where code can be plugged in and change how a certain function is
accomplished in the DIF. Table 15 provides an overview of what is the programmable behavior in each one of the
components.

Component Programmable behaviour
SDU Delimiting The way the SDU is delimited (count field or explicit SDU delimiters).

Call Identifier: FP7–ICT–2013–11 4

Time scale

RINA: DIF implementations differ (policies)

policies appropriate to that range’s characteristics (capac-
ity, delay, loss, etc.) could be associated with the various
multiplexing, relaying, error control, flow control, and man-
agement mechanisms.

In terms of today’s roles of network elements, systems
directly connected to the end-hosts in Figure 3 act as “bor-
der” (“access”) routers, whereas the middle system acts as
an “interior” router. It is important to note that we are
not necessarily advocating more “layers” than what we have
today, but we are viewing layers as IPC facilities which net-
work elements explicitly become members of.

Wireless Links

2nd level DIF tailored to
wireless component

1st level DIF tailored to
wireless medium

3rd level host-to-host DIF

Figure 3: Layers of IPC consisting of hosts with
user applications and IPC subsystems. More IPC
levels exert more control over part of the host-to-
host connection.

To summarize, our proposed IPC layers are not so

much isolating di↵erent functions, like existing ar-

chitectures, as they are supporting di↵erent ranges

of the resource-allocation problem.

5. OPERATION OF A DISTRIBUTED
IPC FACILITY (DIF)

5.1 Creating a New DIF
To create a new distributed IPC facility at rank N ,

(N)-DIF, a higher-level (network management) application
could create an initial IPC process and connect it to one or
more (N-1)-DIFs. This initial IPC process could then be
directed to initiate enrollment with other IPC processes or
simply wait for other IPC processes to join it (as described
next).

5.2 Adding a New Member to a DIF
For a new IPC process, x, to join an existing (N)-DIF,

x has to be connected to the (N)-DIF by an underlying (N-
1)-DIF. Furthermore, like any other application, x has to
know the name of the (N)-DIF or of a member of it, say y,
not the address. x attempts to establish a connection to y.
Once this connection is established, y authenticates x. If
the authentication is successful, y assigns x an (N)-address,
and x becomes a member of the (N)-DIF.
Remark: This is not creating a connection-oriented archi-
tecture. This connection is purely for purposes of enroll-
ment. It has no e↵ect on the nature of forwarding decisions.
It is no more connection-oriented than having a cable be-
tween two routers makes the router connection-oriented.

5.3 Transferring Data within a DIF
As described earlier, a distributed IPC facility would

provide an application process with an interface to establish
a connection to a destination application process. Unlike
the current Internet architecture, which looks up a name in
DNS and returns the result to the requester, here, once an
address has been found, the request continues to the identi-
fied IPC process to ensure that the application is really there

and that the requester has access to it. This is analogous to
what IPC in a single system does and here it has many ad-
ditional benefits as well, such as access control, handling an
application that has moved, imposing resource constraints,
etc.

A B

B1

B2

path1

path2

Point-of-Attachment

(N)-DIF

(N-1)-DIF

Figure 4: Two-step routing process.

Routing within an (N)-DIF is done over a graph of IPC
processes that are members of this IPC facility. A routing
path toward a destination (N)-IPC process is specified by
the internal addresses of the (N)-IPC processes along the
path.5 To facilitate routing, we would want to route over
a topology that is perhaps more stable than the, typically
time-varying, graph of IPC processes. To that end, inter-
nal addresses should be topological (location-dependent) (a
number of topology-dependent addressing approaches have
been proposed, e.g. [11]).

Figure 4 illustrates the routing process from an (N)-IPC
process A to its next-hop (neighbor) B along the path to the
destination using the services of the underlying (N-1)-DIF.
When the (N-1)-DIF relays the message to B, the (N-1)-DIF
would map the process name of B to an (N-1)-IPC process
name (or (N-1)-address), B1 or B2, that corresponds to the
specific path within the underlying (N-1)-DIF.
Remark: Unlike the current Internet architecture, the IPC
architecture is relative. The (N-1)-address is internal to the
(N-1)-DIF and is considered a “point-of-attachment” (PoA)
address for the (N)-DIF.

6. FEATURES OF OUR ARCHITECTURE
Contrary to other proposals where many aspects require

specific mechanisms to accomplish specific capabilities, in
this proposal many capabilities are accommodated without
specific mechanisms but as a consequence of the structure.
As one would expect in a complete architecture, so-called
middleboxes are unnecessary.

6.1 Security
In our proposed model, applications never see addresses,

which are private to the underlying IPC facility. Thus, the
IPC facility is impervious to attacks from outside the facility.
This is contrary to the vulnerability of the current Internet
infrastructure to attacks by hosts, because its IP addresses
are made public.

Of course management applications are the exception
in our architecture, as they themselves authenticate and as-
sign those “internal” addresses to other IPC processes when
they join the distributed IPC facility (and could revoke these
addresses if malicious behavior is detected). Moreover, dif-
ferent authentication policies could be employed within each
facility, thus providing a range of security levels from public
(as in the current Internet) to private.

In addition, the kludge of firewalls to create security
domains is avoided in our architecture. In our model, fire-
walling is a natural function of a border router, where there
is a repetition of the DIF structure.
5How paths are chosen is a matter of policy.

4

RINA benefits

•  Getting addressing right facilitates topological
routing, mobility, multihoming

•  Should be more secure: enrollment
authenticated, else can’t even reach a node

•  Management should be easier

