
Department of Informatics
Networks and Distributed Systems (ND) group

INF 3190
New Internet Standards

Michael Welzl

2

Overview: a biased sample…

•  Based on: “what goes on ‘under the hood’ today/tomorrow, with the
things many of us are using?”
–  but also related to own research

–  … and some not-so-novel background needed!

3

Stream Control Transmission Protocol
(SCTP)

•  TCP, UDP do not satisfy all application needs

•  SCTP evolved from, and is used for, IP telephony signaling
–  Like TCP: reliable, full-duplex connections
–  Unlike TCP and UDP: new delivery options that are particularly

desirable for telephony signaling and multimedia applications

•  TCP + features
–  Congestion control similar; some optional TCP mechanisms

mandatory
–  Two basic types of enhancements: 1) Performance; 2) Robustness

4

SCTP services: SoA TCP + extras

•  Services/Features SCTP TCP UDP
•  Full-duplex data transmission yes yes yes
•  Connection-oriented yes yes no
•  Reliable data transfer yes yes no
•  Unreliable data transfer yes no yes
•  Partially reliable data transfer yes no no
•  Ordered data delivery yes yes no
•  Unordered data delivery yes no yes
•  Flow and Congestion Control yes yes no
•  ECN support yes yes no
•  Selective acks yes yes no
•  Preservation of message boundaries (ALF) yes no yes
•  PMTUD yes yes no
•  Application data fragmentation yes yes no
•  Multistreaming yes no no
•  Multihoming yes no no
•  Protection agains SYN flooding attack yes no n/a

5

Packet format

•  Unlike TCP, SCTP provides message-oriented data delivery service
–  key enabler for performance enhancements

•  Common header; three basic functions:
–  Source and destination ports together with the IP addresses
–  Verification tag
–  Checksum: CRC-32 instead of Adler-32

•  followed by one or more chunks
–  chunk header that identifies length, type, and any special flags
–  concatenated building blocks containg either control or data information
–  control chunks transfer information needed for association (connection)

functionality and data chunks carry application layer data.
–  Current spec: 14 different Control Chunks for association establishment,

termination, ACK, destination failure recovery, ECN, and error reporting

•  Packet can contain several different chunk types
•  SCTP is extensible

6

Packet 2

Packet 3

Packet 4

Packet 1

Application Level Framing (ALF)

•  Concept applied in RTP and SCTP
–  Byte stream (TCP) inefficient when packets are lost
–  Application may want logical data units (“chunks“)

Chunk 1 Chunk 2 Chunk 3 Chunk 4

•  ALF: app chooses packet size = chunk size
packet 2 lost: no unnecessary data in packet 1,

use chunks 3 and 4 before retrans. 2 arrives

•  1 ADU (Application Data Unit) = multiple chunks
=> ALF still more efficient!

7

Unordered delivery & multistreaming

•  Decoupling of reliable and ordered delivery
–  Unordered delivery: eliminate Head-Of-Line (HOL)

blocking delay

Chunk
2

Chunk
3

Chunk
4

Chunk
1

TCP receiver buffer

App waits in vain!

•  Support for multiple data streams
(per-stream ordered delivery)
-  Stream sequence number (SSN) preserves order

within streams
-  no order preserved between streams

8

Multiple Data Streams
•  Application may use multiple logical data streams

–  e.g. pictures in a web browser
•  Common solution: multiple TCP connections

–  separate flow / congestion control, overhead (connection setup/teardown, ..)

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Chunk 1 Chunk 2 Chunk 3 Chunk 4

App stream 1

App stream 2

TCP sender

Chunk 1

1

Chunk 1

2

Chunk 2

3

Chunk 2

4

Chunk 1

1

Chunk 2

4

Chunk 2

3

Chunk 1

2

TCP receiver

App 1 waits in vain!

9

Multihoming

•  ...at transport layer! (i.e. transparent for apps, such as FTP)

•  TCP connection ó SCTP association
–  2 IP addresses, 2 port numbers ó 2 sets of IP addresses, 2 port numbers

•  Primary goal: robustness
–  automatically switch hosts upon failure
–  eliminates effect of long routing reconvergence time
–  Now also CMT (Concurrent Multipath Transport) as with MPTCP; more later...

•  TCP: no “keepalive“ messages when connection idle

•  SCTP monitors reachability via ACKs of data chunks and heartbeat chunks

10

Google’s SPDY
(basis for HTTP/2.0, many similarities)

•  Goal: reduce page load time

•  Reuses HTTP semantics
–  But changes how data is written to the network

(e.g. no ascii protocol!)
–  retains all features including cookies, Content-Encoding

negotiations etc.

•  Universal encryption
–  SPDY is negotiated over SSL/TLS,

thus operates exclusively over a secure channel

11

SPDY /2

•  Header compression

•  Server Push/Hint
–  Servers could proactively push resources to clients

(e.g. scripts and images that will be required)
–  Or can send hints advising clients to pre-fetch content

•  Content prioritization
–  Client can specify the preferred order in which

resources should be transferred

12

SPDY Multiplexing

•  Multiplexing
–  Persistent connection as in HTTP/1.1

Reason: allow TCP to increase its window
(most web flows terminate in slow start)

–  But: in HTTP/1.1, sequence determined by client
–  Client does not know which requests take long

(e.g. database lookups, ..); can cause HOL delay !
–  SPDY multiplexes frames onto the TCP connection

•  TCP can still cause RTT-timescale HOL blocking delay
•  Google’s solution: QUIC / UDP…

13

MPTCP

•  Many hosts are nowadays multihomed
–  Smartphones (WiFi + 3G), data centers
–  Why not use both connections at once?

•  Cannot know where bottleneck is
–  If it is shared by the two connections, they should

appear (be as aggressive) as only one connection
–  MPTCP changes congestion avoidance “increase”

parameter to “divide” aggression accordingly
•  but instead of being “½ TCP”, tries to send as much as

possible over least congested path
•  Least congested = largest window achieved; hence, increase

in proportion to window

14

MPTCP /2

•  Moving traffic away from congested links
achieves “resource pooling”
–  A web server connected to two 100 Mbit/s links

behaves roughly as if it had one 200 Mbit/s link
–  Only one host needs to be multi-homed

•  Issues
–  Must look like TCP to work everywhere

Minimal on-the-wire changes: new TCP option
–  Parallel paths can cause reordering è delay in

handing over data to application on receiver side

15

LEDBAT
•  Try to send when others don’t

–  For low-priority traffic that should not get in the way of other
applications

–  Growing (assumption: queuing) delay = early congestion signal
–  Possible benefit: low delay
–  Encapsulation (how to embed in existing protocols) not (yet?) defined;

implemented over UDP in BitTorrent

For Review Only

2

TCP without changing its header format; this would facilitate
their deployment in the Internet. The schemes in the third
category are, by design, supposed to be especially easy to
deploy because they only describe a way in which existing
transport protocols are used. Finally, mechanisms in the last
category also require changes to equipment along the path,
which can greatly complicate their deployment.

An LBE service can also be implemented by means of
lower-layer (e.g., network layer) techniques only, without any
involvement of the endpoints. There has been a substantial
amount of work related to LBE mechanisms below the trans-
port layer; for instance, there is a Diffserv-based, Lower-Effort
per-domain behavior [6], and similar proposals have been
described elsewhere [7]–[9]. Such proposals do not require,
in principle, any changes to end-hosts but may not always
be easily deployed over the Internet at large; moreover, they
can be viewed as “orthogonal” to transport-layer and upper-
layer LBE mechanisms as described above. Other network-
level solutions aiming at giving lower priority to “bandwidth
hogs”, like traffic shaping or scheduling, and based on e.g.
deep-packet inspection or traffic-volume accounting, are al-
ready deployed in some networks [10]. Besides, the IETF
Congestion Exposure (CONEX) working group2 is developing
a network-layer mechanism which can incentivize the usage
of LBE-like applications and/or of LBE-like transports [11].
Such work is outside the scope of this paper.

II. DELAY-BASED TRANSPORT PROTOCOLS

It is wrong to generally equate “little impact on standard
TCP” with “small sending rate”. Without Explicit Congestion
Notification (ECN) support [12], standard TCP will normally
increase its congestion window (and effective sending rate)
until a queue overflows, causing one or more packets to be
dropped and the effective rate to be reduced. A protocol that
stops increasing the rate before this event happens can, in
principle, attain a better performance than standard TCP. This
can be achieved by performing delay-based congestion control
at the sender, i.e., monitoring end-to-end delays and using such
delay measurements to control the sending rate.

Figure 1 schematically depicts the basic principles of a
delay-based LBE transport. The sending rate for a delay-based
LBE flow, in absence of other flows sharing the bottleneck,
is illustrated by Fig. 1a. The sender tries to send “as fast as
possible” while monitoring the end-to-end delay (correspond-
ing to some amount of buffered packets, shown as gray areas
in the figure), and lowers its rate as soon as it detects that
the backlog of packets in the end-to-end path exceeds some
predefined value. By avoiding to completely fill the buffers
by itself, the delay-based flow keeps the latency low for any
other flow that may start sending data after the former.

Figure 1b shows the delay-based LBE flow competing
with a (long-lived) non-LBE flow using standard, loss-based
TCP. In the presence of another, non-LBE flow, the LBE
sender injects data into the network only when the delay
due to backlogged packets is below the predefined value, and
decreases its sending rate when the other flow increases its

2http://tools.ietf.org/wg/conex

link capacity

time

queue backlogbuffering

(a) Sending rate of a delay-based flow: ideal case.

link capacity

time

volume sent by a delay-based flow

buffering

(b) Coexistence of an LBE flow with a non-LBE one.

Fig. 1. Delay-based congestion control.

own rate; this corresponds to the gray areas in Fig. 1b. When
the backlog gets larger than the threshold value, the LBE
flow reduces its sending rate to a very low value, to avoid
contributing to delay.

A. TCP Vegas
TCP Vegas [3] is one of the first protocols that was known

to have a smaller sending rate than standard TCP when both
protocols share a bottleneck [13]—yet, it was designed to
achieve more, not less, throughput than standard TCP3. Indeed,
when TCP Vegas is the only congestion control algorithm used
by flows going through the bottleneck, its throughput is greater
than the throughput of standard TCP. However, depending
on the bottleneck queue length, TCP Vegas itself can be
starved by standard TCP flows. This can be remedied to some
degree4 by the Random Early Detection (RED) Active Queue
Management mechanism [21]. Vegas linearly increases or
decreases the sending rate, based on the difference between the
expected throughput and the actual throughput. The estimation
is based on RTT measurements.

The congestion-avoidance behavior is the protocol’s most
important feature in terms of historical relevance as well as

3In fact, delay-based congestion control is at the basis of several proposals
that aim at adapting TCP’s congestion avoidance to very high-speed networks.
Some of these proposals, like Compound TCP [14] and TCP Illinois [15],
are hybrid loss- and delay-based mechanisms, whereas others (e.g., FAST
TCP [16], NewVegas [17], or CODE TCP [18]) are variants of Vegas based
primarily on delays.

4Though not specific to Vegas, there are also proposals, such as [19], [20],
aiming at improving the coexistence of loss-based and delay-based congestion-
controlled flows.

Page 2 of 10IEEE Communications Surveys and Tutorials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

2

TCP without changing its header format; this would facilitate
their deployment in the Internet. The schemes in the third
category are, by design, supposed to be especially easy to
deploy because they only describe a way in which existing
transport protocols are used. Finally, mechanisms in the last
category also require changes to equipment along the path,
which can greatly complicate their deployment.

An LBE service can also be implemented by means of
lower-layer (e.g., network layer) techniques only, without any
involvement of the endpoints. There has been a substantial
amount of work related to LBE mechanisms below the trans-
port layer; for instance, there is a Diffserv-based, Lower-Effort
per-domain behavior [6], and similar proposals have been
described elsewhere [7]–[9]. Such proposals do not require,
in principle, any changes to end-hosts but may not always
be easily deployed over the Internet at large; moreover, they
can be viewed as “orthogonal” to transport-layer and upper-
layer LBE mechanisms as described above. Other network-
level solutions aiming at giving lower priority to “bandwidth
hogs”, like traffic shaping or scheduling, and based on e.g.
deep-packet inspection or traffic-volume accounting, are al-
ready deployed in some networks [10]. Besides, the IETF
Congestion Exposure (CONEX) working group2 is developing
a network-layer mechanism which can incentivize the usage
of LBE-like applications and/or of LBE-like transports [11].
Such work is outside the scope of this paper.

II. DELAY-BASED TRANSPORT PROTOCOLS

It is wrong to generally equate “little impact on standard
TCP” with “small sending rate”. Without Explicit Congestion
Notification (ECN) support [12], standard TCP will normally
increase its congestion window (and effective sending rate)
until a queue overflows, causing one or more packets to be
dropped and the effective rate to be reduced. A protocol that
stops increasing the rate before this event happens can, in
principle, attain a better performance than standard TCP. This
can be achieved by performing delay-based congestion control
at the sender, i.e., monitoring end-to-end delays and using such
delay measurements to control the sending rate.

Figure 1 schematically depicts the basic principles of a
delay-based LBE transport. The sending rate for a delay-based
LBE flow, in absence of other flows sharing the bottleneck,
is illustrated by Fig. 1a. The sender tries to send “as fast as
possible” while monitoring the end-to-end delay (correspond-
ing to some amount of buffered packets, shown as gray areas
in the figure), and lowers its rate as soon as it detects that
the backlog of packets in the end-to-end path exceeds some
predefined value. By avoiding to completely fill the buffers
by itself, the delay-based flow keeps the latency low for any
other flow that may start sending data after the former.

Figure 1b shows the delay-based LBE flow competing
with a (long-lived) non-LBE flow using standard, loss-based
TCP. In the presence of another, non-LBE flow, the LBE
sender injects data into the network only when the delay
due to backlogged packets is below the predefined value, and
decreases its sending rate when the other flow increases its

2http://tools.ietf.org/wg/conex

link capacity

time

queue backlogbuffering

(a) Sending rate of a delay-based flow: ideal case.

link capacity

time

volume sent by a delay-based flow

buffering

(b) Coexistence of an LBE flow with a non-LBE one.

Fig. 1. Delay-based congestion control.

own rate; this corresponds to the gray areas in Fig. 1b. When
the backlog gets larger than the threshold value, the LBE
flow reduces its sending rate to a very low value, to avoid
contributing to delay.

A. TCP Vegas
TCP Vegas [3] is one of the first protocols that was known

to have a smaller sending rate than standard TCP when both
protocols share a bottleneck [13]—yet, it was designed to
achieve more, not less, throughput than standard TCP3. Indeed,
when TCP Vegas is the only congestion control algorithm used
by flows going through the bottleneck, its throughput is greater
than the throughput of standard TCP. However, depending
on the bottleneck queue length, TCP Vegas itself can be
starved by standard TCP flows. This can be remedied to some
degree4 by the Random Early Detection (RED) Active Queue
Management mechanism [21]. Vegas linearly increases or
decreases the sending rate, based on the difference between the
expected throughput and the actual throughput. The estimation
is based on RTT measurements.

The congestion-avoidance behavior is the protocol’s most
important feature in terms of historical relevance as well as

3In fact, delay-based congestion control is at the basis of several proposals
that aim at adapting TCP’s congestion avoidance to very high-speed networks.
Some of these proposals, like Compound TCP [14] and TCP Illinois [15],
are hybrid loss- and delay-based mechanisms, whereas others (e.g., FAST
TCP [16], NewVegas [17], or CODE TCP [18]) are variants of Vegas based
primarily on delays.

4Though not specific to Vegas, there are also proposals, such as [19], [20],
aiming at improving the coexistence of loss-based and delay-based congestion-
controlled flows.

Page 2 of 10IEEE Communications Surveys and Tutorials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

16

WebRTC / rtcweb

•  Direct UDP communication between browsers (p2p)
–  Better latency & bandwidth, important for interactive communication

(video, audio, online games, …)
–  Data channel (e.g. control data in games, file transfers, ..) uses

SCTP in userspace (in browser)
–  Between browsers, there are many middleboxes; several tricks

played (ICE / STUN / TURN protocols)

•  Javascript API lets web designer control “peer connections”

•  Congestion control under development; requirements:
–  Avoid queue: react to delay, yet interoperate with TCP
–  Detect shared bottlenecks, combine controls of flows

17

Explicit	Conges/on	No/fica/on	(ECN)	

•  AQM:	Instead	of	dropping,	set	a	bit	
•  Receiver	tells	sender	about	it;	sender	behaves	as	if	packet	dropped	

⇒ actual	communica?on	between	end	nodes	and	the	network	
•  Note:	ECN	=	true	conges?on	signal	(i.e.	clearly	not	corrup?on)	
	
•  Typical	incen?ves:	

–  sender	=	server;	efficiently	use	connec?on,	fairly	distribute	bandwidth	
•  use	ECN	as	it	was	designed	

–  receiver	=	client;	goal	=	high	throughput,	does	not	care	about	others	
•  ignore	ECN	flag,	do	not	inform	sender	about	it	

•  Shouldn‘t	be	possible	for	receiver	to	lie	about	ECN	when	it	was	set!	
–  Solu?on:	nonce	=	random	number	from	sender,	deleted	by	router	
–  Sender	believes	„no	conges?on“	iff	correct	nonce	is	sent	back	

18

ECN	in	ac/on	

•  Nonce	provided	by	bit	combina?on:	
–  ECT(0):	ECT=1,	CE=0;			ECT(1):	ECT=0,	CE=1	

•  Nonce	usage	specifica?on	experimental,	sugges?ons	to	replace:	
ECT1	could	mean	“give	me	a	different	queuing	behavior“	

Data packets

ACKs

Send packet with
ECT = 1, CE = 0,
nonce = random

ECT = 1, so don’t drop
update: CE = 1
nonce = 0

Set ECE = 1 in
subsequent ACKs
even if CE = 0

Reduce cwnd,
set CWR = 1

Only set ECE = 1
in ACKs again
when CE = 1

Sender Receiver

1 2 3

4 5

Congestion

19

The Internet-deployment vicious circle

Application developer:
•  wants to max. revenue
•  Use new protocol: effort

(-$) unless the protocol
works everywhere
(maybe ++$)

OS developer, middlebox
designer / maintainer:
•  wants to max. revenue
•  Support new protocol alone:

effort or risk (-$) unless the
protocol is beneficially used
by applications (maybe ++$)

20

Consequences of this vicious circle

•  Efforts to make everything look like standard TCP
–  MPTCP, Minion (partially in Apple)

•  Efforts to build whole protocols over UDP
–  LEDBAT (BitTorrent), QUIC (Google), RTMFP (Adobe),

Skype (proprietary), etc.

•  Possible solution: change interface to transport
layer (let applications specify service, not protocol)
–  ongoing efforts in the IETF (TAPS WG)

21

Transport Services (TAPS)

Application

Protocol X

ISP A
(supports

X only)

Application

Protocol X

ISP A
(supports

X only)

TAPS system

Application

Protocol Y

ISP B
(supports
X and Y)

TAPS system

Application

Protocol X

ISP B
(supports
X and Y)

without TAPS with TAPS

EC project “NEAT“ (https://www.neat-project.org) develops
TAPS-conformant implementation of a transport system

