INF3190 - Data Communication Summary (part 2)

Carsten Griwodz

Email: griff@ifi.uio.no

Basics

- Recap protocol terminology
 - several OSI terms are not introduced by Tanenbaum

- Remember the functions of the OSI model
 - very brief in the book
 - but terminology persists and is used in unexpected contexts

Physical layer

Baseband transmission schemes (very brief in Tanenbaum pp. 145)

- presented
 - binary encoding / NRZ (non-return-to-zero)
 - NRZI
 - Manchester
 - Differential Manchester

Passband transmission (Tanenbaum pp. 110)

- definitions of bandwidth and wavelength
 - related, but only in a medium
- compositions of sinosoid signals can be described by Fourier series
- compositions can approximate digital signals
- bits vs. bauds
 - amplitude, frequency, phase

Physical layer

Capacity

bitrate of a perfect channel (Nyquist's theorem)

$$C = 2 \times B \times log_2 L$$
 bit/second

capacity of a noisy channel (Shannon's theorem)

$$C = B \times log10(1 + SNR)$$

- reasons for noise
 - thermal noise, free electrons
 - impulse noise, e.g. from power lines, lightning
 - induced noise, e.g. from electric motors
 - crosstalk from other channels

In my opinion, physical layer is presented more clearly by Behrouz Forouzan in Data Communications and Networking (see course page)

Data Link Layer

Flow control (Tanenbaum pp. 235)

Maximum link utilization is very brief in Tanenbaum

Data Link Layer

Flow control (Tanenbaum pp. 235)

Maximum link utilization is very brief in Tanenbaum

Approximations:
$$T_{ip} = T_{ap}$$

$$T_{ic} = T_{ac} << T_{ip}$$

$$T_{at} << T_{it}$$

Windows size k leads to 2 cases:

- if $kT_{it} < 2T_{ip}$: even in the best case, the sender must wait for an ACK the channel cannot be filled
- otherwise: the channel can be filled

$$U = \begin{cases} \frac{kT_{it}}{T_{it} + 2T_p} = \frac{k}{1 + 2\frac{T_{ip}}{T_{it}}} & \text{if } \left(k < 2\frac{T_{ip}}{T_{it}}\right) \\ 1 & \text{otherwise} \end{cases}$$

DNS (Tanenbaum pp. 629)

- recursive and iterative queries
- not in Tanenbaum
 - caching
 - aliasing
 - zoning and load balancing

HTTP (Tanenbaum pp. 664)

- not in Tanenbaum
 - HTTP/2.0

Multimedia (not in Tanenbaum)

- classes and characteristics of continuous media
- UDP or TCP?
- basic challenges
 - delay, loss, jitter
 - jitter compensation
 - loss compensation

RTP (Tanenbaum pp. 564)

- wrong section! not a transport protocol!
- relation between RTP and Application layer framing / Integrated layer processing
- role of RTCP
- mixers and translators (not in Tanenbaum)

Dynamic Adaptive Streaming over HTTP (not in Tanenbaum)

- Divide video into segments: completely independent little movies
- Choose the segment duration: 2-10 seconds usual
- Choose the number of quality layers
- Choose the adaptation strategy
 - the client chooses, not the server
 - these strategies make the difference between players

Signaling protocols

RTSP (briefly mentioned in Tanenbaum p.733)

- SIP (Tanenbaum pp.749)
 - proxy mode and redirect mode

Quality adaptation (not in Tanenbaum)

Blurriness, noise and motion flicker

Popularity estimation (in Tanenbaum p.737f without the warnings)

- Zipf distribution
 - i'th most popular content while popularity remains unchanged

$$z(i) = \frac{C}{i^{\varsigma}} \qquad C = 1/\sum_{n=1}^{N} \frac{1}{n^{\varsigma}}$$

- is only an observed property
- a subset of a Zipf-distributed dataset is no longer Zipf-distributed

Content Delivery Networks (Tanenbaum pp. 743)

Peer-to-peer networks (briefly discussed in Tanenbaum pp. 748)

- BitTorrent (Tanenbaum pp. 750)
- Distributed Hash Tables (DHT, Tanenbaum pp. 753)
- this includes: Chord where most things are O(log(n))

