
1

INF3190 – Data CommunicationUniversity of Oslo

INF3190 – Application Layer
DNS, Web, Mail

Carsten Griwodz
Email: griff@ifi.uio.no

INF3190 – Data CommunicationUniversity of Oslo

Application layer
in the TCP/IP stack

Introduction

2

INF3190 – Data CommunicationUniversity of Oslo

What is it?
Internet view
§ everything above the socket interface is application layer function

=> all functions of OSI layers 5 and 6 are Internet application layer

We still need (many of) those OSI functions
§ long-term session maintenance, reconnections, session migration
§ protocol translation
§ today’s Internet world has protocols for this

(official standards (de jure) and de facto)
− SMTP + (POP3 or IMAP)
− HTTP, SHTTP, QUIC
− (RTSP or SIP) + RTP/RTCP
− MPEG DASH, Apple HLS, Microsoft Smooth Streaming
− REST, SOAP, DCE / CORBA

INF3190 – Data CommunicationUniversity of Oslo

Client-Server
§ Traditional communication model, easily comprehensible abstraction

− Clients request service (initiate connection)
− Servers provide service (answer requests)

§ Examples: Web Client/Server, Mail Client/Server, FTP Client/Server

§ Important: client-server is not request-response

3

INF3190 – Data CommunicationUniversity of Oslo

Publish-Subscribe
§ Message-dissemination model

− Producer generates messages (initiate connection)
− Consumer receives messages (answer requests)

§ Producers do not necessarily know consumers

Notification
service

INF3190 – Data CommunicationUniversity of Oslo

Peer-to-Peer
Recognized application-layer
paradigm since 2000s

First clearly visible application:
Napster
§ file sharing (mostly for music)
§ ruled illegal
§ followed by others: Gnutella,

Kazaa, BitTorrent, Freenet
§ later picked up by research: CAN,

Chord, Tapestry, Kademlia, Pastry
§ idea: avoid control and/or

censorship

Famous services
§ video streaming: PPTV, P2PTV
§ distributed computing: SETI@home

Old tech. that is like P2P but not
recognized:

Telephony
Usenet news
IP Routing

Actually, P2P = original Internet model
• all nodes are equal
• all nodes can address each other
• ownership is distributed

4

INF3190 – Data CommunicationUniversity of Oslo

The presentation problem
Q: Does perfect memory-to-memory copy solve “the communication

problem”?
A: Not always!

Problem: Different data format, storage conventions

struct Test
{

char code;
int x;

}

Test test;

test.x = 273;
test.code=‘a’

00600000
00010000
0011

test.code

test.x

host 2 format
e.g. ARM Linux

packed
big endian

00600000
00000000
00000011
00000001

test.code

test.x

host 2 format
e.g. Intel DOS

not packed
little endian

INF3190 – Data CommunicationUniversity of Oslo

Solving the presentation problem
1. Translate local-host format to host-independent format
2. Transmit data in host-independent format
3. Translate host-independent format to remote-host format

Old Style
§ cross-platform standardized binary

encoding of data structures
− OSI host-independent format: “Abstract

Syntax Notation One” (ASN.1) defines
Basic Encoding Rules” (BER)

− XDR: „external data representation“,
belonged to NFS (Network File System)

Current Style

§ encoding everything as text
− XML: „extensible markup language“

− REST: „representational state transfer”

• convey data in
platform-independent
manner

• local styling and
interpretation

• readable and debuggable

• compensate for platform
differences

• assume single data
interpretation

• space-saving

5

INF3190 – Data CommunicationUniversity of Oslo

XDR example
struct datarate {

long data;
long seconds;

};

bool_t xdr_datarate(XDR* xdrs,
datarate *gp)

{
if (xdr_long(xdrs, &gp->data) &&

xdr_long(xdrs, &gp->seconds))
return(TRUE);

return(FALSE);
}

program(int socket) {
datarate R = { 1000, 1 };
XDR* p;
xdrmem_create(p, buf, 16,

XDR_ENCODE);
xdr_datarate(p, &R);
write(socket, buf, 16);

}}

XDR compiler

C compiler

C compiler

Linker

OS/platform-specific XDR
library

OS/platform-specific
program

INF3190 – Data CommunicationUniversity of Oslo

REST example
void sendfunction(int socket, datarate* gp) {
char buf[1000];
sprintf(buf, “POST https://peer.nowhere.com”

“/1/classes/datarate HTTP/1.1\n”
...
“’{\”data\":\”%d\”,\”seconds\":\”%d\”}’/n”
“https://peer.nowhere.com/1/classes”
“/datarate”,
gp->data, gp->seconds);

}

POST https://peer.nowhere.com/1/classes/datarate HTTP/1.1
...
X-Parse-Application-Id: Datarate-Setter
X-Parse-REST-API-Key: JASD3476D
Content-Type: application/json

’{”data":1000,”seconds":”1”}’
https://peer.nowhere.com/1/classes/datarate

struct datarate {
long data;
long seconds;

};

C compiler

Linker

sent over the
network at
run-time:

6

INF3190 – Data CommunicationUniversity of Oslo

DNS
Domain Name System

Application layer
in the TCP/IP stack

INF3190 – Data CommunicationUniversity of Oslo

How to connect to a remote computer?
Connect to <hostname,port>
§ e.g. telnet 127.0.0.1 23

talking to my own machine
obviously: used all the time, esp. since DHCP screws up your other
addresses

§ or wget http://173.194.39.31:80/
talking to one of Google’s machines
possible to remember

§ or ssh 9.228.93.3
trying to talk to my desktop that had this address in 1995
impossible to remember unless you’ve typed it 100 times a day

§ If you want short names, write them into /etc/hosts
§ originally globally maintained by SRI, changes re-distributed by email

and ftp (no more, ancient history)

7

INF3190 – Data CommunicationUniversity of Oslo

How to connect to a remote computer?
Use “reasonable” names
§ e.g.

ssh login.ifi.uio.no
wget www.google.com

§ not only easier to remember
§ reflects also organisation structures

§ although the hierarchical structure may not fulfill all purposes
§ somewhat related to physical network structure, at least locally

Domain Name System (DNS)

INF3190 – Data CommunicationUniversity of Oslo

DNS at a High-Level
Domain Name System

Hierarchical namespace
As opposed to original, flat namespace
e.g. .com à google.com à mail.google.com

Distributed database

Simple client/server architecture
− UDP or TCP port 53
− servers must use TCP nowadays
− clients using TCP are mostly rejected

• reduces server load
• is a security problem

8

INF3190 – Data CommunicationUniversity of Oslo

Naming Hierarchy
Root

edu com gov mil orgnet uk no etc.

uio hioa

ifi smtp imap

www login

root servers
TLDs – top level domains

Each Domain Name is a subtree
.no à uio.no à ifi.uio.no à www.ifi.uio.no

Other regions could have other “uio”s

INF3190 – Data CommunicationUniversity of Oslo

Hierarchical Administration
Root

edu com gov mil orgnet uk no etc.

uio hioa

ifi smtp imap

www login

ICANN

UNINETT

UIO

Tree is divided into zones
• Each zone has an administrator
• Responsible for the part of the hierarchy
• Can delegate sub-tress to others

9

INF3190 – Data CommunicationUniversity of Oslo

Server Hierarchy
Functions of each DNS server
§ Authority over a portion of the hierarchy

− No need to store all DNS names
§ Store all the records for hosts/domains in its zone

− Must be replicated for robustness (at least 2 servers)
§ Know the addresses of the root servers

− Resolve queries for unknown names

Root servers know about all TLDs

INF3190 – Data CommunicationUniversity of Oslo

Root Name Servers
Responsible for the Root Zone File
§ Lists the TLDs and who controls them

com. 172800 IN NS a.gtld-servers.net.
com. 172800 IN NS b.gtld-servers.net.
com. 172800 IN NS c.gtld-servers.net.

Administered by ICANN
§ 13 root servers, labeled AàM
§ 6 are anycasted, i.e. they are globally replicated

Contacted when names cannot be resolved
§ In practice, most systems cache this information
§ DDoS attacks designed to reach root
§ infrastructure bugs (e.g. old Telenor modems converted IPv6 lookup into broken IPv4 lookup)

10

INF3190 – Data CommunicationUniversity of Oslo

ICANN

from: http://www.icann.org/en/news/correspondence/roberts-testimony-14feb01-en.htm

INF3190 – Data CommunicationUniversity of Oslo

Map of the Roots

k-root (Europe) is an anycast root node
This is RIPE’s map of probing which of the 6 k-root copies get accessed

from https://labs.ripe.net/Members/kistel/dns-measurements-with-ripe-atlas-data

11

INF3190 – Data CommunicationUniversity of Oslo

Recursive DNS Query
Classical approach
§ Must keep state for every request

in a server until answered
§ Allows every node along the path

to cache results

§ Concentrates the data flow at the
central servers

§ Keeps a lot of state on central
servers

huldra.uio.no

get www.google.com

k.root-server.net

com

ns1.google.com

www.google.com

INF3190 – Data CommunicationUniversity of Oslo

Iterated DNS Query
Newer approach
§ Redirects request
§ Keep state only at local server (or

some servers) until answered

§ Allows few nodes to cache results
§ Halves number of requests at

central servers
§ Avoids state on central servers

entirely

huldra.uio.no

get www.google.com

k.root-server.net

com

ns1.google.com

www.google.com

12

INF3190 – Data CommunicationUniversity of Oslo

Caching vs. Freshness
§ Caching reduces DNS resolution latency
§ Caching reduces server load
§ Caching delays updates

ns.ifi.uio.no

• Cached Root Zone File
• Cached .com Zone File
• Cached .net Zone File
• Etc.

Root net

domainnameshop.commpg.ndlab.net

lookup
mpg.ndlab.net

¨ Information is cached
between 5 minutes
and 72 hours update

INF3190 – Data CommunicationUniversity of Oslo

Aliasing and Load Balancing

One machine can have many aliases
mpg.ndlab.net

records.sigmm.org

drammen.ndlab.net

simula080.simula.no

One domain can map to multiple machines

www.google.com

That includes k.root-server.net
and

login.ifi.uio.no

13

INF3190 – Data CommunicationUniversity of Oslo

Content Delivery Networks
DNS allows zoning e.g. Netflix (and Google) addresses depend

on the origin of your connection
geography, ISP, ...

addresses can also depend on server load
minimal 5-minutes allows Netflix
to direct people to other servers every 5 minutes

INF3190 – Data CommunicationUniversity of Oslo

Content Delivery Networks
DNS allows zoning e.g. Netflix (and Google) addresses depend

on the origin of your connection
geography, ISP, ...

addresses can also depend on server load
minimal 5-minutes allows Netflix
to direct people to other servers every 5 minutes

“Small problem” with this technique
• modern to use external resolvers
• e.g. ALL Chrome DNS lookups seem to originate from 8.8.8.8

(an address owned by Google)

Consequences
• user stays more anonymous
• Netflix and others make wrong decisions

14

INF3190 – Data CommunicationUniversity of Oslo

@ IN SOA rh7login.ifi.uio.no. hostmaster.ifi.uio.no. 201703291 1800 900 960000 86400
@ NS nn.uninett.no.
@ NS ns1.uio.no.
@ NS ifi.uio.no.
@ A 129.240.65.60
@ A 129.240.65.61
@ A 129.240.65.62
@ A 129.240.65.63
@ MX 50 smtp.uio.no.
login.ifi.uio.no CNAME rh7login.ifi.uio.no

start of authority record

DNS Record
hostname admin email record serial

number
refresh
time

retry
time

expir
y

time

min
TTL

NS: a responsible
name server

A: an IPv4 address,
several means the
name has multiple
interfaces, perhaps

hosts, AAAA for IPv6
MX: mail server’s

name

CNAME: an alias
(another name)

INF3190 – Data CommunicationUniversity of Oslo

_service._protocol.example.com SRV 10 0 5060 service.example.com

mDNS

name of the
service

name of the
serverprotocol

domain where
the service is

located

priority

weight

port

_ssh._tcp.example.com SRV 10 0 22 1x-193-157-212-9.uio.no

Example from my machine:

A way of discovering services by announcing them with IP multicast
§ RFC 6762 (2013): multicast DNS
§ records announce services (as well as link-local hostnames that are

invisible outside the current multicast domain, like mymac.local)
§ records are never authoritative and mDNS can never redirect or recurse

15

INF3190 – Data CommunicationUniversity of Oslo

HTTP
Hypertext Transfer Protocol

Application layer
in the TCP/IP stack

INF3190 – Data CommunicationUniversity of Oslo

The Web: the HTTP protocol
HTTP: hypertext transfer protocol
§ Web’s application layer protocol
§ client/server model

− client: browser that requests, receives, displays Web objects
− server: Web server sends objects in response to requests

§ Three major versions
§ HTTP/1.0 (1990)
§ HTTP/1.1 (1999)
§ HTTP/2 (2015)

Host running
a browser

Server
Running
A web
server

Host running
a browser

HTTP request

HTTP request

HTTP response

HTTP response

16

INF3190 – Data CommunicationUniversity of Oslo

The HTTP protocol
HTTP: TCP transport service:
§ client initiates TCP connection

(creates socket) to server, port 80
§ server accepts TCP connection

from client
§ HTTP messages (application-layer

protocol messages) exchanged
between browser (HTTP client)
and Web server (HTTP server)

§ TCP connection closed

HTTP is “stateless”
§ server maintains no

information about past
client requests

Protocols that maintain state
are complex!

r past history (state) must be
maintained

r if server/client crashes, their
views of state may be
inconsistent, must be
reconciled

aside

INF3190 – Data CommunicationUniversity of Oslo

HTTP example
Suppose user enters URL www.mn.uio.no/ifi/index.html

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.mn.uio.no.
Port 80 is default for HTTP
server.

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket

1b. HTTP server at host
www.mn.uio.no waiting for TCP
connection at port 80.
accepts connection, notifying

client

3. HTTP server receives request
message, forms response
message containing requested
object (ifi/index.html), sends
message into socket

time (now let’s say index.html contains text, references to 10 JPEG images)

17

INF3190 – Data CommunicationUniversity of Oslo

HTTP example (cont.)
5. HTTP client receives response message containing HTML file, displays HTML.

Parsing HTML file, finds 10 referenced JPEG objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

INF3190 – Data CommunicationUniversity of Oslo

Non-persistent, persistent connections
Non-persistent
§ HTTP/1.0: server parses request,

responds, closes TCP connection
§ 2 RTTs to fetch object
− TCP connection
− object request/transfer

§ each transfer suffers from TCP’s
initially slow sending rate

§ many browsers open multiple parallel
connections

Persistent
§ default for HTTP/1.1
§ on same TCP connection:

server, parses request,
responds, parses new
request,..

§ client sends requests for all
referenced objects as soon
as it receives base HTML

§ fewer RTTs, less slow start

Persistent with pipelining
• request multiple objects in one go (even fewer RTTs)
• answers arrive one after each other in order of requests

18

INF3190 – Data CommunicationUniversity of Oslo

HTTP/1.x message format: request
§ two types of HTTP messages: request, response
§ HTTP request message:
− ASCII (human-readable format)

GET /ifi/index.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:no

(extra carriage return, line feed)

request line
(GET, POST,
HEAD commands)

header
lines

Carriage return,
line feed
indicates end
of message

INF3190 – Data CommunicationUniversity of Oslo

HTTP/1.x message format: response

HTTP/1.0 200 OK

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
html file

19

INF3190 – Data CommunicationUniversity of Oslo

HTTP/1.x response status code examples
200 OK
− request succeeded, requested object later in this message

301 Moved Permanently
− requested object moved, new location specified later in this message

(Location:)
400 Bad Request
− request message not understood by server

404 Not Found
− requested document not found on this server

505 HTTP Version Not Supported

INF3190 – Data CommunicationUniversity of Oslo

Trying out HTTP/1.x (client side) for yourself
1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at www.aftenposten.no.
Anything typed in will be sent via this connection.

telnet www.aftenposten.no 80

2. Type in a GET request:

GET / HTTP/1.1

By typing this in (hit carriage
return once), you send
this minimal (but complete)
GET request for the root document
to the HTTP server

3. Quickly: type in the host header:
Servers can be multi-homed (multiple
different web sites on physical server),
and so the client must specify which
host it wants. Else, a server would
often return an error message.

Host: www.aftenposten.no

4. Hit carriage return twice and see the result

20

INF3190 – Data CommunicationUniversity of Oslo

Cookies: keeping “state”
§ server-generated # , server-

remembered #, later used for:
− authentication
− remembering user

preferences, previous
choices

§ server sends “cookie” to client
in response msg
Set-cookie: 1678453

§ client presents cookie in later
requests
cookie: 1678453

client server

usual http request msg

usual http response +
Set-cookie: #

usual http request msg
cookie: #
usual http response msg

usual http request msg
cookie: #
usual http response msg

cookie-
spectific
action

cookie-
spectific
action

INF3190 – Data CommunicationUniversity of Oslo

Conditional GET: client-side caching
§ Goal: don’t send object if client

has up-to-date cached version

§ client: specify date of cached
copy in http request
If-modified-since: <date>

§ server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not Modified

client server

http request msg
If-modified-since: <date>

http response
HTTP/1.0
304 Not Modified

object
not
modified

http request msg
If-modified-since: <date>

http response
HTTP/1.1 200 OK
<data>

object
modified

21

INF3190 – Data CommunicationUniversity of Oslo

Web Caches (proxy server)

§ user sets browser: Web
accesses via web cache

§ client sends all HTTP requests
to web cache
− object in web cache: web

cache returns object
− else web cache requests

object from origin server, then
returns object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

Assumption: cache is closer to client (e.g. same network) => faster,
less “long-distance” traffic

INF3190 – Data CommunicationUniversity of Oslo

Changes in HTTP/2
textual protocol

can be written manually
can be read when intercepted

easy to add (and ignore) proprietary
extensions

very talkative

binary protocol
saves space

less data to write and parse
exactly specified
hard to extend

uncompressed header
required in 1.0

avoidance eases transition to 1.1

compressed header
adds a lookup table

may save space
info like: cookies, referer, stream

dependencies, weighting, priorities,
client identification, ...

22

INF3190 – Data CommunicationUniversity of Oslo

Changes in HTTP/2
ordered and blocking

speed-up by using several parallel
TCP connections (1.x)

speed-up by using pipelining (1.1)

multiplexed
send all requests at once

server chooses order (e.g. send

advertising inlays first) and can mix
messages

GET “body”

GET “img”
GET “img”
GET “css”

get “body”

get “img”
get “img”
get “css”

app-layer flow control per subflow

INF3190 – Data CommunicationUniversity of Oslo

Changes in HTTP/2
client pull

assumption: server is stateless
client pull + server push
assumption: server knows best

pipeline multiplex server push

23

INF3190 – Data CommunicationUniversity of Oslo

SMTP and MIME
Simple mail transfer protocol

Multipurpose Internet mail extensions

Application layer
in the TCP/IP stack

INF3190 – Data CommunicationUniversity of Oslo

Electronic Mail
§ Major components

− “mail clients”
Message User Agents (MUAs)

− “mail servers”
Message Submission / Transfer / Delivery Agents (MSA,
MTA, MDA)

• often realized as one component called
Message Handling Service (MHS)

§ MUA
− a.k.a. “mail reader”
− composing, editing, reading mail messages
− outgoing, incoming messages stored on server

24

INF3190 – Data CommunicationUniversity of Oslo

Electronic Mail: mail servers

Mail Servers
§ mailbox contains incoming messages

(yet to be read) for user

§ message queue of outgoing (to be
sent) mail messages

Simple Mail Transfer Protocol
(SMTP)
§ between mail servers to send email

messages

§ client: sending mail server

§ server: receiving mail server

user mailbox

outgoing
message queue

user agents

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

SMTP

POP3

INF3190 – Data CommunicationUniversity of Oslo

Electronic Mail: SMTP
§ uses TCP to reliably transfer email message from client to server, port 25
§ direct transfer: sending server to receiving server
§ three phases of transfer

− handshaking (greeting)
− transfer of messages
− closure

§ command/response interaction
− commands: ASCII text
− response: status code and phrase

§ messages must be in 7-bit ASCII

25

INF3190 – Data CommunicationUniversity of Oslo

Sample SMTP interaction

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

INF3190 – Data CommunicationUniversity of Oslo

Handmade SMTP
telnet servername 25

see 220 reply from server
enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands
above lets you send email without using email client (reader)

26

INF3190 – Data CommunicationUniversity of Oslo

SMTP: final words
SMTP uses persistent connections

SMTP requires message (header &
body) to be in 7-bit ASCII

Certain character strings not permitted
in msg (e.g., CRLF.CRLF). Thus msg
has to be encoded (usually into either
base-64 or quoted printable)

SMTP server uses CRLF.CRLF to
determine end of message (no length
header)

Comparison with HTTP/1.x:
§ HTTP: pull
§ STMP: push

− until final server!
− until recently: reading mails on final

server itself using NFS

§ both have ASCII
command/response interaction,
status codes

§ HTTP
− each object encapsulated in its

own response msg
§ SMTP

− originally the same
− now: multiple objects sent in

multipart msg

INF3190 – Data CommunicationUniversity of Oslo

Mail message format
SMTP: protocol for exchanging

email msgs
Standard for text message

format:
§ header lines, e.g.,

− To:
− From:
− Subject:
different from SMTP

commands!
§ body

− the message , ASCII
characters only

header

body

blank
line

27

INF3190 – Data CommunicationUniversity of Oslo

Message format: multimedia extensions
MIME: multipurpose Internet mail extension

additional lines in msg header declare MIME content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

“classical” mail may indicate:
Content-type: text/ascii
but 7-bit ASCII text is still the default

INF3190 – Data CommunicationUniversity of Oslo

MIME types
Content-Type: type/subtype; parameters

Video
§ example subtypes: mpeg,

quicktime

Application
§ other data that must be

processed by reader before
“viewable”

§ example subtypes: msword,
octet-stream

Text
§ example subtypes: plain,

html

Image
§ example subtypes: jpeg, gif

Audio
§ example subtypes: basic

(8-bit mu-law encoded),
32kadpcm (32 kbps coding)

28

INF3190 – Data CommunicationUniversity of Oslo

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data
--98766789--

SM
TP header

SM
TP body

M
IM

E header

M
IM

E body

INF3190 – Data CommunicationUniversity of Oslo

Mail access protocols

§ SMTP: delivery/storage to receiver’s server
§ Mail access protocol: retrieval from server
− POP: Post Office Protocol

• authorization (agent <==> server) and download
− IMAP: Internet Mail Access Protocol (InterimèInteractiveèInternet)

• more features (more complex)
• manipulation of stored messages on server

− HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver s mail
server

29

INF3190 – Data CommunicationUniversity of Oslo

POP3 protocol
authorization phase
§ client commands:

− user: declare username
− pass: password

(plain text!)
§ server responses

− +OK
− -ERR

transaction phase, client:
§ list: list message numbers
§ retr: retrieve message by number
§ dele: delete
§ quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

INF3190 – Data CommunicationUniversity of Oslo

IMAP protocol example (from RFC3501)

C: <open connection>
S: * OK IMAP4rev1 Service Ready
C: a001 login mrc secret
S: a001 OK LOGIN completed
C: a002 select inbox
S: * 18 EXISTS
S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
S: * 2 RECENT
S: * OK [UNSEEN 17] Message 17 is the first unseen message
S: * OK [UIDVALIDITY 3857529045] UIDs valid
S: a002 OK [READ-WRITE] SELECT completed
C: a003 fetch 12 full
S: * 12 FETCH (FLAGS (\Seen) INTERNALDATE "17-Jul-1996
02:44:25 -0700"

RFC822.SIZE 4286 ENVELOPE ("Wed, 17 Jul 1996 02:23:25
-0700 (PDT)"

"IMAP4rev1 WG mtg summary and minutes"
(("Terry Gray" NIL "gray" "cac.washington.edu"))
(("Terry Gray" NIL "gray" "cac.washington.edu"))
(("Terry Gray" NIL "gray" "cac.washington.edu"))
((NIL NIL "imap" "cac.washington.edu"))
((NIL NIL "minutes" "CNRI.Reston.VA.US")
("John Klensin" NIL "KLENSIN" "MIT.EDU")) NIL NIL
"<B27397-0100000@cac.washington.edu>")
BODY ("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL

"7BIT" 3028
92))

S: a003 OK FETCH completed
C: a004 fetch 12 body[header]
S: * 12 FETCH (BODY[HEADER] {342}
S: Date: Wed, 17 Jul 1996 02:23:25 -0700 (PDT)
S: From: Terry Gray <gray@cac.washington.edu>
S: Subject: IMAP4rev1 WG mtg summary and minutes
S: To: imap@cac.washington.edu
S: cc: minutes@CNRI.Reston.VA.US, John Klensin
<KLENSIN@MIT.EDU>
S: Message-Id: <B27397-0100000@cac.washington.edu>
S: MIME-Version: 1.0
S: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
S:
S:)
S: a004 OK FETCH completed
C a005 store 12 +flags \deleted
S: * 12 FETCH (FLAGS (\Seen \Deleted))
S: a005 OK +FLAGS completed
C: a006 logout
S: * BYE IMAP4rev1 server terminating connection
S: a006 OK LOGOUT completed

30

INF3190 – Data CommunicationUniversity of Oslo

IMAP can do more
§ IMAP capabilities

− create, delete, rename mail folders
− check for new messages, remove messages, set and clear flags
− parse, search, selective fetch
− search WITHIN messages
− STORE and conditional STORE
− CATENATE (to concatenate)

§ often used for:
− TODOs
− Notes with or without Mime elements

§ but: replace “message” with “file” and you have a quite
complete file system

INF3190 – Data CommunicationUniversity of Oslo

Summary
§ First peek at structure of distributed applications
§ Presentation Layer functions
§ Domain Name Systems

− with note on CDNs
§ HTTP
§ SMTP

− and an example for POP3 and IMAP

