
Cogito, Ergo Suml
Cognitive Processes of Students Dealing with Data Structures

Dan Aharoni

Department of Education in Technology and Science, The Technion, Israel
IBM Research Labs in Haifa, Israel

aharoni~netvision.net.il

Abstract

A research that has just recently been finished, investigated
thinking processes that occur in the minds of students
dealing with data structures. The research findings are
pointed out in this paper, and two of them are elaborated.
One is the phenomenon of programming-context thinking.
This type of thinking stems from comparatively low level
of abstraction gained by students in a d~a structures
course. Programming-context thinking is the eause of other
phenomena found in the research, and one such
phenomenon- perception of a data structure as static or
dynamic - - is also elaborated. Implications for data
structures instruction are discussed.

Apart from presenting the research results, this paper serves
as an example of cognitive research - - a kind of research
that is still not broadly enough done in Computer Science
Education. It is one purpose of this paper to manifest the
need for more such research.

1 Introduction: The Need for Research of
Cognitive Processes

"Cogito, ergo s u m / " - - " I think, therefore I am!" - - said
Descartes (Figure' 1), and by doing so he focused our
attention to the very essence of a human being, namely:
Thinking. In a more professional fashion we might say that
Descartes focused our attention to cognitive processes.

Cognitive processes research have long become a most
important trend in educational research, especially in
science education research. Cognitive processes are the
backbone of Constructivism, a dominant approach in
learning theories (see, for example, [9]), which has major
implications for teaching [5] as well as for research.

The very heart of constructivism is the view of the learner

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advent
-age and that copies bear this notice and the full cita¼ion on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3/00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/OO/0OO3...$5.O0

Figure 1. Ren6 Descartes (1596 - 1650)

as an active entity, and the view of knowledge as being
constructed in the learner's mind, rather than being
transmitted from the teacher to the learner [6]. R is an
obvious conclusion from this approach, that research of
learning products is not sufficient, and there is a need for
research of cognitive processes that lead to these products.

Indeed, in Mathematical Education there is a substantial
amount of study of mental processes. There is even a
special community that deals with Psychology of
Mathematics Education (PME); see, for example, [14].
Computer Science Education (CSE), on the other hand, is
still in its infancy, compared to Mathematics Education,
and there is still very little research done in the field of
Psychology of Computer Science Education (Is this an
opportunity to establish such a field - - PCSE?).

Ben-Ari pointed out that constractivism is still not enough
appreciated in CSE, and he showed "how the theory can supply
a lheorelical basis for debalin9 issues and evaluatin9 proposals" [2].
The present paper introduces some results of a research
which purposes, questions and methods are dictated by the
constructivist approach. The research focused on Data
Structures (DS), and in accordance to constructivism it
investigated mental processes in students dealing with DS.
Due to space limitations, only two of the results are
presented here. The results presented here may also serve
as examples for outcomes of this kind of research, as well
as a call for enlarging PCSE research in the future.

26

2. Research Design and Findings

The r e s e a r c h - "Undergraduate Students' Perception of
Data Structured" ~ focused on thinking processes which
occurred when undergraduate students dealt with DS. As a
first study of mental processes involved in dealing with DS,
the research sought for phenomena specific to the
investigated domain, phenomena that may be used in the
future to build a more solid theory. Also, There is
substantial evidence that quantitative research hardly
provides an understanding of the knowledge and of the
thinking processes in the learner's mind (An eye-opening
example of this fact may be found in Erlwanger's study [7],
and a broad discussion is given in [31 pp. 1-57). Hence the
research made use of qualitative methods, a major
paradigm in contemporary educational research [3, 10].

The research was a case study, and involved 9 Computer
Science (CS) majors in a major Israeli university,
participating in an introductory DS course. These students
have already studied basic DS concepts in a previous CS
introductory course ('Introduction to Computer Science").

Semi-structured observational interviews were used as the
main data collection tool. The interview questions covered
topics such as: data structures in general, arrays, stacks,
queues, linked lists, and the construction of a data structure
to fit the requirements of a given problem.

There is hardly any research on mental processes involved
in thinking about CS concepts. However, the domain of DS
is mathematical in its nature: h deals with abstract entities
and operations on them, much like what is done in
mathematics. Hence, methods and theoretical frameworks
from research on mathematical thinking were used.

It should be pointed out, though, that there are subtle
differences between DS entities and mathematical ones.
Some of these differences lie in the way the term
abstraction is used in math vs. CS, a topic elaborated by
Leron [111. For the sake of the following discussion, it will
suffice here to mention one such difference discussed in
[11] - - the difference in what is taken to be the opposite of
"abstract" in the two disciplines. In mathematics, a
conunon answer is, "the opposite of abstract is concrete".
Thus, if students in an abstract algebra course complain (as
they frequently do) that the stuff is too abstract, a standard
response would be to give a "concrete" example. In CS, in
contrast, the opposite of "abstract" us~ally means "dealing
with the details of implementation in a partio,lar machine
or in a particular programming language."

The research findings include cognitive factors as well as
af~ctive ones. Cognitive factors found were: Low level of
abstraction gained by the students; programming-context
thinking (see section 3.1); pragmatism (Seeking the
practical use of each DS); "complexity above all"; using a
specific programming language syntax within pseudo-code;
perception of DS as static or dynamic (see section 3.2);
perception of DS's ability to be empty; the idea that all the

elements in a DS have the same type; conflicting mental
structures for the same DS; constraint-oriented thinldng
(Solving a problem while referring to the problem's
constraints, rather than starting with the problem demands
and imposing the constraints later); visual representations
of DS; conj~tures on prototypes of DS categories; beliefs
concerning DS.

Affective factors found in the research were: Avoidance of
detailed algorithms, and avoidance of possible algor/tluns
with high complexity.

The research findings couldn't, of course, be presented here
to their full extent. Here they were only set out by their
names. In the next section, two of them are discussed as
examples, together with a discussion of their implications
for DS instruction. Genuine interview excerpts (translated
to English) are included; the names of the interviewees are
fictitious.

3 Two of the Cognitive Processes Involved in
Dealing with DS

3.1 Thinking Types Related to Programming

Let us consider the following question:

What is an away?

Notice that this question is completely general, in the sense
that it doesn't refer to any particular kind of array. As such,
a general answer may be expected. From the DS domain
point of view, a "general answer" would be an answer that
refers to an abstract array, something like this:

An array is a collection of ordered pairs 0ndex-set' value), where all
the index-sels are distinct, together with the operations INSERT
(inserting a new pair into the array) and GET (returning the
value at a specified index).

This, of course, is not the correct answer, if there is such an
answer anyway; it is merely one possible general answer.

The above question was posed to student interviewees, as
well as to CS professionals. The majority of the answers
may be summarized in Roy's answer:

Roy: An array is a conlinuoes area in the [computer's] memory,
which holds elements of Ihe same type. We can access each
element by specifying its index; which is a whole number.

Let us analyze Roy's answer:

• Roy is talking about the array as being
implemented in some computer's memory, namely:
in some computer program. He uses programming
oriented thinking.

• Moreover, Roy talks about the array as occupying a
continuous area of the computer's memory, as
holding elements of the same type, and the indices
are seen as whole numbers. These properties don't
necessanl" y hold for arrays in any programming
language; they do hold, however, for a particular

27

programming language Roy usually uses - - the C
programming language. Thus, Roy uses
programming-language oriented thinking, i.e.
thinking tied to a specific programming language.

Here is another segment from an interview with Ann. She
was asked to build some algorithm, again - - a general
algorithm, and not a computer program. She described her
algorithm in which a stack was used. During the discussion
she said CI " is a shorthand for "Int:erv±ewer"):

Ann: What I'll do in the beginning, [...] I'll do POP until I get to the
beginning of the stack.

I: How do you know that you 9or the beffnnin9 of the stack, by
the way?

Ann: [Pauses for a few seconds] I know the begnning address [of
the stack], don't I?

Ann's last answer is correct, thinking of the stack as being
implemented in C. But this answer refers to the
implementation of the stack, rather than to an abstract stack
that could be used in the general algorithm she was
building. The fact that she isn't referring to the abstract
stack can be seen from her talk about the beginning
address: Dealing with an abstract DS, there is no meaning
whatsoever to an address. Ann's thinking is
programming-language oriented too.

These were only two examples from a vast amount of
evidence to progranuning oriented thinking and to
l~ogramming-language oriented thinking. Due to space
limitations no other examples will be presented here.

Let us summarize the three types of thinking related to
programming: We saw programming oriented thinking,
we saw programming-language oriented thinking, and,
of course, we can talk of a programming-free thinking.
We shall refer to the first two types as
programming-context thinking.

As was discussed above, what differentiates between these
three types of thinking is the level of abstraction they relate
to, as can be seen in Figure 2.

It is important to understand, that there isn't any claim here
whatsoever that the students were incapable of
programming-free thinkinff, they could use such
th ink ing - and at times they did, especially in situations
where they had no choice but to think abstractly. The
examples above only showed, that they used
programming-context thinking whenever they could.

And, in fact, why shouldn't they think concretely? Here we
come to one explanation of the phenomenon: The
convenience o f concrete thinking. They are used to the C
programming language, at class, and for their homework.
Pulling themselves away from the familiar environment
and moving to an abstract discussion is something they
were not used to since they were not asked to do so
frequently enough. They haven't been challenged enough
during the course to use abstraction, and so didn't feel the

l~rogr~ing-Context

Figure 2. Abstraction levels of thinking types related to
programming

need for it. Using the most convenient cognitive tools for
problem solving exemplifies the coping theory presented in
[12], and the principle o f necessity presented in [8].

The three thinking types express stages of abstraction
presented in the Actions-Process-Object model, which is
considered today as one of the central models of concept
formation. It is discussed by many researches, e.g. [4], [13],
and a simplified version of it is iHuswated in Figure 3.

Turn

into Input to

/

Figure 3. A simplified version of the
Actiom-Proceu-Object model

According to this model, the formation of a new concept of
a mathematical entity begins with actions performed on
some physical or mental objeOs. When the learner gains
the ability to refer to these actions using symbols and in
inpuffoulput manner, without carrying out the specific
actions themselves, we say that the actions were
transformod into a process. The last stage is transforming
the process into an object: The learner can now refer to the
entity much like she refers to a physical one. She sees it as

28

a whole static entity, recognizable at a glance, which may
be thought of without any reference to its process view.
Now the new formed object may be used as input to new
actions which will be transformed to a process, then to a
new ~ more abstract - - object, and so forth. This whole
pr(x:edure is, in fact, one procedure of abstraction.

Going back to our three types of thinking, it seems that
programming-free thinking may be invoked only if the
concept of the DS at hand has already been developed to its
object stage, the only stage that enables thinking about
abstract DS. If the concept is still in its process stage, we
are witnessing programming oriented thinking, where the
learner still has to think of the DS as being implemented
within some program - - not necessarily using some
specific programming language. Programming-language
oriented thinking is seen when the concept is still in its
actions stage, where the learner must refer to the specific
arrangement of the concrete DS in the computer's memory,
to specific addresses within that DS implementation, and to
specific operations performed within that implementation.

We can summarize, then, that DS concepts were developed
,in the students" minds to the stage of a process. Sometimes
that stage hasn't even been fully formed, and the concepts
are in transition from the actions stage to the process stage.
There are times when the students can refer to abstract DS,
but mostly they do not do so. This shows that the formation
of the concept's object view has started, but the object is
still a weak mental structure that doesn't take control unless
there is no other option. It was argued that the students
didn't develop an adequate level of abstraction because
they haven't been sufficiently exposed to the need and
usefulness of high abstraction levels. Thus, they are not
skilled in posing abstraction barriers [1, 11] that are
necessary for programming-free thinking.

The three types of programnfing related thinking are the
base explanation for other phenomena found in this
research. The next section demonstrates one such
phenomenon.

3.2 Percept ion o f a DS as Static or D y n a m i c

Let us go back to the question "what is an arrayT" Here is
Joy's answer to that question, and a segment of the
discussion that followed it:

Joy: Well, like, an area in the memory [...] like, like such a table in
Ibe memoff, which is a specified place, like, a defined
number of celis, [...] to hold informalion in some...

I: What does it mean a defined number?

Joy: Like, something lhat cannot be chanfled [emphasis added],
and... Like, information can be saved and each cell can be
accessed by, by its name, ~ index

Joy sees the array as a static DS, in the common meaning
of "its size cannot be changed". During the interviews Joy
used the C programming language, and here she is talking
about this language's mechanism for arrays, which are

static data types. On another interview, where Joy dealt
with a question of implementing an array using stacks only,
she was asked:

I: OK. When is it wodhwhile, anyway, using such algorilhms,
imOementafion of an away using a stack?

Joy: [Pauses for a few seconds] I don't know. in fact one can. like.
make an array which size is not limited, because a stack --
you can in fact conlinue it.

In this case, Joy associates w i th the array a new property
not referred to up to now: The dynamic nature. And why?
Because it is implemented using a stack and Joy sees a
stack as inherently dynamic, and consequently - - the array
is seen as dynamic. She ignores the fact that previously she
referred to an array as a static DS.

We see that when Joy refers to some DS, she associates
with it either dynamic nature or static nature. She later
sununarized it as follows:

A stack can grow to some, like infinite lenglh if you can say so, and
an array is constant [m length]. In k'ees also if we build some tee it
has a policy of a binary tree, search tee, etc., this time they have
dynamic allocation, they can grow.

Each of the interviewees showed similar perception, and
most of the time they referred to arrays as static, to linked
fists, stacks and queues as dynamic, and to trees as dynamic
but their nodes - - static.

It seems that this situation is rooted in the fact that
whenever possible, the students use programming-language
oriented thinking. This kind of thinking causes the students
to think of the DS as residing within some computer
program. The students are used to the C progranuning
language, and so when they refer to an anay - - they see
C's array mechanism, which is static. When, on the other
hand, they refer to stacks and quen~s ~ they cannot refer
to them as predefined data types, since such data types are
not included in C. In this case they have to invoke
programming-free thinking, tamely: Thinking about the
abstract DS "stack" and "queue", which are dynamic. The
same holds for trees: C doesn't have "tree" as a predefined
data type, and so its abstract facet must be considered; but
when implementing a tree, C's s t :~:uct :ures are usamlly
used for nodes implementation, so the students can - -
again - - use programming-language oriented thinking
which leads them to see these nodes as static.

4. I m p l i c a t i o n s f o r D a t a S t r u c t u r e s I n s t r u c t i o n

In discussions with instructors of a DS course they
specifically pointed out that understanding abreact DS was
one of the mam goals of the course. The lecturers also
expressed their belief that students do not gain the expected
ability to deal with abstract DS. The research presented
here supported this belief with systematic evidence.

The finding that the students gained only low level of
abstraction, compared to what was expected by the

29

instructors, and compared to what might be a more useful
level of abstraction for problem solving, raised the need to
accelerate the abstraction process during DS courses. As
we saw, the phenomenon of low abstraction level stems
from the fact that students were not sufficiently exposed to
situations where abstract thinking would prove to be much
more useffill than less abstract one. Hence, a remedy may be
the creation of such situations for the students.

One way of putting the students in the appropriate situation
is to provide them with a computerized environment
containing pre-prepared DS, such as arrays, stacks, queues,
trees of different kinds, etc. The implementation of these
DS shouldn't be exposed to the students, at least not in the
beginning of the course. The students should get
assignments from the teachers, so they can "play" with the
DS much like they would do with concrete objects. Thus,
this environment is used as a toolbox, where the tools are
DS.

Such environment poses proper abstraction barriers for the
students, who are unable to do so by themselves, as we
saw. This way, it is conjectured, the students will be able to
develop the needed level of abstraction. Only after that
level of abstraction is developed, the course can eater its
next stage, where implementations of DS are also studied.

S, Conclusion
The goal of this paper was twofold: First, it meant to bring
before the reader some findings from a research about
thinking processes taking place while students think of DS.

Second, this paper should draw CSE researchers attention
to this kind of research, namely: Scrutinizing cognitive
processes. The understanding of processes which underlay
the thinking of our students is extremely important, since it
may lead us to ways of improving their learning and aiding
them in developing knowledge which is more useful for
problem solving.

Let this paper serve as a call for more cognitive research in
Computer Science Education in the (hopefully near) future.

Acknowledgements
I would like to thank Prof. Uri Leron from the Department
of Education in Technology and Science, in the Technion,
Israel Institute of Technology, who supervised this
research, enlightened my way through it, and also provided
me with comments about this paper.

References
[1] Abelson, H., & Sussman, G. (with Sussman, J.).

Structure and implementation of computer programs.
Cambridge, MA: MIT press, 1985.

[21 Ben-Ari, M. Constructivism in Computer Science
Education. Proceedings of the twenty-ninth SIGCSE

technical symposium on Computer science education
(SIGCSE '98), 257-261, Atlanta, GA, 1998.

[3] Bogdan, R.C., & Biklen, S. K. Qualitative research
.lbr education. Boston: Allyn And Bacon, 1992.

[4] Breidenbach, D., Dubinsky, E, Hawksl J., & Nichols,
D. Development of the process conception of
function. Educational Studies in Mathematics, 23,
247-285, 1992.

[51 Brooks, J.G., & Brooks, M.G. The case for
constructivist classrooms. Alexandria, Virginia:
Association for Supervision and Curriculum
Development, 1993.

[6] Davis, R.B., & Maher, C.A. What do we do when we
"do mathematics"? In R. B. Davis, C. A. Maher & N.
Noddings (Eds.), Constructivist views on the teaching
and learning of mathematics (Journal for Research in
Mathematics Education (JRME), monograph No. 4,
chap. 8, pp. 65-78). The National Council of Teachers
of Mathematics, Inc., 1990.

[7] Erlwanger, S.H. Benny's conception of rules and
answers in IPI mathematics. The Journal of
Children's Mathematical Behavior (JCMB), 1 (2), 7-
26, 1973.

[8] Harel, G. Two Dual Assertions: The first on learning
and the second on teaching (Or v/ce versa). The
American Mathematical Monthly, 105, 497-507,
1998.

[9] Kilpatrick, J. What constructivism might be in
mathematics education. In J.C. Bergeron, N.
Herscovics, & C. Kieran (Eds.), Proceedings of the
eleventh International Conj~rence for the Psychology
of Mathematics Education (PMEI I): Vol. I (pp. 3-
27). Montr6al, 1987.

[10]LeCompte, M.D., & Preissle, J. Ethnography and
qualitative design in educational research. San
Diego: Academic Press, 1993.

[11] Leron, U. Abstraction barriers in mathematics and
computer science. In J. Hilel (Ed.), Proceedings of the
third International Con./brence for Logo and
Mathematics Education. Montr6al, 1987.

[12]Leron, U., & Hazzan, O. The world according to
Johnny: A coping perspective in mathematics
education. Educational Studies in Mathematics, 32,
265-292, 1997.

[13]Sfard, A. On the dual nature of mathematical
conceptions: Reflections on processes and objects as
different sides of the same coin. Educational Studies
in Mathematics, 22, 1-36, 1991.

[14]Zaslavskey, O. (Ed.) Proceedings of the 23 "~
conj~rence of the International Group for the
Psychology of Mathematics Education (PME23).
Haifa, Israel: Technion, Israel Institute of
Technology, 1999.

30

