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The Strategic Use of Complex
Computer Systems

Suresh K. Bhavnani and Bonnie E. John
Carnegie Mellon University

ABSTRACT

Several studies show that despite experience, many users with basic com-
mand knowledge do not progress to an efficient use of complex computer appli-
cations. These studies suggest that knowledge of tasks and knowledge of tools
are insufficient to lead users to become efficient. To address this problem, we ar-
gue that users also need to learn strategies in the intermediate layers of knowl-
edge lying between tasks and tools. These strategies are (a) efficient because
they exploit specific powers of computers, (b) difficult to acquire because they
are suggested by neither tasks nor tools, and (c) general in nature having wide
applicability. The above characteristics are first demonstrated in the context of
aggregation strategies that exploit the iterative power of computers. A cognitive
analysis of a real-world task reveals that even though such aggregation strate-
gies can have large effects on task time, errors, and on the quality of the final
product, they are not often used by even experienced users. We identify other
strategies beyond aggregation that can be efficient and useful across computer
applications and show how they were used to develop a new approach to train-
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ing with promising results. We conclude by suggesting that a systematic analysis
of strategies in the intermediate layers of knowledge can lead not only to more
effective ways to design training but also to more principled approaches to de-
sign systems. These advances should lead users to make more efficient use of
complex computer systems.

1. INTRODUCTION

A dominant goal of the human–computer interaction (HCI) field has been
to design facile interfaces that reduce the time to learn computer applications.
This approach was expected to enable users to quickly perform simple tasks
with the implicit assumption that they would refine their skills through experi-
ence. However, several longitudinal and real-world studies on the use of com-
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plex computer systems such as UNIX® (Doane, Pelligrino, & Klatzky, 1990),
word processors (Rosson, 1983), spreadsheets (Nilsen, Jong, Olson, Biolsi, &
Mutter, 1993), and computer-aided drafting (Bhavnani et al., 1996) have
shown that despite experience, many users with basic command knowledge
do not progress to an efficient use of applications. These studies suggest that
knowledge of tasks and knowledge of tools on their own are insufficient to
make users more efficient.

In this article we argue that, in addition to task and tool knowledge, us-
ers must also learn an intermediate layer of knowledge that lies between the
layers of tasks and tools. This intermediate layer can be illustrated in even
very simple tasks performed with simple tools. Consider the task of driving
in a nail with a hammer. The task description (drive in a nail), together with
the design of the hammer (designed to afford gripping), leads a user to
grasp the handle, hold the nail in position, and hit it with repeated blows.
Although this method can achieve the goal, it often leads to bent or
crooked nails or fingers being accidentally hit with the hammer. In contrast,
master craftsmen know that a quicker way to avoid these problems is: First,
tap the nail to guarantee its proper angle of entry and to hold it in place.
Second, remove the fingers holding the nail. Third, drive in the nail with
heavier blows. The knowledge of this efficient method is expressed neither
in the task description nor by the design of the handle. Instead, this knowl-
edge lies between the layers of tasks and tools. This intermediate layer of
knowledge has to be learned, and the cost of learning is amortized over
subsequent use of the hammer to drive in nails.

In this article we focus on efficient strategies to use computer applications
that lie in the intermediate layers of knowledge. We show that these strategies
are (a) efficient because they exploit specific capabilities provided by comput-
ers; (b) difficult to acquire from tool and task knowledge alone; and (c) general
in nature, therefore having wide applicability.

Section 2 introduces the three previously mentioned concepts in the con-
text of aggregation strategies that exploit the iterative power of computer ap-
plications. Section 3 provides empirical evidence that these strategies are not
spontaneously acquired by experienced users but, if used, can reduce task
time and errors. Section 4 discusses possible explanations why such strategies
are not easily learned or used. Section 5 expands the notion of strategies be-
yond those to perform iterative tasks and briefly discusses their implications to
strategic training. In conclusion, we present some concepts that could lead to a
general framework to systematically identify efficient strategies at different
levels of generality. The goal is to help designers and trainers identify strate-
gies that make users more efficient in the use of complex computer applica-
tions.
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2. STRATEGIES IN THE INTERMEDIATE LAYERS OF
KNOWLEDGE

Complex computer applications such as UNIX®, CAD, word processors,
and spreadsheets often provide more than one way to perform a given task.
Consider the task of drawing three identical arched windows in a CAD sys-
tem. As shown in Figure 1A, one way to perform this task is to draw all the arcs
across the windows, followed by drawing all the vertical lines, followed by
drawing all the horizontal lines. An alternate way to do the same task (as
shown in Figure 1B) is to draw all the elements of the first shape (Detail), group
these elements (Aggregate), and then make multiple copies of the aggregate to
create the other shapes (Manipulate). Both of these methods allow a user to
complete the task. We call such nonobligatory and goal-directed methods
strategies. The Sequence-by-Operation and Detail–Aggregate–Manipulate
methods described previously are prime examples of strategies that can be
used in complex computer systems.

2.1. Strategies That Exploit the Iterative Power of
Computers

The advantage of the Sequence-by-Operation strategy is that by drawing all
arcs, followed by drawing all lines, the user reduces switching between tools.
Although the Sequence-by-Operation reduces tool switching, the user still
must perform the iterative task of creating each of the elements. In contrast,
the advantage of the Detail–Aggregate–Manipulate strategy is that the user
draws the elements of only one window, and the computer performs the itera-
tive task of creating copies of the other windows when given their locations.
However, a critical part of this strategy is that the user must make sure that all
the elements in the original are complete and error free before they are
grouped and copied. This avoids having to make corresponding changes in
each copy.

The Detail–Aggregate–Manipulate strategy exploits the iterative power of
computers through the capability of aggregation provided by most computer
applications. For example, most CAD systems, word processors, and spread-
sheets allow users to aggregate groups of objects by dragging the cursor over a
selection, and then applying to this aggregate manipulations or modifications
such as copy and delete. By grouping before applying operations, the user ex-
ploits the iterative power of the computer because the computer performs the
iteration over all the elements in the group. This notion is captured in the basic
strategy Aggregate–Manipulate/Modify of which the Detail–Aggregate–Ma-
nipulate is just one of several variations. We refer to all of these strategies as ag-
gregation strategies (Bhavnani, 1998). We show in Section 3 that aggregation
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strategies are in fact much more efficient in terms of time and errors when
compared to Sequence-by-Operation.

Figure 2 shows decompositions of the Sequence-by-Operation and De-
tail–Aggregate–Manipulate strategies for the draw three windows task. These
decompositions reveal that the strategies exist in an intermediate layer of
knowledge lying between the task description (at the top of the decomposi-
tion) and the commands to complete the task (at the bottom). The location of
these strategies in the intermediate layers of knowledge profoundly affects
their learnability and generalizability.

2.2. Acquiring Strategies in the Intermediate Layers of
Knowledge

Because strategies such as Detail–Aggregate–Manipulate reside in the in-
termediate layers of knowledge above commands, they are difficult to infer
from command knowledge. For example, in the task to draw three windows,
knowledge of how to use commands such as draw line and group elements in a
CAD system is not sufficient to know that it is important to complete all the ele-
ments of the first window before grouping and copying. This has led to the
general observation that good interface design on its own cannot lead to effi-
cient use (Bhavnani & John, 1997). Furthermore, when different strategies can
accomplish the same task, the task itself also cannot express this strategic
knowledge. This knowledge, therefore, must be learned by various processes
such as through trial and error or through explicit instruction. In fact, we show
in Section 3 that, despite mastery of basic commands, many users do not spon-
taneously acquire strategic knowledge to use commands efficiently.

COMPLEX COMPUTER SYSTEMS 111

Figure 1. Two strategies to perform the task of drawing three windows in a CAD sys-
tem. From “Exploring the Unrealized Potential of Computer-Aided Drafting,” by S. K.
Bhavnani and B. E. John, 1996, Proceedings of CHI’96, p. 337. Copyright 1996 ACM, Inc.
Reprinted by permission.
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There is a cost to learning strategies such as Detail–Aggregate–Manipulate.
Users must learn to recognize opportunities to operate on groups of objects to
exploit iteration and then know a sequence of actions to execute the strategy.
As shown in Figure 2, the aggregation strategy requires a very different task de-
composition compared to strategies that operate on single elements. How-
ever, this learning cost is amortized over the efficiency gains over many
invocations of the strategy. This is similar to learning to use any new device ef-
ficiently whether it is a hammer or a computer application. Furthermore, we
have empirical evidence to show that, when given appropriate instruction, us-
ers can easily learn to recognize and use strategies such as Detail–Aggre-
gate–Manipulate (Bhavnani, John, & Flemming, 1999). After a few weeks of
class instruction and practice, architectural graduate students learned to de-
compose complex architectural drawings by using aggregation strategies, in
addition to learning commands. An important reason that these strategies
were easily learned was because repeated elements are intrinsic to architec-
tural designs (Flemming, Bhavnani, & John, 1997). Windows, doors, columns,
and even entire façades are repeated or mirrored to create designs, and it is
typical for an architect to exploit these repetitions while creating drawings. Ag-
gregation strategies such as Detail–Aggregate–Manipulate therefore exploit
how architects already think about objects in their designs. These results are
not unique to teaching CAD strategies to architectural graduate students. Sec-
tion 5.4 discusses preliminary results from our ongoing research, which shows
that strategies can be taught in a short amount of time to a diverse population
of freshmen students.

112 BHAVNANI AND JOHN

Figure 2. Decompositions of the task to draw three windows. The Sequence-by-Opera-
tion and Detail–Aggregate–Manipulate strategies lie in the intermediate layers of
knowledge below the task, and above the commands.
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2.3. Generality of Strategies in the Intermediate Layers of
Knowledge

Because strategies such as Detail–Aggregate–Manipulate reside in the lay-
ers above the command layer, they are not dependent on specific implemen-
tations of commands in an application. For example, the step aggregate, in the
Detail–Aggregate–Manipulate strategy, can be executed by many different
commands in different applications. Aggregation strategies, therefore, are
generally applicable across computer applications. Figure 3 shows three ag-
gregation strategies and how they generalize across computer applications.
The first row shows how the Detail–Aggregate–Manipulate strategy can be
used in CAD (as already discussed in Figure 1B and in Bhavnani & John, 1996)
and in other applications; in a spreadsheet application it can be used to create
a row of data, aggregate it into a range, and operate on the range using a for-
mula; in a word processor, the strategy could be used to copy paragraphs of
text across files.

Next, the Aggregate–ModifyAll–ModifyException strategy allows a user
to exploit aggregation to handle exceptions. For example, if all except one of a
group of elements need to share an attribute, it is better to modify all of them
and then change the exception than to modify each on its own. The Aggre-
gate–ModifyAll–ModifyException strategy can also be used both to modify
the width of columns with an exception and in a word processor to handle ex-
ceptions during the font modification of a paragraph.

Finally, the Locate–Aggregate–Manipulate–Modify strategy in CAD can
be used to exploit similarity in a drawing by copying a figure that is already
drawn and modifying it. In spreadsheets, this strategy could be used to copy
and modify complex sets of formulae. The formulas shown contain absolute
and relative referencing of cells that can be modified and reused in another lo-
cation. In word processors, the strategy could be used to copy and modify a
section containing complex formatting.

To summarize, this section described the existence of a set of aggregation
strategies that reside in the intermediate layers of knowledge. We argued that
these aggregation strategies are (a) efficient because they exploit the iterative
power of computers, (b) difficult to acquire spontaneously from knowledge of
commands or tasks, and (c) generalizable across computer applications. In the
next section we analyze the first two points in more detail. First, we describe a
GOMS analysis of a real-world task to precisely understand how aggregation
strategies can affect performance. Second, we provide empirical evidence
from other studies to show that aggregation strategies are not spontaneously
acquired by even experienced users.

COMPLEX COMPUTER SYSTEMS 113
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3. EVIDENCE FOR THE EFFECTS OF AGGREGATION
STRATEGIES ON PERFORMANCE

To understand how strategies affect performance, we present a real-world
task performed by a CAD user during an ethnographic study (Bhavnani et al.,
1996). One of the users from the study, L1, had more than 2 years experience
in using a CAD system called MicroStation™ (Version 4). His task was to edit a

114 BHAVNANI AND JOHN

Figure 3. Three strategies of aggregation and how they generalize across computer ap-
plications. Each cell shows an example of a task that can be performed using a strategy.
From “From Sufficient to Efficient Usage: An Analysis of Strategic Knowledge,” by S.
K. Bhavnani and B. E. John, 1997, Proceedings of CHI’97, p. 97. Copyright 1997 ACM, Inc.
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CAD drawing of ceiling panels that overlapped air-condition vents. The task
of editing the panels overlapping these vents is referred to as the panel clean-up
task. This task is typical of drawing tasks performed by architects during the
detail drawing stage of a building design. We observed nine other users who
performed similar drawing tasks in our study.

3.1. The Panel Clean-Up Task

As vents go vertically through ceiling panels, they both cannot occupy the
same space. Therefore, as shown in Figure 4, L1 had the task to remove all the
line segments (representing ceiling panels) that overlapped the rectangles
(representing air-condition vents). The vents and panels were defined in two
different drawing files that were simultaneously displayed on the screen to re-
veal their overlap. This enabled L1 to modify the panels without affecting the
vents. The file had 21 such vents, all of them similar to those shown in Figure 4.
This meant that L1 had to modify numerous lines that overlapped the vents.

3.2. How L1 Performed the Panel Clean-Up Task

L1 zoomed in and panned a single window to view sets of vents to work on.
Figure 4 represents a typical example of such a window setup, with 3 of the 21
vents displayed. As shown in Figure 5, L1 first cut all the panel lines that over-
lapped the 3 vents by using the delete part of element tool (which deletes a por-
tion of a given line between two specified points). He then cleaned up all the
cut lines to the edges of the vent using the extend to intersection tool (which ex-
tends or shortens a line to the intersection point of any other line). By sequenc-
ing all the cut operations across the vents, followed by all the clean-up
operations, L1 is effectively using the Sequence-by-Operation strategy de-
scribed in Section 2. This strategy reduces tool switches between the cutting
and cleaning operations but requires the user to perform the iterative task. Fur-
thermore, the task requires high precision as L1 has to select each panel line to
cut and extend it to the edge of the vent.

Because of the highly repetitious and precise nature of the task, L1 commit-
ted several errors of omission and commission. As shown in Figure 6, he did
not notice that two panel lines located very close to the boundary of the upper
right-hand vent overlapped the vent; he had to return to them after the rest of
the lines had been cut and extended. Second, he accidentally selected a panel
line just above the lower right-hand vent instead of the actual vent line,
thereby extending a panel line to the wrong place. This error went undetected,
and the drawing was inaccurate after he completed the task. Finally, he com-
mitted five slips in the selection of panel lines that had to be repeatedly
reselected to get exactly the line he wanted. Despite these difficulties, L1 con-
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sistently used this time-consuming and error-prone strategy to clean up all 21
vents. In the process, he committed several more omission and commission
errors and took approximately 30 min to complete the entire task.

To precisely understand the nature of these inefficiencies in terms of time
and frequency of errors, the data were transcribed at the keystroke level and
quantitatively analyzed. As shown in Figure 7, L1 took more than 2 min to
complete the fairly simple task of deleting 11 very similar line segments (these
numbers relate to the clean-up of 3 vents—the total task, as described earlier,
involved the clean-up of 21 vents). Furthermore, he spent 20 sec to commit
and recover from errors that formed 16% of the total task time.

Many of these errors could have been avoided if L1 had used the Aggre-
gate–Modify strategy to delegate to the computer the repetitious task of cutting

116 BHAVNANI AND JOHN

Figure 4. The panel clean-up task requires all ceiling panel lines that overlap the
air-condition vents to be modified. The drawings are schematic and not to scale. From
“Delegation and Circumvention: Two Faces of Efficiency,” by S. K. Bhavnani and B. E.
John, 1998, Proceedings of CHI’98, p. 275. Copyright 1998 ACM, Inc. Reprinted by per-
mission.

Figure 5. The method used by L1 to perform the panel clean-up task. From “Delega-
tion and Circumvention: Two Faces of Efficiency,” by S. K. Bhavnani and B. E. John,
1998, Proceedings of CHI’98, p. 276. Copyright 1998 ACM, Inc. Reprinted by permission.
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Figure 6. Errors in the panel clean-up task leading to inefficiencies and an inaccurate
drawing. The figure shows the drawing after L1 completed the task.

Figure 7. Total time to complete the three-vent clean-up task including the time to
commit and recover from errors. Errors are all actions in which a correct goal was in-
correctly executed (slips). Unexplained behavior includes all behavior in which it was
not obvious what goal was being achieved.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
ts

bi
bl

io
te

ke
t i

 O
sl

o]
 a

t 0
4:

15
 2

9 
A

ug
us

t 2
01

1 



and cleaning many lines. For instance, L1 could have used the place fence1

command (an aggregation command) with a snap mouse option (where the
cursor jumps to the closest intersection) to accurately place a fence over the
vent and then delete all the panel lines in one step. By using this procedure, all
element segments within the fence, regardless of how visually close they were
to the vent boundary, would have been selected. The errors related to precise
line selection, and those errors of not noticing lines that had to be cut and ex-
tended could therefore have been avoided. Furthermore, because the iterative
task of cleaning up each line would be delegated to computer, it appears that
the strategy could have reduced the time to perform the task.

3.3. Cognitive Analysis of the Panel Clean-Up Task

To understand the differences between the Sequence-by-Operation and
Aggregate–Modify strategy to perform the panel clean-up task, we first con-
structed hierarchical goal decompositions of each approach. Figure 8 shows a
decomposition of the task as performed by L1 using the Sequence-by-Opera-
tion strategy. As shown, he used the delete part of element command to cut
each line across the three vents, and the extend to intersection command to ex-
tend each of the cut lines to the boundary of the appropriate vent. Figure 8
shows how L1’s strategy choice resulted in many low-level mouse inputs. Fig-
ure 9 shows a task decomposition of how L1 could have performed the same
task using multiple instances of the Aggregate–Modify strategy. When con-
trasted to the real-world task decomposition, there is a reduction in the num-
ber of low-level inputs due to the delegation of iteration to the computer.

To estimate the effect of this reduction in low-level inputs on performance,
we developed GOMS (Card, Moran, & Newell, 1983) models of both ap-
proaches. As shown in Figure 10, the model with the Aggregate–Modify strat-
egy predicted a reduction in time of 71%. Furthermore, as shown in Figure 11,
the frequencies of inputs were different between the two models. Although
there is an increase in the number of command selections (as the place fence
and Delete operations have to be applied to three vents), there is a reduction in
the number of precision inputs to select lines and intersections, as well as a re-
duction in the number of overall mouse clicks (command selections, accepts,
tentative snaps). The large number of precision inputs may explain why L1
committed many errors, which added 20 sec to the overall time.

118 BHAVNANI AND JOHN

1. Ethnographic notes revealed that L1 had used the place fence command sev-
eral times in other tasks to modify groups of objects. The missed opportunity to use
the Aggregate–Modify strategy was therefore not due to the lack of knowledge of
this command.
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The analysis of the panel clean-up task reveals many issues related to strat-
egy use. First, despite experience and knowledge of the place fence command,
L1 did not use an efficient strategy to perform a highly repetitious task requir-
ing high precision. Second, despite making many errors, L1 was persistent in
using his strategy over the course of the entire task. Third, the use of an aggre-
gation strategy could have reduced time, reduced errors, and led to a more ac-
curate product.

COMPLEX COMPUTER SYSTEMS 119

Figure 8. A GOMS decomposition of the three-vent panel clean-up task using the Se-
quence-by-Operation strategy to clean up each vent.

Figure 9. A GOMS decomposition of the three-vent panel clean-up task using the Ag-
gregate–Modify strategy to clean up each vent.
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3.4. Inefficient Use Reported in Other Studies

The above results are not unique to L1 performing the panel clean-up task.
Our analysis of nine other experienced CAD users in the same office revealed a
similar pattern of behavior (Bhavnani, 1998). Users could have saved between
40% to 75% of their time to complete their tasks if they had used various forms of

120 BHAVNANI AND JOHN

Figure 10. The Aggregate–Modify strategy used in the ideal model could reduce the
time to do the panel clean-up task by 71%.

Figure 11. Change of input frequencies between the real-world data and ideal model
for the three-vent panel clean-up task.
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the aggregation strategies as shown in Figure 3. The above results are also not
unique to our study of CAD usage. Lang, Eberts, Gabel, and Barash (1991) re-
ported an experienced user who missed an opportunity to use the Detail–Aggre-
gate–Manipulate strategy in a CAD task. When the task was redone after a brief
discussion with an expert CAD user, it was completed in 67.5% less time. This
study provides more evidence that although aggregation strategies need to be ex-
plicitly taught, they are easily learned through instruction and successfully exe-
cuted.

The previous results generalize even outside the domain of CAD. Nilsen et
al. (1993) studied the development of 26 graduate students of business learn-
ing how to use Lotus 1-2-3™ over a period of 16 months. Their results showed
that even after 16 months of using the application in enrolled courses, the stu-
dents did not use efficient strategies. For example, a task required five columns
to be set to a particular width X and one to be set to a different width Y. The ef-
ficient method to perform this task involves two commands: one to set all the
columns to width X and the second to set the width of the exception to Y. Only
2 of the 14 students used this method. The other 12 students changed the width
of each column individually. The authors make the observation that experi-
ence does not guarantee that users change their strategies to more efficient
ones. It is important to note that the efficient strategy suggested by the authors
is in fact the Aggregate–ModifyAll–ModifyException strategy described in
Figure 3.

In a different study on spreadsheet use, Cragg and King (1993) showed that
55% of users did not use the range option, an aggregation command to group
and name many cells in Microsoft® Excel®. Once a range is created and
named, it can be manipulated in other formulae merely by reference to the
range name. This is in fact an instantiation of the Detail–Aggregate–Manipu-
late strategy in the use of a spreadsheet application also shown in Figure 3.

The above cognitive analysis of the panel clean-up task, together with the
other empirical studies, suggest two basic points. First, despite experience, us-
ers do not easily acquire aggregation strategies to perform iterative tasks. The
users tend to master the use of commands but do not appear to progress to-
ward using them in an efficient way to complete complex tasks. Second, when
used, aggregation strategies can in fact reduce time and errors and lead to a
more accurate product.

Although the GOMS analyses provide a rigorous account of the observed
behavior, in addition to the improvements that could be achieved through the
use of aggregation strategies, it cannot explain how the knowledge and behav-
ior of the users got to be that way. In the next section we explore possible ex-
planations why many users do not acquire and use efficient strategies.
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4. POSSIBLE EXPLANATIONS FOR INEFFICIENT
COMPUTER USAGE

Why do experienced users not learn and not use efficient strategies, and
why do these inefficient behaviors persist? This section presents possible ex-
planations under two broad categories: (a) efficient strategies not known, and
(b) efficient strategies known but not used. These explanations are derived
from empirical studies done on computer applications in which efficient strat-
egies were not used, from existing theories of knowledge acquisition, and from
emerging theories of strategy choice and usage. Many of our explanations
come directly from our experience studying CAD usage in detail. However,
these results generalize to other complex computer applications. The goal of
discussing these explanations is to identify approaches to improve the use of
complex computer applications.

4.1. Efficient Strategies Not Known

The simplest explanation for the inefficient use of computer systems is that
some users, despite many years of computer experience, had not yet acquired
knowledge of efficient strategies. Although it is well known that the acquisition
of expertise is time consuming, the following reasons explore why users of
complex systems persist in not acquiring efficient strategies.

Efficient Strategies Have Not Been Made Explicit

One possible reason that efficient strategies are not known is that they
are neither explicitly provided in instructional manuals nor explicitly taught
in vendor-provided training. In a systematic search of libraries, publishers,
and CAD vendors, we found that only 2 out of 26 books (randomly se-
lected from the entire population of 49 books) went beyond the description
of commands to perform simple tasks. One of the books (Crosley, 1988) de-
scribed the importance of “thinking CAD.” Crosley stated, “It’s possible to
use computer-aided drawing without really taking advantage of its capabili-
ties. Even some experienced CAD users have simply transferred all their
manual-drawing habits over to the computer” (p. 6). Later he added that
“the advantages of CAD are not free; they come at the expense of having to
actually design the drawing” (p. 11). Although this author stressed the im-
portance of rethinking the drawing process, he did not present explicit strat-
egies to design the drawing, leaving the readers to discover and implement
the strategies themselves.
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Weak Causal Relation Between Method and Quality of Product

Although the absence of strategic knowledge in books and manuals
makes it difficult for users to obtain it directly, it cannot explain why CAD
users do not discover the strategies while using their systems. An analysis of
efficient manual drafting strategies provided some clues as to why strategy
discovery in computer usage may be difficult. For instance, a well-known
manual drafting strategy to prevent lines from getting smudged and draw-
ings getting dirty is to always begin work at the upper left-hand corner of
the sheet of drafting paper and to finish at the lower right-hand corner of
the sheet (Beakley, Autore, & Patterson, 1984, p. 47). In most cases, if such
strategies are not followed, it is very hard to produce a quality drawing; a
wrong strategy invariably leads to a visibly low-quality drawing. Because
there is such a strong causal relation between technique and quality, and
because the flaws are publicly visible, drafters tend to be highly motivated
to improve their technique.

This strong causal relation between technique and drawing quality is absent
in CAD. The drawing produced by Ll, when printed, is clean. Therefore, there
is no visible indication that the drawing was produced by an inefficient strat-
egy. As the flaws in the technique are not publicly visible, the users neither no-
tice their inefficient techniques nor have motivation to change them. This
phenomenon has also been observed in controlled studies. For example,
Singley and Anderson (1989) noted that “productions2 which produce clearly
inappropriate actions contribute to poor initial performance on a transfer task
but are quickly weeded out. Productions which produce actions which are
merely nonoptimal, however, are more difficult to detect and persist for longer
periods” (p. 137).

Office Culture Not Conducive to Learning

The above explanations focus on an individual’s interaction with a CAD
system. However, real-world CAD usage typically occurs in a group environ-
ment in which information is exchanged. This exchange can strongly affect
the usage of a CAD system. For example, Gantt and Nardi (1992) recom-
mended that CAD managers encourage gurus to develop expert knowledge
and to act as disseminators of this information within an organization.
Majchrzak, Chang, Barfield, Eberts, & Salvendy (1987) provided several rec-
ommendations: Managers should be well-trained in the technology, CAD
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D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
ts

bi
bl

io
te

ke
t i

 O
sl

o]
 a

t 0
4:

15
 2

9 
A

ug
us

t 2
01

1 



training should focus on presenting a general education in CAD concepts
thereby moving away from teaching only commands, and users should have
biweekly meetings in which they can discuss specific problems and keep
abreast of changes.

However, as described in our ethnographic study of an architectural office
(Bhavnani et al., 1996), such ideal conditions do not always occur in realistic
office settings. The manager of the architectural section we observed was not
trained in the use of CAD and did not use it to create drawings. Furthermore,
training was perceived as a once-in-a-lifetime requirement, and the users were
not encouraged to get follow-up training. As a result, the system had under-
gone many changes that were unknown to the users.

The lack of training was exacerbated by the absence of any regular dis-
cussions on system usage. Most discussions were confined to issues con-
cerning design, and architects rarely discussed drawing strategies or looked
over each other’s shoulders during the drawing process. In addition, there
was an internal rule that prevented users from contacting the vendor phone
support directly for help. The questions had to be routed through a system
coordinator, who did not have a clear understanding of the problems faced
by the architectural group and therefore was ineffectual in solving prob-
lems. These conditions severely inhibited the flow of CAD-related informa-
tion with the group.

In cases when drawings are shared and modified within a group working
on the same project, a poorly constructed CAD drawing can cause irrita-
tions and problems to other users. For example, a user might expect to
move a shape by grabbing a side and, when that side moves away from the
rest of the shape, realize the shape was constructed with single lines instead
of as a polygon. In such cases, the drawing strategy becomes public and
therefore presents opportunities for critical appraisal of inefficiencies. How-
ever, if all the users in a group share a flawed mental model of the CAD
system, the inefficient strategy can remain undetected despite shared draw-
ings. This exact situation occurred at the office where our data were col-
lected. Therefore, the realities and complications in realistic office
environments can make the dissemination of CAD-related information dif-
ficult and unreliable.

4.2. Efficient Strategies Known But Not Used

Another possible reason for the inefficient use of complex computer sys-
tems is that users know efficient strategies but choose not to use them. The fol-
lowing are some of the possible reasons and our evidence for and against those
reasons.
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Efficiency Not Valued

There is a possibility that users may know aggregation strategies but decide
not to use them because they do not value the benefits they provide. That is,
the users do not care for the savings in time and the accuracy that the strategies
could produce.

This possibility is in fact not supported by our ethnographic data. Users ex-
plicitly stated the importance of saving time while performing drafting tasks.
For example, in a discussion on advanced commands during the ethnographic
study (Bhavnani et al., 1996), an architect explicitly stated, “Anything that
saves time is of value to us.” This observation is further substantiated by cur-
rent research in the acquisition of strategic knowledge. For example, the adap-
tive strategy choice model (ASCM) developed by Siegler and Shipley (1995)
predicted how children select strategies to solve problems in arithmetic. One
of the predictions provided by ASCM, verified through empirical analysis,
states that when children can choose among alternative ways of executing a
given strategy, they should increasingly choose the ones that are fastest and
that yield the most accurate results (Lemaire & Siegler, 1995, p. 86). Although
these predictions have to be verified with adults using computer applications,
the aggregation strategies fit exactly into this category of strategy as they are
predicted to be faster than the ones the users had and to produce more accu-
rate results.

Strategies Not Really Efficient

It can be argued that the strategies we have identified as efficient require ad-
ditional cognitive costs that are not taken into account in our GOMS models.
If this were true, the strategies may not really be efficient, and users may there-
fore choose to not use them. Although this argument may be potentially true
for more complex tasks, we do not believe it to be true for the tasks we ob-
served and modeled.

The tasks we observed and modeled were so simple that they did not in-
volve time-consuming problem solving or planning. For example, the panel
clean-up task was simple and regular; there were many vents, all the vents had
to be clear of ceiling panel lines, and the architect knew this at the start of the
task. That was the only knowledge necessary to invoke the Aggregate–Modify
strategy. There was nothing additional to figure out or plan; the user needed
only to select a strategy and execute it. Such tasks are well modeled in the
GOMS framework. In our models (Figures 8 and 9), the small amount of per-
ception and cognition needed to recognize the task situation are subsumed in
the selection rules to pick the strategy and in the traversal of the goal hierarchy.
Only perceptual operators (locate, verify), cognitive operators (decide), and
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motor operators (point to, click) combine to give the time predictions because
the theory and practice of GOMS does not assign time to selection rules or
goal manipulation.3 Therefore, we believe our models reflect any cognitive
costs associated with using the strategies we identified, and they truly are effi-
cient during the performance of simple tasks.

More generally, for users skilled in their task domain, the recognition of fea-
tures like repetition, symmetry, and similarity are likely to be central to their
task (e.g., for a discussion of such domain knowledge known by architects, see
Flemming et al., 1997). Therefore, users who are skilled in their domains need
only learn the connection between these task concepts and the strategies that
exploit them (see Section 4.1 for a discussion of learning costs) to invoke this
knowledge in simple task situations.

However, there exist more complex tasks that may require problem solving
and planning to recognize a structure and exploit it with efficient strategies.
For example, given a cathedral with recursive symmetries, an architect, de-
spite his or her domain experience, must first look for the recursive structure in
the task, decompose it to the lowest level of symmetry, and then build up the
drawing through the successive levels of symmetry using an aggregation strat-
egy. This is what Crosley (1988) meant by “design the drawing” (p. 11). The
more complex the structure in a drawing, the more mental effort is required to
identify how best to decompose the drawing to use an aggregation strategy.
These are not the tasks we have modeled, and more research is required to un-
derstand how the aggregation strategies play out in such situations. (See
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3. It is true that adding each new strategy to a user’s knowledge necessarily also
adds at least one new selection rule to choose that strategy in the appropriate task sit-
uation. However, many cognitive modeling theories with good fit to empirical data
assume no extra performance cost to having more selection rules that are not appli-
cable to the task situation. For instance, GOMS (Card, Moran, & Newell, 1983), Soar
(Newell, 1990), and ACT–R (Anderson & Lebiere, 1998) all have this characteristic.
Although some empirical evidence exists for the mere existence of different meth-
ods increasing decision time for skilled users (Olson & Olson, 1990), it is small com-
pared to the savings in execution time these strategies would provide. It is also true
that task decompositions using strategies often have slightly deeper goal stacks than
simpler strategies. For example, the Aggregate–Modify strategy for the three-vent
panel clean-up task (Figure 9) has a deeper goal stack than the Sequence-by-Opera-
tion strategy for the same task (Figure 8). Whether a deeper goal stack adds to perfor-
mance time for skilled use is an open research question ( John & Kieras, 1996). Card
et al. tried both approaches and found no additional predictive power from assign-
ing time to goal decomposition; therefore they left it out of the original GOMS for-
mulation for simplicity’s sake. On the other hand, Kieras (1997) included 100 msec
per push or pop of a goal in GLEAN, and both Soar and ACT–R also include time on
the order of 50 msec to 100 msec. Again, because the difference in depth is typically
one or two levels at most, even this potential cost is small compared to the usually
more substantial cost in keystrokes and mouse movements.
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Bhavnani et al., 1999, for how we taught students to decompose complex
drawings and to use aggregation strategies.) Given the huge savings in execu-
tion time predicted by our GOMS models of simple tasks, it is likely that the
more complex the drawing, the greater the cost of not using appropriate aggre-
gation strategies. Therefore, we expect that the extra mental effort required to
decompose complex tasks will be more than compensated by the overall sav-
ings in time that aggregation strategies provide.

For the above reasons, we believe that in simple task situations similar to
those we and others have observed (Doane et al., 1990; Nilsen et al., 1993;
Rosson, 1983), the benefits of using aggregation strategies far outweigh the
negligible performance costs. Therefore, if they had been known, they would
have been used. In contrast, during the performance of more complex tasks, a
trade-off may arise between the cost of planning the task decomposition and
the benefits of executing the appropriate aggregation strategies. Further re-
search would be needed to understand such trade-offs.

Prior Knowledge Dominating Performance

Several studies have shown how prior experience of manual tasks has a
strong effect on performing computerized tasks. For example, many research-
ers have shown that the difficulties expert typists encounter when they first
learn to use a text editor can be explained by their prior knowledge of using
typewriters (Carroll & Thomas, 1982; Douglas & Moran, 1983; Halasz &
Moran, 1982; Lewis & Mack, 1982; Mack, Lewis, & Carroll, 1983; Waern,
1985). Marchionini (1989) found that many high school students, even after
being trained to use online encyclopedias with sophisticated query searches,
tended to use simple index-based searches similar to manual searches of
printed encyclopedias. It may be the case that users know most efficient strate-
gies but fail to use them because they are dominated by prior knowledge. The
difficulty of breaking previously learned habits has been explored by cogni-
tive theories such as ACT* (Singley & Anderson, 1989).

The strong effects of prior knowledge may explain Ll’s interactions. Prior to
using CAD, LI had spent many years using manual drafting tools to create ar-
chitectural drawings. The tools of manual drafting (such as the T-square, trian-
gle, pencil, and eraser) are precision tools that assist users in creating accurate
drawings. They are obviously not designed to assist users in iterative tasks.
When using such tools, the user performs all the iteration; if 10 lines have to be
drawn, then each line has to be individually drawn. Often, iterative drawing
tasks require more than one tool such as the task of shortening 10 lines that re-
quires each line to be erased and then redrawn accurately. For such tasks, it
makes sense to use the Sequence-by-Operation strategy where all the 10 lines
are erased, followed by redrawing all the 10 lines because it saves switching
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between the eraser and the pencil. This, of course, is exactly the strategy used
by LI. Because Ll had spent many years using manual drafting tools, the
well-learned Sequence-by-Operation strategy (efficient in manual drafting but
inefficient in CAD) may in fact have blocked the use of the Aggregate–Modify
strategy even though he knew it. It seems possible that if LI had been cued to a
better way, he may have switched to the better strategy.

4.3. Discussion of Possible Explanations of Inefficient
Computer Usage

The preceding sections presented several reasons that conspire against us-
ers employing strategic knowledge. Our evidence suggests that the more com-
pelling reasons involve the difficulty of acquiring strategic knowledge or that
this knowledge is insufficiently strong to routinely come into play in
real-world tasks. Furthermore, users do seem to value the benefits provided by
efficient strategies, and those benefits seem to be real.

Although we do not deny that cognitive cost will be incurred in learning ef-
ficient strategies, we believe this cost does not extend in any meaningful way to
skilled performance. There are situations in which this may not hold (e.g.,
when users are under the effects of fatigue, boredom, or low motivation). Nei-
ther present-day cognitive theory in HCI nor our data speak to this issue, and it
should be investigated further. However, under the normal, goal-directed,
skilled performance often studied in HCI, the aggregation strategies posited
here are efficient at performance time and do add value to those task situations
in which time is important to users.

The cost of acquiring an efficient strategic level of knowledge is currently
very high—so high, in fact, that it is not surprising that many studies of regu-
lar users report this lack of knowledge. There do exist subpopulations of us-
ers who enjoy experimenting with different methods to push the edge of
their computer knowledge or other groups who experiment and compete
with friends to find the fastest ways to perform tasks. Such users are moti-
vated to invest the time necessary to acquire efficient strategies. However,
as evidenced by the studies presented in this and other articles, such users
are not universal.

Many approaches can be taken to alleviate this situation ranging from mak-
ing strategic knowledge explicit through training, manuals, help systems, and
tutorials, to making organizational changes to encourage exploration, feed-
back, and sharing of knowledge. However, we believe all these approaches de-
pend on the central fact that the strategic knowledge must first be identified
before it is disseminated. In the next section, we describe other general strate-
gies that are important in the use of complex computer applications. In Sec-
tion 5.4 we present evidence that if strategic knowledge is presented explicitly
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and in a carefully designed educational context, the cost of attaining such
knowledge can be negligible when compared to the cost of learning the com-
mand-level knowledge required to use a new application.

5. GENERAL COMPUTER STRATEGIES BEYOND
AGGREGATION

The basic notion underlying all aggregation strategies is that an efficient
way to deal with the iterative task of operating on many objects lies in the abil-
ity to aggregate the objects and to apply operations on that aggregate. As we
discussed in Section 2, this ability shifts the task of iterating over each object
from the user to the computer. Such strategies are possible because computers
have the power to iterate over many objects in an aggregate. Aggregation strat-
egies therefore exploit the power of iteration provided by computers. This in-
sight motivated us to look for other powers provided by computer
applications and to explore whether these powers could help identify other ef-
ficient strategies.

Our explorations led us to identify three other powers that were generally
provided across computer applications: propagation, organization, and visu-
alization.4 As shown in Figure 12, each of these powers requires a set of strate-
gies to exploit it. Propagation strategies exploit the power of computers to
modify objects that are connected through explicit dependencies. These strat-
egies allow users to propagate changes to large numbers of interconnected ob-
jects. Organization strategies exploit the power of computers to construct and
maintain organizations of information. Such strategies allow for quick modifi-
cations of related data. Finally, visualization strategies exploit the power of
computers to display information selectively without altering its content. Strat-
egies of visualization can reduce visual overload and navigation time. Similar
to the general aggregation strategies presented in Section 2, the following sec-
tion discusses how the seven strategies in the above three categories are useful
and meaningful in word processing, spreadsheet, and CAD tasks. These strat-
egies also begin to extend our definition of efficiency from task time and errors
to include other important variables such as modifiability of content and visual
overload.5 All these strategies appear to be intuitively efficient but need to be
rigorously tested through future research.
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claim that this list is complete.

5. Green (1989) analyzed similar concepts such as hidden–explicit dependencies
and viscosity–fluidity in the framework of cognitive dimensions.
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Figure 12. Seven general strategies beyond aggregation strategies and how they are useful in word processing, spreadsheet, and CAD tasks.

General Strategies Word-Processing Examples Spreadsheet Examples CAD Examples

Propagation
1. Make dependencies

known to the computer
Make paragraphs dependent on

a format definition
Make formulas dependent on

numbers in cells
Make window design dependent on a

graphic definition
2. Exploit dependencies to

generate variations
Modify style definitions to

generate variations of the
same document

Modify formula dependencies to
generate different results for the
same data set

Modify graphic definitions to generate
variations of a building facade

Organization
3. Make organizations

known to the computer
Organize information using lists

and tables
Organize yearly data in different

sheets
Organize columns and walls on

different layers
4. Generate new

representations from
existing ones

Generate table from tabbed
words

Generate bar graph from table Create 3D model from 2D floor plan

Visualization
5. View relevant

information, do not view
irrelevant information

Magnify document to read fine
print

View formulas, not results Do not display patterned elements

6. View parts of spread-out
information to fit
simultaneously on the
screen

Use different views of the same
document to bring two tables
together on the screen for
comparison

Use different views of the same
document to view column
headings and data at the end of
a long table

Use two views focused at the ends of a
long building façade to make
comparisons

7. Navigate in global view,
manipulate in local view

Use outline view to view entire
document and specify
location of interest, use local
view to make modification

Use outline view to view entire
spreadsheet and specify location
of interest, use local view to
make modification

Use global view to view entire
building and specify location of
interest, use local view to make
modifications
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5.1. Propagation Strategies

The first two strategies in Figure 12 (Strategies 1 and 2) exploit the power of
computers to propagate modifications to objects that are connected through
explicit dependencies. Strategy 1 makes the dependencies between objects
known to the computer so that (a) new objects inherit properties or receive in-
formation from another object, and (b) modifications can propagate through
the dependencies. For example, word processor users can create paragraphs
that need to share a common format to be dependent on a common definition;
when the definition is modified, all the dependent paragraphs are automati-
cally changed. Similarly, formulas in a spreadsheet can be linked to dependent
data, or graphic elements in a CAD system can be linked to a common graphic
definition of objects.

Strategy 2 exploits such dependencies to generate variations of the same in-
formation. For example, the strategy could be used to explore different looks
of a document in a word processor, generate different results in a spreadsheet
by altering a variable (such as an interest rate), or create several variations of
window designs in a building façade while using a CAD system.

5.2. Organization Strategies

Strategies 3 and 4 exploit the power of computers to construct and maintain
organizations of information. Strategy 3 reminds users to make the organiza-
tion of information known to the computer to (a) enhance comprehension and
(b) enable quick modifications. For example, a table constructed with tabs in a
word processor is not known to the computer as a table, and therefore the tab-
ular structure may not be maintained when the table contents are modified.
On the other hand, a table that is known to the computer will be maintained
under any modification of its contents. Similarly, data for different years in a
spreadsheet can be organized in separate sheets for easy access, and different
building elements such as columns and walls can be separated in different lay-
ers. Strategy 4 generates new representations from existing ones. For example,
tabbed tables in word processors can be converted to tables and vice versa,
data in a spreadsheet can be represented as charts, and three-dimensional
graphic objects can be generated from two-dimensional representations, and
vice-versa.

5.3. Visualization Strategies

The last three strategies in Figure 12 (Strategies 5–7) exploit the power of
computers to view information selectively. Strategy 5 can be used to alter the
amount of information displayed by viewing relevant information and not
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viewing irrelevant information. For example, when text is too fine to read
while using a word processor, this strategy could be used to magnify the view
instead of changing the font size. Similarly, in a CAD system, patterned ele-
ments can be undisplayed when not needed to make the relevant information
more salient.

Strategy 6 addresses the limited screen space of most computer terminals.
Often, users have tasks that require them to compare or manipulate objects
that are difficult to view simultaneously in a single view. For example, a user
may need to compare the contents of a table at the beginning of a long
word-processing document to the contents of a table in the middle of the same
document. In such cases, instead of moving back and forth between the tables,
it is more efficient to set up views that focus on each table to enable both to be
viewed simultaneously on the screen. This strategy is clearly useful in large
documents containing text, numbers, or graphic elements and therefore gen-
erally useful across applications using such objects.

Strategy 7 extends the notion of selective viewing to tasks involving a com-
bination of navigation and manipulation. For example, a CAD user may need
to make many precise changes to different parts of a large floor plan. A magni-
fied view is needed to make the precision changes, whereas a global view is
needed for navigation to the next task. One way is to zoom in to perform the
precise modifications and then to zoom out of the same view to navigate to the
next task. A more efficient method is to have one global view of the file for nav-
igation and one local view to make the changes. The user then selects the loca-
tion  of  interest  in  the  global  view  that  automatically  updates  the  local
magnified view where the user can make the precise modifications. As shown
in Figure 12, this strategy is useful when modifying a large word-processing
document as well as a large spreadsheet.

Currently, we do not have a systematic way to identify powers of comput-
ers, and we do not understand how to systematically identify efficient strate-
gies from these powers. However, we are convinced that teaching such
strategies would benefit users. The following section describes how we devel-
oped a new approach to training called the strategic approach to computer lit-
eracy, based on the strategies of aggregation, propagation, organization, and
visualization that we have been able to identify.

5.4. Implications for Training

To address the difficulty that users have in acquiring efficient strategies, we
used the previously mentioned general strategies to design a new computer lit-
eracy course. The focus of our approach is to teach strategies in addition to
commands. We hypothesized that this combination would not only make us-
ers more efficient (compared to those who only learned commands in the con-
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text of simple tasks) but also enable users to transfer the knowledge across
applications.

The method of instruction in the strategic approach was suggested by our
GOMS representation of a strategy (Bhavnani et al., 1999). For example, the
Detail–Aggregate–Manipulate strategy was modeled as a combination of a se-
lection rule and a method. The selection rule connects the nature of the task
(replication) to a strategy label (Detail–Aggregate–Manipulate); the method
decomposes the label into subgoals (Detail, Aggregate, Manipulate). The se-
lection rule suggested that a student must “learn to see” when a task offers an
opportunity to use a particular strategy. The method component suggested
that a student must “learn to do” the strategy by decomposing the task into
temporally ordered subgoals.

The above approach was used to design a 7-week computer literacy course
at Carnegie Mellon University to teach freshman how to strategically use
UNIX®, Microsoft® Word®, and Microsoft® Excel®. For example, in the
Learning to See step, students were taught the Operate-on-Groups-of-Objects
strategy (an aggregation strategy) in UNIX®. They were first shown two ways
to move many files sharing the same extension: (a) Move one file at a time, and
(b) move multiple files with the wild-card operator (e.g., mv*.jpg images). The
first method was shown to be repetitious, time consuming, and error prone
compared to the second method. They were then explicitly taught when a wild
card could be used to operate on groups of files sharing the same extension.
This example was then generalized to the Operate-on-Groups-of-Objects
strategy. In the Learning to Do step, students executed the same strategy on
their own for a similar task. Later in the course, the same strategy was taught in
Microsoft® Word® and in Microsoft® Excel®, with different commands to em-
phasize its general nature.

The strategic version of the course was compared to the traditional version
of the course that taught the same commands as the strategic approach, but
without the strategies. Preliminary results (Bhavnani, 2000b; Bhavnani, Reif,
& John, in press) show that strategies could be taught effectively in the same
amount of time as teaching just commands. Furthermore, there was no statisti-
cal difference between the mean scores of both groups (96.07 control, 95.54
experimental) in regular exams that tested command knowledge. The results
also showed evidence that the students could transfer the strategies across ap-
plications. Extensive analysis of data is being conducted to understand the ef-
fects of the strategic approach on a wide range of variables such as gender,
major, class attendance, task time, and errors. The analysis of strategies has
therefore led to the reexamination of the content and delivery of computer lit-
eracy courses with promising results.
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6. SUMMARY AND FUTURE RESEARCH

To counteract the widespread inefficient use of computer applications, we
identified and analyzed efficient strategies in the intermediate layers of knowl-
edge. These strategies have three characteristics: (a) They are efficient because
they exploit powers offered by computer applications such as iteration, propa-
gation, organization, and visualization; (b) they need to be made explicit to us-
ers because the knowledge to use them is suggested neither by tools nor by task
descriptions; and (c) they are generally useful across computer applications.
The above characteristics inspired the design and testing of a strategic ap-
proach to computer literacy with promising results. These results suggest that
the cost of learning and applying efficient strategies can be easily addressed by
proper strategic instruction.

Based on our experience in teaching strategies, we believe that the identifi-
cation of efficient strategies should be a key research goal. Therefore, we pose
the following question: Is there a framework that can systematically identify
efficient strategies? There are several tantalizing clues that such a framework
does exist. For example, we have observed that in addition to powers, comput-
ers also have limitations such as screen size, memory size, and processing
speed. When task requirements exceed such resources, users may benefit by
efficient strategies to circumvent the limitations (Bhavnani & John, 1998).
Therefore, powers, limitations, and their interactions could be the source of
many strategies. A systematic identification of powers and limitations of com-
puters could be an important step toward building the framework.

Another clue toward the framework is that efficient strategies in the interme-
diate layers could be at different levels of generality. For example, at one level,
strategies could be relevant only to a particular application such as Microsoft®
Word®. These strategies deal with eccentricities of the package but are gener-
ally useful for many tasks in that application. At another level, strategies could
relate to an entire domain such as CAD but not outside. For example, strategies
to precisely locate points using snap locks are generally useful across all CAD
packagesbutnot relevant towordprocessors.Atyet another levelof generality,
strategiesapplyacrossdomains, suchas those thatwehave focusedon in this ar-
ticle. These levels could structure the search for efficient strategies.

Besides exploring a framework to identify efficient strategies, we are also
exploring how strategies can guide the design of functionality. Designers
could systematically check whether their designs provide the functionality to
execute efficient strategies and test whether that functionality actually helps
users become more efficient. Research on the systematic identification of strat-
egies in the intermediate layers of knowledge therefore can lead not only to
more effective ways of training but also to more principled methods to design
functionality (Bhavnani, 2000a). Both of these approaches should counteract
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the persistence of inefficient usage, which has plagued modern computers for
many years.
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