

1

© Jens Kaasbøll, 5 January, 2018

Developing digital competence -
learning, teaching and supporting use

of information technology
Jens Kaasbøll, Department of Informatics, University of Oslo

Table of contents
Table of contents .. 1

Chapter 1. Introduction .. 6

1.1. Why bother? .. 6

1.2. Aims and target groups .. 7

1.3. Related areas .. 9

1.4. Organisation ... 10

Chapter 2. IT skills ... 13

2.1. Learning IT skills ... 13

2.2. Instruction sheets – scaffolds for imitation .. 15

2.3. Instruction videos .. 21

2.4. Training for skills .. 23

2.5. Assessing IT skills ... 24

2.6. Summary .. 24

Chapter 3. Learning business fit .. 26

3.1. Usefulness .. 26

3.2. Understanding usefulness of IT in own tasks .. 28

3.3. Minimal Manuals ... 29

2

© Jens Kaasbøll, 5 January, 2018

3.4. Understanding IT in business .. 30

3.5. Business oriented models .. 31

3.6. Confronting misconceptions .. 33

3.7. Summary .. 34

Chapter 4. Understanding IT .. 35

4.1. From skills to understanding ... 36

4.2. Functional models .. 38

4.3. Confronting functional misconceptions ... 41

4.4. Structural models ... 42

4.5. Data structures ... 47

4.6. Data types and instances .. 52

4.7. Layers .. 55

4.8. Structural and functional misconceptions .. 57

4.9. Summary .. 60

Chapter 5. Learning solving IT problems .. 61

5.1. Learning oriented users ... 61

5.2. Research cycle ... 63

5.3. Problem solving ... 65

5.4. Understanding as a prerequisite for problem solving .. 66

5.5. Research cycle competence ... 67

5.6. Stages of the research cycle ... 68

5.7. Strategies for iterations .. 80

5.8. Innovative research cycles ... 82

5.9. Summary .. 85

Chapter 6. User interface for learning .. 87

6.1. Learnability .. 87

6.2. Design for learnability ... 88

3

© Jens Kaasbøll, 5 January, 2018

6.3. Inline help .. 90

6.4. Evaluating learnability ... 95

Chapter 7. Training modules .. 98

7.1. Training modules for skills and understanding ... 98

7.2. Training modules for improving problem solving competence 101

7.3. Teaching a module ... 103

7.4. Online tutorial for a module .. 105

7.5. Sequence for teaching related topics of IT use .. 107

7.6. Age levels of abstraction ... 110

7.7. Instructions, functional and structural models – slide design 111

Chapter 8. Training for transfer ... 116

8.1. Transfer .. 116

8.2. Motivation and objectives ... 117

8.3. Realistic training environment ... 119

8.4. Summary .. 120

Chapter 9. Evaluation of training ... 121

9.1. Evaluation of reaction to training .. 122

9.2. Evaluation of learning – assessing competence .. 123

9.3. Evaluation of behavioural change ... 127

9.4. Evaluation of impact .. 128

Chapter 10. IT user competence standards ... 130

10.1. Standards and guidelines .. 130

10.2. Tests ... 131

10.3. Differences in IT competence levels .. 135

10.4. Summary .. 136

Chapter 11. Superusers ... 139

11.1. Roles .. 139

4

© Jens Kaasbøll, 5 January, 2018

11.2. Community of superuser practice .. 143

11.3. Superusers’ roles .. 144

11.4. Organising for competence development .. 149

11.5. Summary .. 149

Chapter 12. IT support ... 150

12.1. How IT supporters learn .. 150

12.2. Support quality ... 153

12.3. Improving IT support ... 155

12.4. IT support versus superusers .. 156

12.5. Summary .. 157

Chapter 13. Mutual learning during business fit .. 158

13.1. Users learning about IT .. 159

13.2. IT personnel learning about business fit .. 159

13.3. Joint creation of understanding and skills of new system 160

13.4. User representatives as superusers ... 163

13.5. Summary .. 163

References .. 164

Index ... 175

5

© Jens Kaasbøll, 5 January, 2018

Ten golden rules for improving IT users’ competence

1. Provide users with instruction sheets or videos, also during training.

2. Make sure users understand the usefulness of the IT.

3. Provide functional and structural models and confront misconceptions.

4. Train users so that they can solve problems and learn on their own.

5. Divide training into 30 minutes modules and include problem solving modules

6. Organise training at the same time as the system is installed.

7. Train a local group of users, not only individuals.

8. Identify, organise, authorise and cultivate superusers.

9. Include superusers as trainers and champions for new IT systems.

10. Organise one service desk for all user requests with service minded staff.

6

© Jens Kaasbøll, 5 January, 2018

Chapter 1. Introduction

1.1. Why bother?
When kids learn information and communication technologies (IT for short) from the
kindergarten age and grandma is on Facebook, haven’t people become so used to the
technology, such that learning is no longer any issue? And isn’t the user interface of new apps
and gadgets so intuitive that anybody can utilize them without instruction?

Simple applications should be intuitively usable, meaning that no learning is needed, while
due to bad design, this is too often not the case (Norman, 1988). However, applications grow
with advanced functionality which may be far from intuitive. IT systems are embedded in an
interdependent organisational setting, making it difficult for a user to know how others
interpret the data entered. IT is pervasive without necessarily appearing as anything like a
computer. For instance, a toaster ejects the bread when it becomes dark, because it monitors
the colour of the bread, while you thought it had a timer like the old one. Or the toothbrush
which does not work properly because you haven’t set the time zone. There is no obvious
reason why it should require setting the time zone, but sometimes, things are poorly designed.
People misunderstand the functioning of gadgets, assuming these work as the user intends,
without realising that initial set-up or selection of function is necessary. Even if children are
fluent on some applications, teenagers in the modern world cannot distinguish the WWW
from the Internet (Papastergiou, 2005), indicating that they have little clue about the structures
behind the user interface. Even if all IT had interfaces for ease of learning, good design can
never compensate totally for a complicated mechanism, such that learning will be needed.

IT is penetrating into most corners of the world. Even if professionals in cities are fluent on
computers, the merchant in the village may have a basic mobile phone as her only IT artefact.
Thus, there are billions worldwide who have not learnt much IT yet.

People learn IT during any activity in life. Learning often comes as a result of struggling with
some task, whether it is entering the cost of the bus ticket in the right place in the corporate
accounting system, placing a picture in a document, setting the timer at the oven or copying a
text message on the phone.

Being able to operate the technology is a necessary but not sufficient competence for IT users.
They also need to understand the purpose of systems to adopt them (Venkatesh et al., 2003),
and they need to understand the data. For instance, knowing how to enter a specific term as
the index item and why the business needs it is not enough if the user mixes up the keyword
and the tag. This book therefore considers IT use competence both concerning the technology
and its use in tasks and the business.

Having a background in computer science, friends and family have often asked me about how
to get the computer to do this or that, or sort out things which have gone wrong. Without
having had a job in the user support department, I have tried helping out on most types of IT
user trouble. I assume that all readers who have come this far in the book share similar

7

© Jens Kaasbøll, 5 January, 2018

experiences as an informal superuser, and that they also have contacted others for help when
stuck themselves. I have also experimented with the technology and learnt using it in that way
and consulted instruction videos or manuals at times.

My experience is that user learning normally happens informally, and also that teaching
activities in the form of help and support mostly take place outside formal IT trainings in
classrooms. Research in the area of user learning also points in the direction that informal
learning is dominating, such that supporting user learning outside the classroom is essential.

Nevertheless, training of staff in organisations in general improves organisational
performance, as shown by a review of 10 years of research (Aguinis and Kraiger, 2009). A
summary of 165 studies found a medium to large effect both on individual learning and on
organisational performance (Arthur Jr. et al., 2003). These effects were larger than many other
interventions in organisation, for example, feedback on performance or management by
objectives.

These results include all training of any subject matter, such that we cannot know whether IT
training reaches the same level of positive outcomes. While computer science, pedagogy and
psychology are based on millions of research papers, the number of research contributions on
learning and training of IT use is a few hundred. These results provide nevertheless a
scientific basis for how user learning can be enhanced, and this book aims at organising and
summarising the knowledge in the area.

The first chapters therefore focus on what learning IT use is and the kinds of explanations that
can boost learning, whether given by a support person, supplied on the interface, or written in
user documentation. Lessons on user learning and explanations constitute the background for
chapters on designing classroom training and organising support.

1.2. Aims and target groups
This book is intended for anyone wanting to improve their ability of helping others learn IT
use. Three professional groups are considered in particular; IT specialists, school teachers and
lecturers in higher education.

All IT specialists provide informal help, and many start their career as support personnel.
Software and hardware vendors develop user interfaces and learning material, they may
support their customers, and some also run training courses. Larger organisations may have
their own IT department which take part in developing business systems. Making a large
number of users adapt a new system is often carried out through training of superusers who
are supposed to support colleagues. IT departments also support their users on standard
software and infrastructure. Specialised IT training and support businesses have the topic of
this book as their main activity; developing and running courses for other organisations or
operating support for software vendors. This book addresses the training and support activities
mentioned as well as development of learning material built into software or appearing as
independent documents or videos.

8

© Jens Kaasbøll, 5 January, 2018

While having learnt programming in college, IT specialists have mainly learnt training,
support and making user documentation through experience and by imitating others. Such
practical experience is valuable, and should be coupled with a systematic overview of relevant
research results for improved performance. This book provides a comprehensive approach to
user learning and can enlighten, challenge or extend the repertoire of practices of self-taught
trainers. Pedagogical principles are introduced, such that no prior knowledge of pedagogical
theories or related areas is necessary.

While IT specialists are educated in the technology but receive little or no training in
educational sciences, school teachers have the opposite background; a solid background in
pedagogy, but often little computer science. General pedagogical and psychological principles
also apply when learning and teaching IT use, and this book will demonstrate how these
principles come into play in IT use learning.

More and more teachers have used IT in their teaching. While this also provides insights into
IT and how pupils learn the technology, the main purpose of IT supported learning is learning
some other subject matter area, e.g. biology or poetry. Given that teaching depends heavily on
the matter taught (Stodolsky, 1988), experience from classroom activities in biology by means
of IT does not easily transfer to teaching the technology. This book explains principles of IT
which are relevant for user learning and which are independent on specific software, systems
or gadgets. This is neither a textbook for Word, Facebook, iTunes, Android nor Ubuntu, but a
book on how software and IT in general can be taught. While no formal training in computer
science is needed, the reader should have experience with commonly used IT, such as office
software, the file system, the internet and some gadgets, for example smart phones and
cameras. The book explains IT use from the technology and the business side, presents
learning processes for these areas and suggests how teachers can guide the learners through
these processes.

This book is also written as a textbook for lecturers in higher education institutions who will
teach the didactics of IT use to their students as part of a computer science or information
systems curriculum or in a teacher training college. A typical computer science curriculum
includes programming, human computer interaction, information systems development and
some management and business topics. Chances are, the only place user learning was touched
upon was in a textbook on information systems development, and it would say that “… before
implementing the system, users must be trained.” Thereafter nothing more about user learning
is said, despite the facts that information systems often fail due to poor user understanding
and that user training consumes significant proportions of the project budget. In addition,
fresh graduates take up jobs as support personnel or have to develop user documentation,
since this is considered a simple starting task for new staff by vendors and IT departments.
This book is designed to fill the void in the curriculum, preparing the computer science and
information systems students for an essential part of their job.

Unless having done research in user learning, a computer science lecturer should know the
constructivist view of learning and one of the related areas of information system

9

© Jens Kaasbøll, 5 January, 2018

implementation, human computer interaction or computer science education in order to use
this book in their teaching.

A lecturer in a teacher training college who would like to teach according to this book should
know some computer science, including human computer interaction and information systems
development. The students would need to be reasonably fluent with computers and IT
devices. This book will prepare the students for teaching use of IT to their pupils at any level.
For teaching teachers of programming, a book on computer science education would also be
needed.

1.3. Related areas
Learning and teaching IT use borders several fields of study from different disciplines. From
Computer Science and Information Systems side are human computer interaction, information
systems implementation and social aspects of computing relevant. Information and library
science includes information literacy, which deals with understanding the data. Computer
Science Education includes learning IT, Computer Supported Learning deals with students
using digital technology, Educational Science concerns learning and teaching in general, and
Organisational Learning includes how innovations are adapted and how professionals
improve their repertoire of practice.

Human Computer Interaction includes learnability and memorability as qualities of software.
Learnability concerns the ease with which a novice user can carry out an operation in the
software. Memorability correspondingly deals with re-establishing proficiency of software
which is intermittently used. HCI provides guidelines on how user interfaces can be designed
to support learnability, for instance by making data and operations more visible and through
providing help and guidance in the applications.

Information systems implementation deals with the introduction of new systems in
organisations, including the organisation of training and support. Main lessons are that
systems are not adopted unless the users understand their purpose and experience
improvements in their job performance, and user involvement during system development is
acknowledged as a way of aligning IT to fit the business.

Information literacy concerns retrieval and analysis of data, which includes issues like search
strategies, sources of information, evaluation and use. In addition to such general knowledge,
knowledge of the domain is needed to assess information. Also, syntactical skills come in
handy when evaluating information, for example, grammatical skills are useful for sorting out
hoax e-mails and statistical competence helps identifying outliers when interpreting numeric
data.

Computer Science Education is the study of learning and teaching the technology to IT
professionals. Issues on learning programming and programming languages are essential. IT
use in this book only touches coding briefly, even if some advanced users use HTML or other
languages for extending their control of data. Formulas in spreadsheets resemble
programming in the sense that these control automatic calculations. Learning spreadsheets is

10

© Jens Kaasbøll, 5 January, 2018

included in the book, since spreadsheet formulas require basic mathematical and not computer
science understanding. However, since both programmers and users have to learn IT concepts,
findings from computer science education on conceptual understanding are also relevant for
learning and teaching the technology part of IT use.

Computer Supported Learning is the field of study which concerns using IT for learning
anything else, for example learning language through communicating in social media or
learning physics through virtual experiments in specifically constructed simulation software.
Although IT use is not the subject matter of learning in CSL, findings from this field, e.g., that
students who establish abstract understanding of phenomena become better problem solvers
are transferable also to the IT domain.

Educational Science consists of a wealth of topics including theories of learning, effects of
training, and organising for learning activities. This book draws on the constructivist theory of
learning. Central assumptions are that learning builds on what we already know, that people
are active and communicative learners, and that learning is triggered through interaction with
the environment. Theoretical fundamentalism is discouraged, however. Insights on effects of
teaching from a behaviourist view are included, and social learning theory is used for
discussing organisation for learning at the workplace.

Organisational Learning is an area of study which provides insight into how people improve
their practices and how skills and knowledge is spread amongst colleagues and how
newcomers are socialised.

Textbooks in pedagogy, psychology and organisational learning will provide the reader of this
book with a deeper understanding of underlying ideas about topics presented here. Such
textbooks will also provide more practical guidance into planning, carrying out and evaluating
teaching, into the art and science of helping others, and into management of support teams
and human resources in companies in general. Higher education lecturers who will use this
book for teaching should gain some of this background. However, this book is self-contained
and will provide the computer scientist with the necessary, but limited insight into the related
sciences.

1.4. Organisation
Part I consists of three chapters addressing learning IT use at three advancing levels; skill,
understanding and problem solving. Those who stop reading after Chapter 2 on skills will
miss the main points of the book.

Part II builds on the learning model from Part I when considering learnability of user
interfaces, user training, evaluation and competence standards in Chapter 6 to Chapter 10.

Part III brings in organisational learning and discusses superusers, IT support and mutual
learning during development of IT systems in the last three chapters. It identifies Superusers
as brokers between users and IT specialists. This part is less relevant for school teachers.

11

© Jens Kaasbøll, 5 January, 2018

Part I. Learning IT use
Before embarking on how skills can be learnt, this introduction will present a three level
model of learning IT use up to the problem solving competence level, which superusers
should master. The three level model will place skills in a larger perspective of user
competence.

Categorising increasing levels of competence has been done for the purposes of setting
educational goals and for characterising learners’ actual performance. Bloom (1956)
suggested a general taxonomy for advancing levels of cognitive competence in the 1950s, and
it is still used for describing learning objectives. Dreyfus and Dreyfus (1986) suggested a five
stage model for skills acquisition. It characterises how practitioners acquire skills over years
of collecting experience, something which modifies the novice’s behaviour according to the
rules of the textbook to an expert who acts intuitively based on a huge number of experienced
examples. While Bloom’s taxonomy concerns the learning of theoretical material, expressed
in language or some formalism, the Dreyfus and Dreyfus model addresses the refinement of
practical skills. Concerning use of computers, an important learning challenge is neither of
these, but rather the improvement of competence from skills to understanding. This
improvement is characterised by first being able to do something, and thereafter being able to
express it. For example, after having saved files a few times and listened to explanations, the
learner may be able to say what it means, where files are stored, and why we do it. Since
previous learning models do not address the change from skills to understanding, this book
will bring a specific model of levels of mastery for IT use.

Skills can be carried out perfectly without being able to explain how we are doing it, like
keeping the balance on a bicycle. This definition of skill does not exclude that one can express
the skill, but this expression is only a rehearsal of the physical action carried out. On the other
hand, understanding requires the ability to express it more abstractly, for example, “File
conversion creates a pdf file from the text document.” Understanding is complementary to
skills, and it includes knowing why mechanisms work like they do or knowing whom to deal
with. Understanding is also called
theoretical competence, know-why or
textbook knowledge, since parts of it can
be learnt from reading books.

For carrying out routine work, users only
need the skills required for using the
technology to support their business. The
reason why users nevertheless may need
IT understanding is that understanding
will in general ease transfer of skills to
new situations, like the introduction of
new software versions, systems, gadgets

Learning—Roberto.

Roberto used to carry out complex calculations
on his phone, but he often lost track of the
results. After having discovered spreadsheets,
he uses these instead. Since his change of
behaviour is lasting, Roberto has learnt a new
IT skill. Roberto also tried setting up a
relational database for managing his accounts,
but he reverted to spreadsheets. Since he did
not stick to this new invention of his, learning
might not have taken place.

12

© Jens Kaasbøll, 5 January, 2018

and IT services (Bransford 2000).

When changing business applications, training superusers to help others is a common strategy
(Coulson et al. 2003; McNeive 2009). This implies a two tier need of user competence;
ordinary users need the skills for operating the software, while superusers need to be able to
solve problems, help others and find out things which they don’t know. This means that
superusers need competence for problem solving. We will use the term competence to denote
the ability to do something and learning for an increase of competence which lasts at least for
a while.

Superusers are expected to fix minor IT problems, find ways of adapting systems to work
tasks, and help other users who are stuck, implying that they need an IT use competence
above most others. We will say that they need problem solving competence. Research has
shown that understanding leads to improved abilities for solving problems (Halasz and
Moran, 1983, Kiili and Ketamo, 2007, Novick et al., 2009). We therefore state that learning
IT use involves the three steps

Figure 1. Three steps for learning IT use. Scaffolds are any means supporting the learning.

Often, we learn through using a computer and observing what happens when we carry out
operations. Sometimes, we look for help at the Internet, we ask a friend, we attend user
training, we look up in user documentation or we read tool-tips at the user interface. Such
additional means for learning are called scaffolds, since they help us building new
competence. Part I will introduce scaffolds for each learning step. Part II will present how we
combine scaffolds in user training and user interfaces.

The subsequent chapters in Part I will also divide the learning processes and competence
levels into subcategories.

13

© Jens Kaasbøll, 5 January, 2018

Chapter 2. IT skills

The learning objective of this chapter is to be able to create scaffolds for learning IT skills.

Users of technology need skills for applying IT to meet their needs. A skill is a practical
competence, indicating that a skilled person knows how to do it. Therefore, skills are also
called know-how. IT know-how will normally include some bodily skills like hand-eye
coordination for mouse movement or the ability to push the keys on the phone when writing a
text message.

2.1. Learning IT skills
Learning IT skills takes place in two different ways; imitation for learning new skills through
following instructions, and repetition for improving performance and remembering the skill.

Repetition
Repetition is a learning process for strengthening an already existing skill. Repeating
behaviour many times may lead to the learner being able to do it without conscious
awareness. We say that the skill has become automated. Speaking, walking and running are
examples of skills which most people would learn to the automated level. We normally don’t
pay attention to how to move the leg forward when walking. Correspondingly, typing on a
keyboard becomes automated after long practice, such that we can write words without
considering which fingers to move in order to hit particular buttons. Reaching the automated
level has been shown to influence positively the continued use of information systems
(Limayem et al., 2007, Polites and Karahanna, 2012).

This book will not address practicing the bodily skills like pushing the buttons on a
QWERTY keyboard. The interested
reader can find specific textbooks on
such skills (Barnes, 1890). Rather, we
will concentrate on the cognitive
component; the know-how of operating
software and IT gadgets.

Imitation and instructions
While one can become an efficient user
of IT by repeating a sequence of
operations, repetition does not
necessarily extend our repertoire of
skills. A way of learning new skills is

Imitation—Gabriela and Ali.

Assume that Ali is watching Gabriela while she
is pressing CTRL/C and CTRL/V for copy and
paste. Ali has been doing this operation by means
of menu choices quite often, but he has not seen
the shortcut before. He observes that it is time
efficient and therefore starts using the key
combination himself. When Ali continues to use
the key combination instead of the menus, a
relatively stable change of his competence has
taken place, meaning that he has learnt this skill.

14

© Jens Kaasbøll, 5 January, 2018

imitating1 others’ behaviour. Those we imitate constitute the scaffold for learning the new
skill.

It has for long been recognised that imitating others is an important way of learning IT use
(Bannon, 1986). In general, similarity between the settings during imitation and repeating
ease learning (Ormrod, 1995). Imitation has therefore a strong advantage as a trigger for
learning, since what the learner observes is exactly the behaviour to be repeated.

Ali was motivated to learn the copy and paste keyboard shortcut through observing that it
saved time. Motivation is a strong factor for learning. If Ali is happy with his menu choice for
copy and paste and does not see any advantage in keystrokes, he will not bother trying, and
hence he will not learn it. Switching from mouse selection in menus to keyboard shortcuts has
long been known as an efficient way of speeding up interaction (Cockburn et al., 2015).

User training is often carried out as follows. Each student has a computer, and the trainer uses
a video projector. The trainer instructs which keys to push on the computer by demonstrating
it and projecting the screen. The learners try to remember the keys and repeat the operations
being carried out. Due to the low capacity of our short-term memory, the learners often forget
the steps.

A similar situation happens when an IT support person verbally instructs a user about which

1 In behaviourist learning literature, this way of learning is called ‘modeling,’ but since the word ‘model’ is used
for other purposes within this book, we use the term ‘imitation’ for this learning process.

Psychology – Cognitive load
Human long-term memory has an enormous capacity. Operations which we have repeated
a number of times are learnt in the sense that we do not have to pay attention to them again
and these operations are stored in long-term memory. This applies to bodily skills like
walking a staircase or swimming as well as cognitive skills like copy-paste and
interpreting an e-mail address. There is in practice no limit to how much we can learn and
store in long-term memory.

Our ability to process information is severely limited, however. As a rule of thumb, we can
process 7±2 items which require our attention. For example, most people will remember a
6 digit phone number when reading it in the phone book and typing it on their phone, but
they will have trouble doing the same with an 8 digit number. Splitting it it up into two
chunks of 4 digits may help. Short-term memory is limiting our ability to learn in the sense
that we can only pay attention to and learn a small number of things at a time.

Learning more complex matters will therefore have to be broken up into smaller pieces.
After having learnt one operation such that we do not have to pay attention to it any
longer, we can move on to learning the next one. For example, a novice spreadsheet user
can learn to set up a formula which has other cells as arguments. Thereafter, the user can
learn copying and pasting the formula. After having observed and exploited that cell
references are changed when pasting, this phenomenon will most likely be stored in long-
term memory. Thereafter, the user can learn the distinction between absolute and relative
referencing.

15

© Jens Kaasbøll, 5 January, 2018

buttons to push in order to solve a problem. The next time the problem occurs, the user has
forgotten the steps. Since a colleague or a trainer normally cannot stay around for repeated
demonstrations until every learner has acquired the skill, documents or videos might be
helpful.

2.2. Instruction sheets – scaffolds for imitation
Scaffolds for imitation are called instructions. Instructions consist of guidelines which lead
the user step by step through a procedure, demonstrating how to carry it out; an example is
provided in Figure 2. A document containing instructions will be called an instruction sheet.

Figure 2. The first steps in an instruction sheet for making a line chart in a business system.

Effective instructions should follow some principles which are explained below.

Recognizable
For imitating instruction sheets, users need to recognise specific places in the IT application
when reading them, thus including screenshots is often necessary. Screenshots are also needed
for pointing to exactly where to push a button or tick a box. In Figure 2, the larger screenshot
illustrates steps 1-2, while screenshots of buttons are included in steps 3 and 5.

The learner also needs to recognize that the explanatory text and figures are not parts of the
screen. This difference is achieved in Figure 2 by placing the numbers outside the screenshot
and drawing arrows at an angle with the screen items.

Proximity
When perceiving the world, people group together stimuli which are located closely together,
which are similar, and which constitute shapes which we expect (Ormrod, 2012). This
principle is called proximity. For example, in Figure 3, the textual instructions in the left case
is close to the buttons to be pushed and linked with an arrow, while in the right case, there is
no such proximity. Short distance between button and text means that the learner can keep the
attention to the point of action, while in the right case; the attention has to be split between
screen shot and textual explanation.

16

© Jens Kaasbøll, 5 January, 2018

Figure 3. Instructions with text close to action objects (left) and coded with sequence numbers (right).

A meta-study shows that proximity gives learning gains, and that when the material to be
learnt is complex, the gain is quite substantial (Ginns, 2006).

Sequential
An IT device requires a sequential series of actions, hence instructions need to specify the
sequence. Video, audio and text are sequential modes of expression, while illustrations are
not. Illustrations therefore need specific sequencing, for example as in Figure 2.

Direction
Users often believe that
the computer can carry out
a certain operation, but
they do not know where to
locate it in the interface.
This means that they have
an understanding of the
functionality, but lack the
skill to trigger it.
Instructions need to
provide directions to the
location in the user
interface where the
functionality is found, we
would say that instructions should be directive.

Knowing some facts might ease navigation. For instance, navigating in a new text processor
would be eased if a user has learnt trivial facts like that Times New Roman and Arial are
fonts. Then the user would recognise these words and deduce that this is the location for
changing fonts.

Completeness and Feedback
Reinforcement from the environment that the action carried out is successful is an important
factor for learning (Ormrod, 2012). Digital devices often provide immediate feedback on the
result of an operation. If the result is what the user wanted, the feedback is reinforcing

Navigation: Defne.

Defne knew that the switch for WiFi reception used to be
located in the top level of the settings menu on her phone.
After installing a new version of the operating system, she
discovers that it is not located there any longer, such that she is
in need of navigation.

Defne was able to navigate to the WiFi switch by searching the
web, where someone had written:

Where is WiFi services?

Settings > Connections > Network Services
... listed here

17

© Jens Kaasbøll, 5 January, 2018

learning. Sometimes, the system does not provide appropriate feedback, hence learning is not
reinforced. The user might therefore have to do additional operations to control the output.
Instruction no.8 in Figure 4 is for checking that the operation has yielded the desired result.
We will say that instructions which include such check points promote feedback.

Figure 4. An instruction for checking the result.

Keeping the cognitive load low is also a reason for breaking a long sequence of instructions
into shorter sections with an observable end state. If the computer does not produce an
observable output after a section, checks like instruction no.8 should be included at least at the
end of a section of instructions. Then the user can concentrate on learning one section at a
time. The longer sequence can thereafter be learnt by joining the sections. For instance,
instructions for uploading a file with meta-data to a cloud service could be divided into the
sections shown in Figure 5.

Figure 5. Three sections (A-C) for an instruction sheet for uploading files. The user can check the result
after each section. Each section should be expanded with more steps and screenshots.

Instructions should include all necessary steps to reach the result which the user wants. If
some steps have been left out, for example Save or pushing OK, the user may believe that
the operation is complete without having reached the final goal. If the instructions promote
feedback as the last step, the user might be able to check whether the final output is as
wanted.

 Short
Few users read manuals (Novick et al., 2007), and long texts are particularly unlikely to be
read by most users, since they are more interested in doing than in reading (Carroll, 1990).
Instructions should therefore be short. The instructions in Figure 2 are as short as possible.
The example in Figure 6 has short and precise instructions for how to trigger the selection of
fields. However, the instructions to the left for how to fill the fields are too wordy and are not
broken up into steps.

18

© Jens Kaasbøll, 5 January, 2018

Figure 6. Instructions for mail merge (MS Office 2007)

The instructions in Figure 6 also illustrate another common problem with screenshots. We are
often interested in small portions of a large area. If the screenshot includes the whole window,
the details in the area of interest become tiny and difficult to see and mark up with arrows. A
better solution in Figure 6 could be to extract the name and address area of the letter and blow
it up, so that the reader can easily spot the exact position where to type Last_Name.

Choice of example will also influence the complexity of the sheets. The example should
illustrate the normal execution of the operation, without including any other, disturbing data.

Level of detail
Studies of user experience reveal that they are not satisfied with the instructions provided for
the software they use. Typical sources of dissatisfaction are that IT instructions are too basic,
but also too difficult to imitate (Novick and Ward, 2006, Smart et al., 2001). The observation
that some documentation is too basic may come from the fact that it is intended at the novice,
and then the more proficient user finds it too detailed. The opposite may be the case when the
documentation is too difficult. Personally, I have too often experienced that I find some
seemingly useful documentation on the web, but after trying to follow it, I realize that my
software is not identical to the one in the instructions. It is often a matter of the documentation
missing information about the software version.

The instructions in Figure 2 are intended for users who have some skills in navigating in the
menus. Novice users might have had problems with finding the indicators and data elements

19

© Jens Kaasbøll, 5 January, 2018

referred to in point 4 in the example, since the instructions do not include a screenshot
indicating where these items are located.

Figure 7. Instruction sheet for novices.

The instructions in Figure 7 are detailed concerning a basic operation, so it fits novices. A
user who has acquired some IT skills would find these instructions too basic. One might argue
that more advanced users would not look up how to save a file. However, if one wanted to
know how to save with a special file format, searched for this and hit the instructions in
Figure 7, then the instructions would turn out as too basic. On the other side, if the novice
does not know where to find the  and buttons, the instructions would be too difficult.

In an experiment with elderly novice users, the learning effects of annotated screen shots,
screen elements embedded in text and text only instructions were compared (Kehoe et al.,
2009). The full screen shots eased the imitation, while the text versions had better effects on
the learners’ remembrance of the skill. This may be due to that following the screenshots
requires less cognitive processing by the learners, while the additional effort needed to follow
the text style instructions had positive impact on remembering. The intermediate version,
screen elements embedded in text (as in point 1.1 in Figure 7), yielded an intermediate result.
Consequently, annotated screen shots are useful for introductory imitation. To support the
learners’ memory, the users should have continuous access to these instruction sheets.

Hence, instructions have no obvious level of detail which fits all users. The computer scientist
may launch the idea that the software should track the users’ skill level and present
instructions accordingly. However, even keeping one version of user documentation correct
and up to date seems to be too demanding for many IT vendors and in-house software
systems, so managing a set of different levels could easily lead to more chaos than
improvement. A more realistic approach is to make some simple assertions about which

20

© Jens Kaasbøll, 5 January, 2018

functionality that will be used at different skill levels, and adjust the instructions accordingly.
Table 1 provides recommendations for adjusting the instructions to the skill level.

Table 1. Skill levels and corresponding instruction design.

Skill level Operations Presentation
Novice Any basic Screenshot and every detail.

Ordinary

Any basic Brief mention
Menu selection for new
operation

Textual navigation from main window to location.
E.g., Insert → Object → OLE Object

Unknown window
Several operations

Screenshot for navigation
Sequence

Advanced

Any ordinary or basic Brief mention
Menu selection for new
operation.

Textual navigation from appropriate point to
location.

Unknown window
Several operations

Screenshot for navigation
Sequence

Missing the skill level is not the only trouble that users report concerning instruction sheets.
Another complaint is that user documentation is out of date (Novick and Ward, 2006).
Outdated material was abundant when manuals were printed, and new software versions were
distributed. Publishing instruction sheets on the web eases updating.

Terminology
When designers invent a term for a functionality, only one or two in ten users would use the
same term (Furnas et al., 1987). This discrepancy in terminology causes problems when
looking for the interface object which will trigger the wanted functionality, and also,
messages popping up on the screen may be written with unintelligible terms for most users.
Instruction sheets should therefore use a variety of terminology when referring to the
computer operations, such that a user may find some terms which they recognise.

Tools for creating instruction sheets
When creating instructions which include screenshots, one normally needs copying a portion
of the screen and thereafter adding some graphics and text. The Print Screen key copies the
whole screen, so for selecting an area, the image has to be cropped to the desired size by
means of a software tool which can handle raster graphics.

Windows 2007 and later has a program called Snipping Tool which produces a copy of an
area which the user can select. Ubuntu Linux has the option Applications  Accessories 
Take Screenshot  Grab a selected area. In Mac OS X, the Grab app has corresponding
functionality. For finding out how to make screenshots of mobile phones, search the web with
the terms Screenshot and phone name.

Instruction sheets can be presented in many media, including in-line help which appears in the
software, a slide, a web page, a text document. If only one form of publication is relevant, the
instructions should be made with appropriate software for the medium, for example, Impress,
PowerPoint or Prezi for slides. If the instructions are to be published in several media, the
professional approach would be to store the instructions in a XML format, from which any

21

© Jens Kaasbøll, 5 January, 2018

type of publication can be extracted. DocBook is such a format, intended for writing technical
documentation.

2.3. Instruction videos
The previous section outlined qualities of instructions; recognisable, sequential, complete,
promote feedback, short, directive and with varied terminology. These properties hold for any
medium. The contents and structure of an instruction video should therefore be similar to the
sheet.

Generally, the written text in instruction sheets would be presented orally in a video, and the
static screenshots would be replaced by a dynamic screen capture, showing mouse movements
and characters being typed. Videos may also need some graphics like arrows or highlighting
for drawing attention to specific parts of a window.

In videos, proximity is not just a matter of spatial layout, but also of relatedness in time. An
event which is following directly by another one is close and stored in short-term memory,
while a couple of events later, it may have been forgotten.

Examples of video instructions are abundant on the web. Two introductions to formulas in
spreadsheets can be found on YouTube:

• 06 Google Spreadsheets Cell Formula pt 6 of 7 (mrwaynesclass, 2009)
http://www.youtube.com/watch?v=vZvtsNotlEo

• Creating formulas using cell ranges in an OpenOffice calc spreadsheet (COL CCNC,
2010) http://www.youtube.com/watch?v=U7QlOpluAF0

The first video has replaced written text with sound, while the second one has kept the written
instructions and has no sound.

Figure 8. The callout points to the rectangle at left, but not at right (COL CCNC, 2010).

The yellow callout in the silent video (COL CCNC, 2010) points to the rectangle that is
dragged, see Figure 8, left part. Also, the yellow colour appears both in the callout and at the
cursor position. This supports the association between the callout and the rectangle in both

http://www.youtube.com/watch?v=vZvtsNotlEo
http://www.youtube.com/watch?v=U7QlOpluAF0

22

© Jens Kaasbøll, 5 January, 2018

location and similarity, so it supports proximity in two ways. The callout in the right part of
Figure 8 is located far from the rectangle, so in this case, the association is only through the
similarity in colour. This example is from a video, but proximity can be achieved in the same
way also in static illustrations.

The use of screenshots in the video enables recognising the software in these videos.
However, there are a large number of cells filled with data in the examples, so the learner
needs to be able to disregard the cells which are irrelevant for the insertion of formulas.
Excessive amounts of data or of interface details clutters the picture and makes it unnecessary
hard to recognise the essentials.

Sequence is guaranteed, since the video is the medium. The videos are complete in the sense
that they cover all steps necessary to insert the formula, and feedback is promoted due to the
viewer can see the result in the end. Both of these videos are short; around one minute. Users
are more likely to watch a short video to its end than a long one, and most other instructional
videos are longer than these. Also, the videos direct the user to the appropriate place in the
user interface. These videos thus seem to fulfil the criteria for well-designed instructions.

Tools for creating instruction videos
Producing a video can be done in three steps:

1. Recording the screen and voice by means of a screen recording and video production
software. The recording yields a series of frames, as illustrated in Figure 9. The series
of frames is stored in the format of the software package.

2. Editing the frames. Frames can be deleted and added from other recordings. Also
graphics can be added in this step.

3. Rendering. The software produces a video file, which could be

a. Animated vector graphics – Flash .swf can be played with Adobe Flash Player.

b. Compressed video – MPEG-4. Can be viewed with video players.

There are several softwares which can do the whole or parts of this process. Three examples
are:

• Adobe Captivate is a commercial product with extensive functionality (Adobe, 2012).
It runs on all platforms.

Figure 9. A series of frames for video production. Screen capture from Wink (Kumar, 2010).

23

© Jens Kaasbøll, 5 January, 2018

• KRUT is freeware and runs an all operating systems (Östby, 2012). However, it skips
the editing step.

• Wink is freeware and can do the steps 1-3 above (Kumar, 2010). It runs on Linux and
Windows.

2.4. Training for skills
Training people at work by making them imitate an instructor has led to substantial skill
learning for a large variety of trades, as seen in a summary of 117 studies (Taylor et al.,
2005). Even so, the effects on job behaviour were moderate, but stable over time.
Performance at work was improved when the trainer not only demonstrated how to do things,
but also how not to behave. Making the learners use some of their own cases during training
also helped.

It was noted above that learners quickly forget long series of operations. Written or video
instructions may aid users when back at work. While users seldom read manuals, they are
twice as likely to look up in training material (Novick et al., 2009). Trainers should therefore
hand out instruction sheets or videos to the learners instead of instructing by means of a
projector (Herskin, 2006). Then the users will have training material to consult after the
training. Following an instruction sheet instead of the trainer at the projector also eases most
learners’ practice during the course, since they can follow the instructions at their own pace.
During trainer instructions, some learners work slower than the trainer, such that they are left
behind. One might object to the video on the same grounds; that the learner cannot follow its
pace. However, videos can be paused and replayed indefinitely, in contrast to the trainer in
front of a class.

Following instruction sheets may be beneficial when introducing a new program or
functionality. However, research indicates that after a short time, users prefer working on
their own and they also seem to learn more quickly in that way (Carroll et al., 1985).

Training in courses by means of instruction sheets also relieve the trainer from running
around in the computer lab to help out those who forgot the instructions (Herskin, 2006)
Nevertheless, some learners with insufficient digital literacy do not imitate the instruction
sheets but ask their fellow students for help instead (Hadjerrouit, 2008). This might be a
symptom of written instructions being more abstract than live ones, such that novices should
also imitate the trainer with projector or possible view a video, which is more concrete than a
written sheet.

Instruction sheets and videos need to be stored where users can find them when needed.
Searching Google with “guide windows” yields more than one billion hits, and there are more
than a million instruction videos for Linux on the web. The users’ challenge is to find the
right one. Research has reported that users have trouble finding instruction sheets and other
documentation when needed (Novick and Ward, 2006). This challenge will be addressed in
Section 5.4.

24

© Jens Kaasbøll, 5 January, 2018

When introducing new business specific software in an organisation, people need to learn the
skills for using it. How to organise for user learning will be taken up in Chapter 11 and later.
In any case, instructions should be produced and distributed. Knowing that users have trouble
searching for and finding relevant instructions, the best option is to place the instructions such
that no search is necessary. A solution is to include instructions in the user interface of the
software, so called context-sensitive or in-line help (Shneiderman and Plaisant, 2010); this
topic will be elaborated in Chapter 6.

2.5. Assessing IT skills
Upon completing user training, the trainer may want to know whether the users have learnt
the skills aimed at. Since skills are demonstrated by doing and not by saying, tests of skills
should be through practical exercises. Exercises like

• Summarise both rows and columns in the spreadsheet.

• Use styles consistently in the document.

are therefore appropriate for testing IT skills. The trainer needs to observe the performance of
the learners on the IT device to judge whether they are at the wanted skill level. Alternatively,
viewing the result produced by the trainees may be done, but such inspection does not capture
the mistakes which the learners might have done on their way. The following question

• How do you summarise both rows and columns in a spreadsheet?

calls for an oral answer and not a demonstration of practical skills. The following question is
even further from testing skills:

• What is a style in a text processor?

This question does not concern know-how at all, but rather knowing-that or understanding.

A thorough discussion on testing IT skills and understanding will be provided in Section 10.2.

2.6. Summary
IT skills are strengthened through repetition. Learning new skills is eased through imitating
scaffolds in the form of instructions provided by trainers, instruction sheets or instruction
videos. Written instructions are more abstract than a trainer demonstrating; hence personal
demonstrations may be needed for learners with low general IT competence. The essential
processes for learning IT skills are summarised in Figure 10.

25

© Jens Kaasbøll, 5 January, 2018

1a. Im
itate

1b. Repeat

Instructions

1a. IT Skill1b. Improved IT skill

0. Related competence

Written

Video

Trainer

Look up later

toor learners

Figure 10. The processes for learning IT skills.

Instructions should have the qualities listed in Table 2.

Table 2. Qualities of instructions

Qualities of instructions Explanations
Recognisable Users recognise items in the user interface with those in the

instruction
Proximity When interpreting instructions, users group together items which

are located closely together, which are similar, and which
constitute shapes which the users expect.

Sequential The steps in instructions should follow each other in a sequence.
Direction Instructions should guide the user to the relevant location in the

user interface.
Completeness All steps need to be included.
Promote feedback The instructions should enable the user to check whether the

wanted result is achieved.
Short Users want to do, not read. Thus instructions should be as short

as possible.
Level of detail The amount of detail in instructions should be tailored to the

expected group of learners.
Terminology People use different terms for the same topic. Hence instructions

should include a variety of expressions.
.

1. Provide users with instruction sheets or videos, also during training.

26

© Jens Kaasbøll, 5 January, 2018

Chapter 3. Learning business fit

The learning objective of this chapter is to be able to create scaffolds for understanding the
usefulness of IT for own tasks and for the business.

Prior to addressing learning, research on what makes people actually use IT for their business
will be presented.

3.1. Usefulness
One of the few well documented connections concerning use of IT in organisations is the
Technology Acceptance Model (TAM). In its original form, it says that the perceived
usefulness of a technology is the strongest factor concerning whether the technology will be
used, while its ease of use and learning is of less importance (Davis, 1989). TAM predicts that
if computer software is experienced as useful by the users, they will use it, even if they have
to put effort into learning it. On the opposite side, a system which is easy to learn and use will
not be used if the users do not experience that it is useful for their tasks.

The model is illustrated in Figure 11, where the bold arrow indicates a connection that is
stronger than the other one.

Figure 11. The Technology Acceptance Model, original version, adapted from (Davis, 1989).

An example: At a time when computers were not everywhere, a hospital installed a
computerised encyclopaedia for nurses in one ward, where they could find information on
care procedures, medical explanations, guidelines, etc. The nurses had previously experienced
that their questions were not always answered in a polite way, and that looking ignorant in
front of superiors was a bad experience. Therefore, they quickly adopted the system to avoid
having to ask doctors or administrators for help. The system only had one terminal, and after a
while, this terminal was moved to another ward five minutes walk away. Despite this extra
time, they continued using it. In order to reduce disturbances, they organised a buddy system,

27

© Jens Kaasbøll, 5 January, 2018

so that one nurse collected the questions and walked over to the other ward, while the others
took over her tasks during the half hour needed. Thus, they took on additional effort in order
to achieve the usefulness which they had experienced.

Measuring the impact of use of IT systems in organisations in general has been impossible.
Normally, you cannot isolate the costs of technology implementation, and you cannot isolate
their effects. Expenses are interwoven with the costs of learning and changing work
processes, and correspondingly, the products and services produced by an organisation
depends on a package of factors, including competence, infrastructure, and the market. TAM
therefore measures the time the technology is used and adapts this as an indicator for the
degree of success. This kind of measurement has over the years become a standard for
measuring technology acceptance and success.

Later on, TAM has been refined with more factors, and a combined model looks like Figure
12.

Figure 12. The revised Technology Acceptance Model, adapted from (Venkatesh et al., 2003).

When colleagues use the system or your boss tells you to use it, the social influence is
increased. Facilitating conditions concern accessibility, including network connection,
electricity, printers, etc.

In the case of teaching IT in schools, the students may find it mandatory to learn the
application because of trainer pressure. In TAM terms, the students are under strong social
influence, such that usefulness and ease of use are less relevant. For later, voluntary use of the
same software, the usefulness which the students have perceived will be prominent for their
decision to apply it, according to TAM.

28

© Jens Kaasbøll, 5 January, 2018

When evaluating proposed IT systems, the model tells us about four factors to consider.
Beware that it is the prospective users’ opinions which matter. If outside consultants do not
see the point in a software package, while the users do so, the system will probably persist.
On the other hand, if the consultant thinks that some information produced by the system will
be very valuable for the organisation, while those working there do not share that opinion, we
cannot expect that they will take the effort of learning and using a new system.

In addition to the four factors, which seem to be relatively stable, other factors will moderate
the picture. For a young man, the usefulness will be more important than for others, while for
an elderly lady with little IT experience, ease of learning will count more than for others.
Such moderating factors may depend on the local culture, and the studies behind TAM are
mainly carried out in North America.

Based on TAM, learners who have not understood the usefulness of a specific IT will be less
likely to learn its operation. Teaching usefulness should therefore precede teaching skills.

3.2. Understanding usefulness of IT in own tasks
Sein et. al. (1998) and Coulson et. al. (2003) have proposed levels of knowledge of software
use, where an important distinction is drawn between competence of the software and of its
use. The previous literature considers that a basic competence of fitting IT to business is
knowing how to use IT in one’s work, and a more advanced competence is to see what IT
does for the organisation (Sein et al., 1999, Coulson et al., 2003). The Committee on
Information Technology Literacy (1999) also considers the societal impact as part of IT
competence. One dimension of competence on IT use is therefore its scope, extending from
the individual through the organisation and into the societal level.

Let us first consider Kirsten, who is requested to tell about IT impacts in her workplace. Her
reply is only about which IT tools she is using for two activities. She is not showing any
motivation for using the IT tools in the
sense that she can point explicitly to their
usefulness in the TAM sense, for
example by comparing these tools with
other solutions. She is not telling
anything about other consequences of IT
for her work or the organisation.
Although she is able to tell a little bit
about how IT fits her activities, she
seems to have skills for using IT without
being at the Understanding level.

Using the IT without understanding its usefulness puts Kirsten’s work in a vulnerable state,
where she might use the system less, according to TAM.

Understanding IT in own tasks is the ability to explain the relationship between IT and one’s
own activities. This includes understanding of why an application is useful or not.

Skills for use in business—Kirsten:

When asked about the impact of IT in her
workplace, Kirsten replies:

When I inform customers about new services
and remind them about appointments, I find the
customer’s details in our computer system and
then write letters in Word. Thereafter I send the
letters off in Thunderbird.

29

© Jens Kaasbøll, 5 January, 2018

Leonard is clearly explaining the
usefulness of the computer system
for his work, and he relates the
data in the system with the status
of his customers. He seems to
understand the role of IT in his
own activities. Since his own
work tasks are closer to his
experience of using IT than is the whole business, Leonard would probably understand what
the IT means to himself before he understands the larger picture of IT in the whole
organisation.

In a study of learning a software by means of web-based material, the most frequent learning
strategy reported by the users was (Gravill and Compeau, 2008):

I considered whether the material would allow me to accomplish specific work tasks.

Hence, during learning, users seem to aim at understanding how IT can be useful in own
activities.

3.3. Minimal Manuals
Scaffolds for learning about IT in own tasks would couple the task with IT functionality, and
we will call this minimal manuals. The term was coined by Carroll (1990), who found out that
a scaffold which combined tasks with instructions was an effective documentation for users to
learn the software.

An example of a minimal manual from a hotel system is shown in Figure 13. The business
task of making a reservation differs from the reservation functionality in the system, because
the latter assumes that the customer already exists. Thus some instructions were necessary to
make a complete task oriented documentation. Recognisability is low in these instructions,
assuming that the hotel staff is already reasonably familiar with the system.

Figure 13. A Minimal Manual consists of two parts; task description and instructions.

Instructions only will not suffice to link work task to computer operations. Hence, to motivate
users through understanding the usefulness of IT in their own activities, all scaffolds should at
least be minimal manuals coupling task with instructions. The term ‘minimal’ hints to this
type of documentation being the smallest sufficient scaffold for learning IT use.

Understanding IT in own task—Leonard:

Since I use the computer system for keeping track of
which messages the customers have received, I know
that they are up to date on our services. In that sense,
the computer system is very useful to me. It is also
reminding them about their appointments with me.

30

© Jens Kaasbøll, 5 January, 2018

An information system may have several types of users carrying out a wide variety of tasks.
For instance, sales staff in an internet shop enters new products and prices in the system,
while a customer browses the catalogue, picks goods and manages an account. The sales staff
may need to learn many details on how to describe and categorise a product and how to
determine prices. They will need all this competence on the information in the system and
also the necessary IT competence for operating it. For learning this, some scaffolds may be
needed. On the other side, in order to get customers, the system should require as little
learning as possible for them. Customers who need to read an additional page of
documentation might well give up the shopping.

 For understanding IT in own activities, users need documentation according to their tasks. An
international standard for user documentation suggests organising users in a hierarchy
according to their needs (ISO/IEC, 2008). The web shop could have a hierarchy as shown in
Figure 14.

Users

External Internal

AccountingSuppliers Customers Warehouse Sales

Picker Manager Product
manager

Customer
contact

Figure 14. Hierarchy of users according to documentation needs.

3.4. Understanding IT in business
The next type of understanding to be achieved is the ability to explain how IT fits business as
well as consequences of IT for own tasks, the organisation and the society. For short, we call
this Understanding IT in business.

Astrud’s explanation is telling
little about her skills, but it
demonstrates that she has
understood consequences for
her own work, for colleagues
in other departments, for
management, and for
customers. She demonstrates
an understanding of the
current situation and compares
it to the previous system. Her
enthusiasm of the usefulness
of the corporate database
demonstrates a clear motivation for using the system.

Understanding IT in business—Astrud:

The corporate database means a lot to my work and to
the organisation as a whole. Now I enter all incoming
mail in the system, and if it is on paper, I scan it. This
means that I can search everything that is there and also
that people in the claims payment department has the
information at once. Delays due to waiting for papers to
be transferred or finding the case in the archive have
been eliminated. Besides, it gives us the up to date
information on how we are doing, so that there is no
longer any argument with management on productivity
measurements. I see this as a win-win-win situation for
us, management and customers.

31

© Jens Kaasbøll, 5 January, 2018

Eddy can express how he uses a messaging service to communicate with his friends,
demonstrating an understanding
of IT in his own task. Lena, on the
other hand, also knows how the
communication task is integrated
in a larger commercial enterprise
and governmental surveillance
system. Hence she understands
how the IT is embedded in
business and societal structures.
After their conversation, Eddy
might have picked up some of
Lena’s understanding of IT in
business too.

The steps to understanding the fit of IT in business are illustrated in Figure 15.

Illustration + text

Business oriented
model 2b. Understanding

usefulness of IT in
business

2b. Compare model and experience

Confronting business
misconceptions
Oral or written feedback
Quiz with explanations

2a. Understanding
usefulness of IT in

own tasks

1. IT skill

Minimal
Manual

2a. Com
pare task

and functionality

Figure 15. Learning Business fit. Two types of scaffolds help understanding usefulness of IT in business.

3.5. Business oriented models
Research points to that when we work together with tasks which depend on each other,
training is more important for our adoption of IT and information systems than when adopting
a single user application (Sharma and Yetton, 2007, Reynolds, 2010). Further, users have a
harder time learning business specific database systems like enterprise resource planning and
supply chain management than communication systems like e-mail and blogs, even if both
types concern the whole organisation (Bagayogo et al., 2014). The communication systems do
not have the high degree of formalisation as the business systems.

A study of users’ perceptions of manuals found that they want documentation to include more
than how to carry out a specific task by means of a software package (Scott, 2006). They also
want the manual to include how the activities which the software supports relate to other
activities carried out by themselves or colleagues.

Understanding task versus business—Eddy and Lena:

Eddy: You should try the newest social media
FreshBlog. There you can send messages in full
privacy.

Lena: You know, everything you write is captured by
their marketing business. Haven’t you noticed the ads
which relate directly to the contents of your
messages? Your friends will get them too. And be sure
that the National Security Bureau already has picked
up who are your friends’ friends.

32

© Jens Kaasbøll, 5 January, 2018

Supporting understanding of to how IT fits business and consequences of IT for own tasks,
the organisation and the society may include a large variety of documentation. For example,
the Arab spring demonstrated the significance of social media for societal change.

In large organisations, there may be long, interconnected chains of information processing
and exchange. In a factory for mass production, many staff groups access the same database,
including production workers, engineers, accountants, sales, purchasers, managers and
administrators. Purchasers need to understand the accountants’ requirements for specific
details on invoices. Production workers need to register both use of raw material and products
made for a batch, such that both purchasers and sales are kept informed. Figure 16 is a
business oriented model displaying data flow in an organisation.

DHIS

Measles doses: 223

Measles coverage: 89%

Fish District Office

Measles coverage: 72%

Cat District Office

Measles coverage: 84%

Figure 16. A business oriented model of data flow between organizational levels and units

Drawing maps of information flow on wall charts and gluing paper prints of screen windows
which are accessed help providing an overview for the involved participants. The final chart
may also help others understand the connections within a large organisation.

Data flow diagrams (de Marco, 1979) like the example in Figure 17 have been used for
functional specification of information systems. The rectangle denotes a person, the circle a
process, the parallel lines data storage and the arrows data flows. These are drawn in an
abstract notation, but they are in general easier to understand than data or object models
(Vessey and Conger, 1994). Data flow diagrams provide an overview of which data is going
from where to where. In larger cases, processes are broken down in another data flow diagram
to show more details. Thus each diagram is kept reasonably simple.

33

© Jens Kaasbøll, 5 January, 2018

Figure 17. Business oriented documentation: Data flow diagram. (vcilt.uom.ac.mu)

3.6. Confronting misconceptions
Some users develop misconceptions on how the IT is embedded in the organisation.
Confronting misconceptions has been found necessary for developing a more adequate
understanding of any subject matter (Ramsden, 2003, p. 87).

The simplest way of confronting business misconceptions is for a trainer or another person to
engage in a conversation with learners, detect when they don’t have adequate understanding
of the system, explain why, and provide a better conception.

In an organisation, the issue may be to
make people aware of the consequences of
their work for others. Users may not know
how others rely on the information they
provide in the systems

Yma and Jussi are colleagues in the hotel.
Yma was unaware that her change in the
booking system had implications on
Jussi’s way of organising work. Jussi
explained this way to Yma, and she
seemed to understand and might not do a
late change of booking hereafter.

While trainers and colleagues may be better suited for confronting misconceptions, Figure 18
illustrates how a multiple choice question with explanations can possibly clarify

Confronting misconception—Jussi and Yma:

Receptionist Yma: The guest complained that
the room had not been properly cleaned

Cleaner Jussi: You changed the booking just
when the guest arrived. That made it
impossible to clean the room in time. We
prioritize the rooms with bookings.

Yma: Oh, I’m sorry, I thought you took them
floor by floor.

34

© Jens Kaasbøll, 5 January, 2018

misconceptions. After an erroneous answer, the user receives an explanation as to why this
response is wrong. While personal explanations might be more effective, automatic response
to multiple choice questions does not require another person’s presence and may be available
anytime and anywhere.

Figure 18. A multiple choice question which can target possible misconceptions. The explanations in Sans
Serif fonts are to be displayed after the learner has responded.

3.7. Summary
Understanding the usefulness of the technology for one’s own work is a driver for learning it
and is therefore considered the most important topic to learn for IT users. Scaffolds should
therefore motivate for usefulness. Minimal manuals consisting of tasks and instructions are
the smallest sufficient scaffold for learning IT use.

Understanding the purpose of the IT for the organisation is important for cooperation.
Business oriented models is a type of scaffold which can help users acquire an adequate
understanding of the fit of IT in a business. Users without a proper conception need to be
informed about their misunderstandings and be guided to a more appropriate one; we call this
type of scaffold confronting business misconceptions.

2. Make sure users understand the usefulness of the IT.

35

© Jens Kaasbøll, 5 January, 2018

Chapter 4. Understanding IT

The learning objective of this chapter is to be able to develop scaffolds which will help users
understand IT.

Information technology is characterised by a quick turnover of new software versions,
information systems and hardware gadgets. Users therefore need to upgrade their competence
often, hence they need to constantly learn about the technology. This implies that IT user
competence also includes the competence for learning about IT.

From the educational sciences, we know that understanding ease transfer of skills to new
situations (Bransford, 2000). For example, a computer user who has understood the concept
of text flow, and that text flows from one column to another, but not between cells in a table,
would be more likely to choose the right kind of text structuring tool in a new word
processor..

For the novice user, IT may look confusing, and different devices and software packages may
present general principles and concepts in idiosyncratic ways. This chapter will identify some
IT concepts and principles which should be recognisable for users and which appear in all
software.

Computers and other IT technologies are constructed on the basis of a few principles.
Throughout half a century, more principles have been introduced for easing the design of
software, and these principles have also appeared in user applications. Some basic concepts

Pedagogical theory – Constructivism
The constructivist perspective on learning is based on the assumption that new skills and
understanding is based on what we already know. For example, if we see a button in a new
program which has the same name as in the previous program, we assume that it does the
same operation. In general, when we are presented with something new, we always try to
associate it with something familiar. Since new understanding is based on the already
existing one, we construct our own knowledge; we do not copy the teacher’s
understanding.

People are active and communicating learners, and learning takes place in interactions
with the environment, including fellow learners, teachers, computers and books. A culture
which encourages questioning is therefore promoting learning.

In order to accommodate for the learners’ construction, the teacher needs to know the
learners’ starting level, such that teaching can be directed towards what is needed to build
from that level. We will also see how learning can go wrong when starting from a basis
which is not aligned with the material to be learnt.

36

© Jens Kaasbøll, 5 January, 2018

for user programs will be introduced.

When using IT, people learn skills, but practice does not necessarily promote understanding.
While skills are associated with doing, understanding requires the ability to express and
communicate in talking or writing about the subject matter areas.

This chapter will first describe the learning trajectory when reaching two levels of IT
understanding. Scaffolds for supporting understanding will be presented for each of these
levels, and issues of misconceptions will be discussed.

4.1. From skills to understanding
People learn doing first, and second, they may reflect on what they did. The second step
triggers understanding of ideas, concepts, principles, relations, etc. Further, people learn
through abstract conceptualisation, which includes relating concepts to each other. Studies of
learning of abstract concepts in maths support the direction of learning from concrete
experience to abstract concepts (Sfard, 1991) in line with the constructivist learning process
of reflecting on experience. Since IT concepts also are formal and abstract, like maths, it is
reasonable to believe that IT is learnt in a similar way.

In a study of novice users learning searching in a database, the learners became able to
describe their searching in terms of the computer’s operation, but they were unable to state
how the system worked (Borgman, 1986). This means that they could do it, but had not
reached an understanding of searching.

Programmers have to learn IT concepts and principles to a larger extent than users. In a study
on the learning of the array concept, it was found that the learners start by coding an array
(Aharoni 2000). This means that they carried out an action and gained concrete experience.
After having compared the starting point and the effects of their actions, the learners were
able to refer to the basis and the outcome of the action without mentioning the steps taken
during action. Their learning process consisted of comparing input and output, and its result is
called functional understanding, see Figure 19. Thereafter, the learners reified the action into
a concept and related it to other concepts, e.g., being able to say that that an array consists of
indexed variables. Addressing the structure of the technology, this is called structural
understanding, and the learning process of reification and relating is called conceptualisation.

Three other studies support the theorized sequence of functional understanding appearing
prior to structural understanding. Novices learnt process modelling with input-process-output
units, often combined into sequences and networks, more easily than data and object models
capturing data structures (Vessey and Conger, 1994). Some year 10 students reached a
functional understanding of the concept of master slides, but none reached a structural
understanding (Stamatova and Kaasbøll, 2007). College students being tested in text
processing scored lowest on questions which required an understanding of the document as
consisting of more than one text flow, i.e., a more elaborate structural understanding (Grant et
al., 2009).

37

© Jens Kaasbøll, 5 January, 2018

2c. Com
pare input

and output

2c. Functional
understanding

Functional
model

Illustration + text
Slow learners in particular

2d. Conceptualise

Structural
model

Fonfronting
misconceptions

Oral or written from teacher
Quiz with explanations

1. Skills

2d. Structural
understanding

Illustration + text

Figure 19. Learning processes and learning outcomes concerning understanding of IT.

Learners’ level of mastery can be found by observing what they do and say. Assume that they
are supposed to learn the concept of a master slide and how changes in the master slide can
affect all the slides in a presentation file. Learners who have completed the sequence of
computer operations that demonstrates the skill can be asked to express the concept.

George is repeating the steps which he
carried out without expressing the initial
state and the outcome of the operation,
hence he has not reached the level of
functional understanding yet.

Mireille has expressed the starting state of a font size, which is different from what she wants.
Further, she mentions that the master slide can do all the desirable changes, which is
expressing the function of the operation.
Mireille is therefore at the functional
understanding level. By mentioning font
size and slides in her explanation, she
demonstrates that for these two concepts,
she is at the structural level of
understanding.

The learner Domenico demonstrates that
he is at the structural level of master slide
competence. By comparing master slide
with page layout, Domenico refers to
master slides as an entity of its own. Since
Domenico has grasped the master slide
idea and also seen its resemblance with
page layout in a text processor, he is ready
for learning a more general concept. The ability to compare master slide with other concepts
means that Domenico can build a structure of IT concepts; hence he has reached a structural
understanding.

Master slide—George:

I went to view and slide master and then
changed the font size, and went back to the
normal view.

Master slide—Mireille:

I wanted to change the font size of all the
slides, so I changed it at the master slide.
Then it will change all the slides.

Master slide—Domenico:

Master slides control the appearance of the
normal slides. When you change the master,
all the others will change too. It’s like the
page layout in the text processor, which also
changes every page.

38

© Jens Kaasbøll, 5 January, 2018

While some users generate adequate understanding on their own, slow learners are
particularly bad at doing this (Furuta, 2000). When trying to manipulate a system with
unknown behaviour patterns and no scaffolds, the good learners came close to a functional
understanding of its operation (Furuta, 2000). The few accounts which the poor learners came
up with indicated skill level rather than understanding, e.g. saying

I am turning the left knob to the right (clockwise).

Learning a new concept builds on those already known. For instance, understanding addition
is a prerequisite for learning multiplication, and knowing the difference between document
and picture formats is necessary when trying to edit a picture of a text. If you haven’t
understood the prerequisite, you will have serious trouble understanding the next concept,
thus making a poor learner into an even poorer one.

‘Mental models’ is often used as a common term for functional and structural understanding.
In addition, mental models are normally also considered to include the way the interface is
operated (Westbrook, 2006).

4.2. Functional models
For planning how to train or help others obtain a functional understanding, we need to know
what the learning objective should be. An analysis of the function is therefore appropriate.

Any function has at least one purpose, denoting its usefulness for some activity outside the
function itself. This aspect was explained in more detail in Chapter 3.

A function has an input state, one or more operations bringing about a change, and an output
state which is the result of the operations. For instance, for the function Converting to pdf, the
input state is a file of another type, the operation is the conversion process, and the output
state consists of the original file plus a pdf file which looks similar to the original when
printed.

A function may have several steps. For instance, printing a report from a database involves
selection of data, page set-up, previews and repetition of set-up, and selection of printer. We
can imagine that complicated functions have any number of branching and repetition
included. While instructions were presenting buttons and menu choices, functional models are
scaffolds which intend to help building understanding, thus interaction details are omitted.
Functional models include the input state, the operations and the output state. The input and
output states may be omitted if obvious. A graphical model like Figure 20 can be used to
show the series of steps for printing.

39

© Jens Kaasbøll, 5 January, 2018

Start print function

Select variables

Edit layout

Preview

Select printer

Print

Satisfied?

Yes

No

Document in file

Document on paper

Figure 20. Functional model of a printing procedure.

For the explanation of input and output, a textual model may do, for instance as in Figure 21.

After conversion to pdf, a new, converted file with extension pdf
will exist. The original file will be kept.
For example, after converting the file text.doc, you will have the
files text.doc and text.pdf.

Figure 21. A functional model in pure text.

In a study of instructions versus functional models, ten novice users of a computer program
were given instructions as scaffolds while ten others were provided with functional models
(Dutke and Reimer, 2000). They were first given five tasks which corresponded closely to the
instructions and functional models. Thereafter, they completed two more tasks which differed
somewhat from the scaffolds provided. While there was no significant difference in the first
five tasks, those who had received functional models performed better in the modified tasks
(Dutke and Reimer, 2000). Despite the small number of learners, the study indicates that the
competence acquired through functional models is more robust when transferred to new
settings.

Since slow learners are particularly bad at generating functional and structural understanding
(Furuta, 2000), they will benefit more than fast learners from being explicitly taught by means
of functional of structural models. In a test comparing explanations with and without
diagrams, including diagrams improved learning, in particular for learners with low verbal
abilities (Cuevas et al., 2002).

40

© Jens Kaasbøll, 5 January, 2018

Those aspects which appear difficult to understand should be supplied with a functional
model. However, no encyclopaedia exists on which aspects people may struggle with when
learning IT. We can base our judgements on three factors:

1. Distance between what the user already knows and the new function to be learnt. The
more novelty, the more need for scaffolds. If done in a course, we should know what
the learner is already familiar with. Otherwise, we have to make assumptions.

2. Interference with similar functions. People may misunderstand a function because they
believe that a new function to be learnt has similar effects to a function which they
already know, while this belief is wrong.

3. Experience with common learning challenges.

Functions across software, like import or linking, often introduce novel processes. For
example, importing records to a database from a spreadsheet may trigger a merging of records
which are duplicates; see Figure 22 for an illustration of the learning process and the
functional model.

2c. Com
pare data before

and after im
port

2c. Import data into a
database system

1. Backup the database.
2. Iocate file with records to be imported.
3. Specify column containing record identification.
4. Import.
5. Repeat

1. Check records with similar but not identical identification.
2. Judge whether the records concern the same object.
3. Merge if they do

1. Skills

1. Learning

Instructions

0. Input from keyboard to a database system

Figure 22. Reaching a functional understanding of data import which may trigger merging of records.

The following is an example of interference. A user is familiar with the functionality of
editors, knowing that they can undo if they regret the last edits done. Then they start working
with a database system keeping the functional understanding that they can undo their
transactions. However, the database system does not allow this. Figure 23 illustrates the
learning process and a functional model, however, learning steps 1-2b are omitted. The
instructions would in this case have the same sequence as in the functional model and include
interface details, while the functional model provides an overview and the motivation for each
step.

41

© Jens Kaasbøll, 5 January, 2018

2c. Com
pare undo

in the database
and editors.

2c. Saving data in a
database system

1. Skills

1. Learning

Once an operation is completed in the database,
it cannot be undone.

0. Undoing in a text editor

Instructions

Figure 23. Learning the difference between undo in a text editor and a database.

Error messages from the computer often have the content of a functional model. For example
the message which appears when a web page is not found may tell exactly this output of the
operation (Page not found) and may also suggest reasons like mistakes in input, see the
example in Figure 24.

Figure 24. Error message being a functional model.

4.3. Confronting functional misconceptions
While being exposed to a functional
model will constitute an effective
scaffold for some users, others will
nevertheless develop misconceptions.
Confronting functional misconceptions
is important for learning in the same
way as confronting business
misconceptions, see Section 3.6.

Bobby seems to be of the opinion that

Confronting functional misunderstanding—Aziza
and Bobby

Bobby: The measles indicator for the country is
already calculated to 78%, so my numbers don’t
need to be entered.

Aziza: No, we need your numbers too. When you
enter your immunization data, the country
indicator will be updated accordingly.

42

© Jens Kaasbøll, 5 January, 2018

when an indicator value is available in the management information systems, there is no point
in him entering his data for the very same indicator. Aziza tries to explain that the indicator
value is not fixed, and that Bobby’s data entry will cause it to change, thus hopefully
correcting Bobby’s misunderstanding.

4.4. Structural models
When requested to explain a word
processor, Astor is talking about
what he is doing with the program
in the sense of its functions. His
comprehension of a document may
be that it consists of pages filled
with letters in a specific font. Astor talks about text processors in the same way as most
people, and when asked about the data in the file they have produced, few can tell anything
about how a text document is structured. While learning to use a text processor seems simple
for a start, documents have complicated structures which many users may not be aware of,
something which may hamper what they can achieve.

This section addresses data structures and how structural models can help achieving a
structural understanding. A structural model depicts data structures or structures of IT
concepts. Structural models normally consist of graphics and text, and they are not sequential,
see examples in Figure 25.

Figure 25. Structural models. Left: model of data. Right: model of relationships between IT concepts.

The file system is an example of a structure which most users need to understand. Its purpose
is to provide access to the files and folders in the computer. It enables functions like creation,
deletion, copy and paste of these files and folders, and it is organised in a hierarchical
structure. Through a network, it may also provide a relation to other file systems, implying an
external structure as well. The file system differs from application software in that it does not
consider the interior of files.

Functional understanding—Astor:

You can write and print in a text processor, and
change and print again. And then you can change
the layout of pages and the fonts.

43

© Jens Kaasbøll, 5 January, 2018

While the hierarchical structure may be obvious due to the way it is presented in the user
interface, there are two features of the structure which constitute learning challenges for many
users. First, shortcuts or aliases are files which is a link to other files, and such links break the
hierarchical structure. Some users get confused when they encounter one, wondering what
this is. Second, folders giving access to remote computers appear as a folder on your own
computer. People are used to conceiving the files which they see as being stored in their
computer. Thus seeing a folder with files being stored in a server is a novelty.

Figure 26 is NOT a structural model, since it neither portrays data nor relationships between
IT concepts. The kind of illustration in Figure 26 could be a part of instructions.

Figure 26. A screenshot of menu choices.

IT structures — Recognisable elements
When using an application, some features and principles are easily recognisable at the
interface, for example that the cells in a spreadsheet are organised in a grid, and that the text
in a document has a specific layout. The sequence of operations, typically whether to choose
data before operation or vice versa, may not be displayed, but the sequence is experienced
through actions, so the user obtaind an immediate impression.

Other features are less prominent. Examples of hidden features are that the text in table cells
in a text document does not belong to the main text flow, and that behind a number in a
spreadsheet cell could be a formula which refers to many other cells. In the word processor,
there is no intuitive way to see where one text flow starts and another one ends. It might be
possible to view the non-printing characters, but these do not necessarily tell us about the text
flows or many other properties of the document, like paragraph and character styles.

44

© Jens Kaasbøll, 5 January, 2018

When the user interface does not show the hidden features, these should be made explicit
through a structural model. The written text is a one-dimensional sequence, while structures in
the computer often are of other kinds. Since many hidden aspects are structural, a
combination of language and graphics would normally be a better option than just one of
them.

Creating useful graphical models is partly arts & crafts, but there are also principles to
consider. In the following, specific considerations for visualising the interior functioning and
structure of software are presented.

Any presentation of what goes on in the interior of the computer should be based on the
current competence of the users, including the users' understanding of concepts, experience
with operating the software and their background for understanding the notation used.

In order to aid understanding, and not make learning more difficult, graphical representations
need to be

• simple, in the sense that they contain few (7±2) elements

• recognisable, such that each element provides immediate meaning. Including a known
example in the model improves recognisability.

A structural model of the internal structure of the file system could be written:

Folders can contain files, links and other folders.

Figure 27 is an illustration of the same. It is simple, but is made with a notation which is not
recognisable by most users. Also, it includes no example. On the other hand, maximum
recognisability is sought in Figure 28, and this visualisation of the same data structure also
aims at providing a general model of the structure of the file system. Figure 28 also uses
examples instead of the general categories in Figure 27, bringing it closer to user experience
but making the illustration larger and less simple. There is often a trade-off between
simplicity and recognisability.

Figure 27. Abstract model of the file system

45

© Jens Kaasbøll, 5 January, 2018

Figure 28. Recognisable model of the file system.

Figure 27 is a model of how the file system can be conceived under the surface, while Figure
28 is mainly a surface model with an additional graphical element for showing the under-the-
surface connection. The user interface of the Windows file system provides a reasonably
comprehensive view of the data structure when viewed in the Explore mode shown here.

Beware that there are several other aspects of the file system, and these are not included in the
structural models presented. Including several aspects would often clutter up a graphical
presentation, such that other aspects should be presented separately.

A summary of research on teaching in formal domains shows that textual explanations in
combination with diagrams is the best combination for developing structural understanding
amongst the learners (Wittwer and Renkl, 2010). Our brains have a very limited short-term
memory, making it impossible to make sense of many stimuli occurring concurrently, see
Cognitive load in Section 2.1. However, sight and hearing operate in parallel, so we can
combine visual and audio impressions and make sense of the combination. Textual
explanations accompanying a diagram should therefore preferably be oral.

An experiment demonstrated that learning can be greatly improved by aligning structural
models with the learners’ visual ability and preferred style of learning. One hundred
undergraduate students were divided into high and low visual ability through a paper folding
test. Half were given an abstract structural hierarchical model of folders and messages of an e-
mail system, while the other half received a model which demonstrated the analogy between
the computer structure and letters in paper-folders. Those of high visual ability learnt better
from the abstract model, while the low visual ability students learnt more from the analogy

46

© Jens Kaasbøll, 5 January, 2018

model (Sein and Bostrom, 1989). The students were also grouped into their preferred learning
styles, being abstract reflection versus concrete repetition and imitation. The abstract learners
with abstract structural model outperformed other combinations, while the concrete learners
with the analogy models were second best. Abstract learners with analogy models and
concrete learners with abstract models were the worst combinations (Sein and Bostrom,
1989). This shows that one type of learning material does not fit all.

Since we normally cannot know in advance what learners prefer, the solution is creating a
variety of models, some abstract like Figure 27 and other more concrete like Figure 28. While
abstract models would be constructed from boxes and arrows, the concrete model should
depict a phenomenon which the learner is familiar with. The concrete model in the experiment
reflected a domain outside of computers. If the learners have concrete experience with the
computer interface, this could also be used in structural and functional models, like Figure 28.

Videos
The contents and illustrations for structural models could be the same in documents and
videos. There are a few guidelines particularly for videos, however.

People’s ability to receive and combine visual and oral stimuli indicates that verbal
explanations should be provided orally. For instance, when presenting a structural model like
Figure 28 in a video, the graphics should constitute the visuals, and a voice should explain it
(Clark, 2007). There should also be a finger or a colour blob marking the area which is talked
about at the moment.

Adding explanatory text in the picture for presenting the graphics would be a mistake. That
would overload visual capacity while not utilising our hearing.

It has also been found that video presentations are more effective when the viewer feels like
there is a conversation going on. In order to strengthen this impression, there should be a real
voice, and not a computer generated one (Clark, 2007). The feeling of being in a conversation
is also strengthened if a person is visible on the screen for periods, although this could be a
simple, animated figure (Clark, 2007).

Like any other scaffold, videos need to be as short as possible, meaning that also functional
and structural models need to be presented without additional disturbance. An example is
normally needed, and this should therefore also be to the point without additional features.

A simple sequence for a video providing a functional or structural model could be:

1. Picture of a person presenting the concept briefly.

2. Picture of graphics with a finger or colour spot. The voice of the person.

3. Picture of a person repeating the concept.

The remaining sections of this chapter will address specific structures which users may
struggle with learning and thus need a structural model or having their misconceptions

47

© Jens Kaasbøll, 5 January, 2018

confronted to get it right. When reviewing training material, the lack of structural models
seems to indicate that also trainers and documenters find it troublesome to make structural
models.

4.5. Data structures
Data units of the same or of different types are organised into larger structures, enabling
composite types. There are four basic kinds of structuring:

Sequence. The data units are following each other, and they may be numbered. The letters in
a text document are sequentially ordered. A table in a data base is also a sequence, although
its ordering is irrelevant to the user.

Grid. The units are organised in a grid which can be accessed through coordinates. A raster
graphic image has pixels which can be numbered horizontally and vertically. There can be
more than two dimensions. Grids can be conceived as multi-dimensional sequences.

Hierarchy. The units are organised like containers within larger containers. The files in the
operating system are organised in a hierarchy.

Network. The data is linked in a network without any strict topology like the hierarchy. The
web is a network of pages.

A web page is a sequentially structured data type, which is then a part or a larger network
structure.

Again, there are operations which can manipulate the structures, like inserting a new column
in the spreadsheet or moving a folder from one place in the hierarchy of the operating system
to another.

Computers allow for creating links, references, shortcuts or whatever they are called in order
to achieve two effects:

Functional dependency, meaning that when data is changed where stored, the
changes are also accessible from where the link to the data goes. This principle
ensures that data is stored and hence updated one place, so that inconsistencies are
prevented.

Breaking the structure, in the sense that from one place in a file, there is a reference
which brings the user to anywhere else in the file or to another file, regardless of
hierarchical, grid, sequential or other orders.

User training or documentation would normally not present these types of data structures, but
rather make structural models which are recognisable for the users.

A spreadsheet consists of a grid of cells with row and column coordinates. When creating
formulas referencing other cells, users create an additional network structure on their data.
The spreadsheet programs Calc and Excel can display descendants and precedents of
formulas, thereby showing the user generated data structures.

48

© Jens Kaasbøll, 5 January, 2018

Figure 29. Visualising data structure by tracing descendants in a spreadsheet.

Documents generated with text processors or web page editors have hierarchical structures.
Entities like paragraphs are composed from smaller entities like characters in a sequence.
Also files generated by presentation programs have a similar structure, as shown in the model
in Figure 85 and Figure 86.

In software for editing graphics, it is often possible for users to structure the data in groups
which can be manipulated as whole entities and in a sequence of layers, each of which can be
changed separately from the other. While the software may have ways of showing the layer
structure, this is often not the case for user defined groups of graphical elements.

Networks
Seen from a user, relational databases have connected records and a multitude of functions for
accessing them. For example, an information system for managing rooms and guests in a
hotel may have functions for booking, payments and management. It may contain records for
guests, rooms and reservations, and these records may be connected.

Asking a receptionist about the
system, he might reply like Theo
does. Theo seems to have a sound
functional understanding of the
system. He might also have
understood that “a Reservation
requires one main Customer, and a
Customer can have several
Reservations,” which is a structural
understanding of the data. Theo does not express the structure in this way, but he may know
this connection between customers and reservations. Getting to know users’ understanding
would often require a series of questions and answers.

A data model for the hotel reservation system could be used as a structural model for
scaffolding user learning. Figure 30 presents the one-to-many relationship between Customer
and Reservation in two ways. To the left we see a model used by programmers, including
notation which is from the computer realm. The model to the right illustrates that a customer
can have more than one reservation by means of an example and by duplicating the
Reservations. The latter is thus more recognisable for the user. It does not tell that a customer
can have more than two reservations, such that some users may ask about this.

Data structure understanding—Theo:

Theo: I work in the reception. When a person calls
and want to make a reception, I have to check
whether that person is already in our system, and if
not, I have to register her personal details first.
Thereafter, I open the New reservation window and
enter the dates and room type. We have five room
types which I can select.

49

© Jens Kaasbøll, 5 January, 2018

Customer
• Fjoralba
• Tirana
• 0123456
• fj@my.com

Reservation
From 12.12.2015
3 nights
1 guests
Superior room

Reservation
From 13.02.2016
2 nights
2 guests
Standard room

Customer
• Name
• Address
• Phone
• Email

Reservation
From date
nights
guests
Room type

1 *

Figure 30. Left: data model for computer scientists. Right: A data model for presentation to users.

Many users might not need diagrams like in Figure 30 for understanding such a simple
structure, and a simple sentence like

A Customer can have 0 or more Reservations.

could do. Since text has a sequential structure, a data model can be explained with text as long
as there is a sequential path through the structure. If not, graphical models are superior. Figure
31 shows a larger part of the data model, and there is no obvious sequence in this structure.

Figure 31. Data model for a larger part of the hotel information system.

In this system, the two entities Customer and Room correspond to physical objects in the
domain, Occupancy is a relation between a customer and a room over a period of time, while
Reservation is information about a possible, future occupancy. Although hotel staff would
know what a reservation means, information about tangible objects like customer and room is
more concrete and therefore more intuitive. For information concerning abstract phenomena
like reservation, it is, for instance, not obvious whether the reservation should include specific
rooms or only room types. Therefore, structural models are more needed for the information
entities which have no tangible counterpart in the domain of the information system. Figure
32 shows the starting level 0 being competence about the hotel services and the learning
outcome 2d being understanding of the data structure. This illustration does not present the
specifics of steps 1-2c.

50

© Jens Kaasbøll, 5 January, 2018

1. Skills – doing

2d. Guest records,
room records,

reservation records,
occupancy records,
their relationships

1. Learning

0. Tangible objects like Guests, Rooms. Abstract concepts like Reservation

2c. Com
pare

input and output

2c. Functional
understanding

2d. Conceptualise

Customer
Name
Address
Phone
Email

Occupancy
From date
nights
guests

Room
Type
beds
Price

Reservation
From date
nights
guests
Room type

Figure 32. The learning process for understanding the data structure of the hotel information system.

A data model of all entities in a corporate information system may include hundreds of
entities spanning many pages, and the structures are often complicated. Hence, users might
need simplified models corresponding to their needs for understanding and navigation.

Figure 33. The Open MRS data model for patients in hospitals.

Figure 33 shows the developer version of a data model for a patient information system. A
visit is split into four entities in this model, see Figure 34.

51

© Jens Kaasbøll, 5 January, 2018

Figure 34. Visit entities in the OpenMRS data model, extracted from Figure 33.

The model includes Visit_types, Visit_attributes and Visit_attribute_types. When registering a
new visit, the attendant adds a visit to a patient, and the types and attributes would likely
appear as drop-down lists of options and fields to fill. Hence, only the visit and its relation to
a patient are relevant for users who register visits. Normally, in corporate information
systems, a few people have the authority to alter types and attributes, such that these parts of
the model are not relevant for most users. While the model in Figure 34 is relevant for the few
people who change the types, a structural model for the majority would only include patient
and visit.

In summary, when designing structural data models for user learning, the following
considerations are useful:

1. User group. Normal entering and reporting or setting up data structures? The latter
calls for including more entities.

2. Overarching structure. Network for relational databases, hierarchies of sequences for
documents, grids for spreadsheets, etc.

3. Abstract entities. While information objects with a physical counterpart may be
obvious to novice users, more abstract objects capturing events or relationships may
be in more need of a structural model.

4. Examples. Users with poor understanding will learn more easily when the model
contains an example, like the model to the right in Figure 30.

52

© Jens Kaasbøll, 5 January, 2018

4.6. Data types and instances
The Visit_types and Visit_attribute_types in Figure 34 give rise to type-instance relations,
such that the system can store many visits of the same type. While this is a case where some
users can create types, software is filled with types made by computer scientists, for example
the types Number, Text and jpeg-format. Data types may also offer operations on the data,
like calculations for numbers and editing for jpeg-files, and types also restricts what can be
stored in the data unit. When creating the Visit_type, the user cannot create any operation,
only a set of data, possibly except automatically generated data entry and reporting fields.

While in the Visit_type example, only a few, selected users have the access right to changing
the types, any user may have to deal with types in other settings. For instance, when scanning
a document, users may choose whether to create a picture file or a format that allows also for
storing characters which can be optically recognized by the computer application. The tasks to
be carried out later might decide which option to choose; character recognition allows for
searching through the text in the document, while a picture can be changed in contrast, colour,
etc. Further, the picture format tiff is an uncompressed representation, leaving the picture
exactly as scanned, while storing in the jpeg format compresses the file with some loss of
detail, but at 5% of the storage space. This knowledge about two ways of representing may
also be useful for working with scanning. Understanding the differences between file types is
beneficial when having to select a type.

The relation between the jpeg file type and the files edwin.jpg and emi.jpg can be compared
to the relation between human beings in general and the persons Edwin and Emi. File types
correspond to species and files to living beings. Such relationships between categories and
instantiations of the categories are well known for most people, hence users also easily
understand file type – file relations.

However, most people do not modify genes or change other patterns for generating instances.
People build new knowledge on what they already know. With little knowledge of changing
types, users who learn to set up Visit_types may mix up Visit_types with Visits.

Recipes for cooking and patterns for knitting are examples of types from which users may
have made food or sweaters. Even if they have not altered these types themselves, they may
easily imagine doing so and also be able to foresee the altered food or sweaters. A scaffold for
conceptualising the type-instance relation could therefore compare Visit_type and Visit with
recipe and food, as illustrated in Figure 35.

53

© Jens Kaasbøll, 5 January, 2018

Figure 35. A scaffold for conceptualising the Visit_type – Visit relation. The example on the left is
intended to illustrate an already known relationship between types and instances.

In presentation programs, many users modify master slides, which constitute types for
individual slides. Master slides allow for altering slide and text formats which apply to all
slides in a presentation. Master slides look similar to the slide instances, see Figure 36.

Figure 36. A master slide. From MS PowerPoint.

One issue arises when modifying a master slide; whether the modifications apply to the slides
which have already been created with this master slide or only to new slides. In general, the
learning challenge is:

1. A functional understanding of whether the modifications of a type apply to existing
instances of the type or only to new instances,

54

© Jens Kaasbøll, 5 January, 2018

The answer will depend of the software being used, which may create confusion amongst
users.

Users of text processors may also create and modify types, often called Styles and Templates.
While a master slide looks similar to the slides, a style in a text processor is normally
presented as a window with many parameters, see illustration in Figure 37.

Figure 37. Window for modifying a style. From OpenOffice Writer.

This way of presenting styles triggers two more learning challenges:

2. The user needs a structural understanding of the units of data for which a style applies,
which in the case of Figure 37 are paragraphs.

3. The user needs to have a functional understanding of the effect of changing a
parameter on the appearance of the paragraph.

While the same master slide is often used for all slides in a presentation, a document would
normally have different styles for body text, headings and other elements, bringing up a fourth
learning challenge:

4. The user needs a structural understanding of the relation between a style and its
associated paragraphs.

The relations between styles and paragraphs are not easily visible at the user interface. When
managing paragraph styles, a data structure like shown in Figure 38 is created. The graphics
has been extended with an introduction concerning the restrictions on the number of
relationships.

55

© Jens Kaasbøll, 5 January, 2018

Figure 38. Style-paragraph structure.

The failure of text processors to display underlying structure has been identified as a learning
challenge. When entering text in a language written right to left (e.g. Arabic, Farsi, Hebrew
and Urdu), one may now and then write a number or an English word left to right inside the
text. When shifting direction of writing in a text processor, it also rearranged previously
written text in the same paragraph, and users were left in the dark concerning how to fix the
situation. In an experiment, one group of users were given a structural model of how the text
was organised into blocks, each having its direction of writing (Ben-Ari and Yeshno, 2006).
Users having learnt this model thereafter outperformed other users in controlling the direction
of writing and the sequence of text fragments. This result points to the effects of structural
models for understanding and subsequent problem solving.

4.7. Layers
Information technology processes electrical currents and magnetic charges, but users are not
interested in whether a particular circuit inside the box has a 5V charge or not. User interpret
the physical signals as symbols, pictures or sounds, which can be information representing
something else. Therefore we say that computers are machines manipulating symbols.

A watch is another example of a symbol representing machine. It may be built from some
electro-mechanical parts, but we interpret it as a display of time. While a watch only deals
with time, computers can do any type of symbol processing, and for this reason we call them
universal. The universality is enabled by one of the basic principles of computers, being that
data and programs are stored in the same way. This is called the von Neumann architecture
(von Neumann, 1945), named after a Hungarian being the scientific leader of a group
designing early computers. The von Neumann architecture allows us to insert a new program
into a computer in the same way as we enter data. When installing a new program, the
computer can do other processing than before, and this is how the universality is realized in
practice. Since we can achieve new functionality on smart phones by downloading apps, these

56

© Jens Kaasbøll, 5 January, 2018

gadgets are also universal symbol processors, hence also computers in the von Neumann
sense.

The von Neumann architecture also enables processing the same data with two different
programs. This opens for structuring data in layers, where different aspects can be processed
in their own ways.

As seen in the previous chapter, the contents of a document constitute one way of regarding
word processors, while the formatting enables another view. This can be expressed by saying
that the document can be separated in one contents layer and one format layer, and that each
of these layers can be changed independently of the other. In web page design, the contents
can be structured with html, while the layout can be set by Cascading Style Sheets.

Users who mix up the two layers are likely to do more work when changes have to be made
than those who keep format separate from contents. For example, users who add a blank line
in order to achieve a format effect, namely larger space between paragraphs with text, will
have to change each paragraph. Paragraph formats, including space above and below, can be
set by the styles, which is a formatting tool. When changing the style, all paragraphs of that
style are updated.

In general, all data can be viewed and manipulated at many layers. For example, if a file is
suspected to contain a virus, it can be opened by a text editor, which treats all data as
characters, thus internal codes and user data are viewed as being of the same type.

While the deeper layers of the computer software is normally left for the programmers to deal
with, having some insight into layers of the internet protocol may, for example, help users
understand where connection problems reside.

The hardware layer has some principles which users need to cope with, since they have to
grasp the difference between input and output. Some may also have understood that for
example, the memory chip in a digital camera is also a general storage for data, so they can
use it as a backup for their files while on vacation.

The layered architecture of the computer is a key model to understand the network
infrastructure and how the connection between computers is set up. A network protocol is a
program with set of rules for message exchange between digital devices. When the same set
of rules exists in two devices which are connected, these devices can exchange data.

In order to transfer anything between diverse devises, there is a layer of protocols. Simple and
cheap devices may only be able to receive a stream of electrical pulses and forward these to
all other of its connections. They operate on the hardware level only and have the hardware
protocol. Everything is electrical pulses for the hardware protocol.

A software protocol recognises internet addresses. When clicking a link in a web page, a
transport protocol in the computer is activated and sends a message to the internet address in
the link. All network devices which are more advanced than those with only a hardware
protocol distinguish between an internet address (IP, for instance www.google.com) and the

http://www.google.com/

57

© Jens Kaasbøll, 5 January, 2018

contents of the message. These devices have transport protocols which look up in their list of
addresses and forward the message to another network node closer to the destination.

An application protocol will also be able to interpret the contents of a message. For instance, a
web browser has Hypertext Transfer Protocol (HTTP) and can therefore display a web page
with paragraphs, tables, pictures and links. Electronic mail requires another application
protocol.

When requesting a web page through clicking on a link, the request is transported through a
variety of connections between the user’s browser and the web site. Normally, there is a local
area network between the user and an Internet Service Provider (ISP). The local area network
may have wireless as well as cabled hardware. The ISP connects its users to the Internet,
which again has a connection to the remote web host computer. Figure 39 is a structural
model which may guide users to understand the elements to be in place for internet
connectivity.

Applications
Browser with
URL, …

Web serverTransport
software

IP address,
network key, …

User
connection

Internet
gateway

Hardware
Antenna,
signal, cable, …

User’s
computer

Local
Area

Network

Internet Service
Provider Internet Remote

web host

Figure 39. Structural model for understanding the elements of Internet connectivity.

4.8. Structural and functional misconceptions
As an example, consider the novice learner Herbert, who has just learnt to open programs by
clicking at the symbol at the bottom of the screen, for example the Explorer symbol in
Windows. Then he learns to close programs by clicking at the × in the upper right corner of
the program window, and he observes that the window disappears.

Thereafter, he learns that windows can be minimised by clicking at the underscore character
in the upper right corner, and he observes again that the window disappears. So now Herbert
is confident that there are two ways of opening and closing programs. He does not recognise
the difference between Figure 40a and b, and whenever he pushes one of them, the Explorer
window opens with a search engine.

58

© Jens Kaasbøll, 5 January, 2018

Figure 40. The symbols on the bottom of the screen for a) starting Explorer and b) resuming it after
minimising

The lack of ability to discriminate between two different stimuli like these is called a
discrimination error. Herbert’s initial functional understanding of the open-close operations
can be illustrated with the diagram in Figure 41.

Figure 41. A novice’s initial understanding of opening and closing programs.

 After learning about minimising, Herbert’s functional understanding might have been altered
slightly to what see in Figure 42.

Figure 42. A novice’s understanding of opening and closing programs, after having learnt about
minimising.

Two factors lead Herbert into this understanding of opening and closing programs. First, the
observable difference of the result when minimising or closing is small, and unlike the
illustration in Figure 40, these symbols are not displayed at the same time, making
comparisons more difficult. Second, Herbert has proceeded from closing to minimising
without being aware of a structural distinction, the one between windows and programs. Not
knowing that a program can be running even if it has no window open makes it impossible to
grasp the idea of minimising. So Herbert has skipped learning one concept which was
necessary for understanding the following one.

A functional model which includes the distinction between program and window is shown in
Figure 43. In order for Herbert to understand the difference between windows and programs,
a trainer or support person may present and explain such a model to Herbert.

59

© Jens Kaasbøll, 5 January, 2018

Figure 43. A functional model of opening and minimising which includes the distinction between program
and window.

Concepts with related meaning
Consider Fadhili, who might have mixed up
two concepts; e-mail address and web page
address. A possible way of clarifying the
distinction between two concepts is
comparing them in a table, for example as in
Table 3.

Table 3. A model for distinguishing two concepts.

 Web page address – URL –
Uniform Resource Locator

e-mail address

Example www.google.com fadhili@swamail.com
Purpose Locate a web page Identify your inbox as the sender or

receiver of an e-mail
Where Address field of browser From field or To field in e-mails

you send
We also might have to explain to Fadhili that his inbox is not a web page, and that he should
rather find out the URL of his e-mail service.

Email address vs. URL—Fadhili:

I typed my email address there.

Why doesn’t my mail show up?

http://www.google.com/

60

© Jens Kaasbøll, 5 January, 2018

Homonyms
Some terms have two different
meanings, for example, ‘well’ can mean
a water source or being in good health.

In the case of copying CDs, Oliver’s
trouble is based in that the word ‘image’
is a homonym in the digital world. Oliver
means a digital photo while Rose talks
about a disk image. Again, a table could
be used for discriminating between the
concepts.

4.9. Summary
Skills are necessary for using IT, but
understanding is the basis for learning
new skills. Functional understanding means being able to explain that an operation transforms
an input state to a result. Structural understanding of what a concept means is necessary for
using this concept as a basis for learning new ones.

Functional models provided by people or in documents or videos are scaffolds for achieving a
functional understanding. Correspondingly, the conceptualisation which leads to structural
understanding is supported by structural models.

Slow learners are in most need of functional and structural models. Such models should
therefore be presented in training and be available when users need them at work.

Some learners prefer concrete models with examples and screenshots, while others learn more
easily with abstract models. Means for learning should therefore include models with different
types of expression.

Misconceptions are often grounded in learners making an analogy to previously known
phenomena which do not match the IT to be learnt. Misconceptions can be rectified through
someone confronting the misconceptions, and explaining a more adequate functional or
structural model.

3. Provide functional and structural models and confront misconceptions.

Copying CDs—Oliver and Rose:

Oliver: Rose, look here on all the photos I have
taken. Now I want to burn a CD and send it to
relatives, but all this copying is awkward. Do
you know any easier way?

Rose: I use Daemon Tool, since it can preserve
disk images. You can also make DVDs with it.
Let me help you installing.

…

Oliver: Rose, that software didn’t open my
images. I had to stick to Photoshop.

61

© Jens Kaasbøll, 5 January, 2018

Chapter 5. Learning solving IT problems

The learning aim of this chapter is to be able to design activities through which people can
become better explorers, problem solvers and learners of IT.

In Chapter 1 the ability to do something was called competence and an increase of
competence which lasted was called learning. It was also noted that problem solving
competence was built on understanding, such that the following steps were identified:

1. Skill.
2. Understanding.
3. Problem solving competence.

In the previous chapters, the learning process for IT use competence was presented as a
movement from skills to understanding. To complete the learning process, this chapter will
present the third level of user competence and the learning involved in reaching it.

Users with IT problems are faced with unknown situations, so they have to learn something
new. Hence, the more able they are at learning, the easier they will solve the problem. Since
competence is the ability to do something, the ability to learn is a learning competence.
Getting better at solving IT problems therefore means learning more about how to learn IT.
We will therefore call people with good problem solving competence learning oriented.

5.1. Learning oriented users
To find out what competence for solving IT problems is, we will first look into what good IT
problem solvers do and what people say about them.

Kids have fun when exploring new devices and they play together and discover. Nerds do the
same with IT, developing skills at a high level, and they are learning oriented in the IT

Psychology – Metacognition
Learning problem solving concerns learning about learning. Since learning is here regarded
as a cognitive process (thinking), learning problem solving concerns cognition about
cognition, which is also called metacognition (meta = about). Regulating one’s learning is
an important ingredient in metacognition.

Teachers can influence students’ metacognition, for instance by telling students how to take
notes, by demonstrating effective strategies through thinking aloud, and by making students
work collaboratively (Ormrod, 2012). It has been noted that good problem solvers vary
their strategies. If one approach doesn’t work, they try another (Schoenfeld, 1992).

For learners with low verbal abilities, also their metacognitive skill of monitoring their own
learning was shown to increase when they were explained about structures by means of
diagrams (Cuevas et al., 2002). Thus it seems like structural understanding also affects
metacognition.

62

© Jens Kaasbøll, 5 January, 2018

domain. Learning oriented users actively explore the technology, look for better ways of using
a program for a certain task, and play around with it in order to see what it can do. The active
explorers have a tendency to become local champions, whom others ask for help and who
push for new computer applications.

In a study of user competence,
Youssou tells about his learning
oriented brother, see the text box. The
opposite kind of users was also
identified in the study, called
performance oriented. They stick to
one way of using a program when they
have learnt that way, even though there
might be easier ways. They refrain
from pushing a button which they have
not touched before, due to being
anxious for making a mistake or
loosing data. The anxiety can be
regarded as a negative computer learning competence. Phelps et.al. (2001) provide an
example of this type of learner too, we call her Ofra.

A person may be performance oriented
in one aspect of life, while learning
oriented in another. The stereotypical
image of a computer nerd is that he has
learnt everything about the computer,
but socially, he sticks to what he
knows, which is chatting with other
nerds. Likewise, the elderly social
worker is fabulous in dealing with
people, but she has computer paranoia.

The willingness to explore was found to be the most influential characteristic in a study where
people were asked to characterise highly competent information systems users
(Eschenbrenner, 2010). These users

...try to use IS to its fullest potential ... are not afraid to explore new things.

Learning oriented users seem to explore the technology and solve problems. The ability to
explore is therefore a characteristic of competence for solving IT problems. Advanced users
who help out others learn from trouble shooting their friends’ computers, and they get
emotional satisfaction from the experience (Poole et al., 2009):

I just fixed things and learned at the same time....Actually, I remember feeling excited
when I first helped someone out.

Learning orientation—Youssou:

My brother is truly amazing. For myself, if
something doesn’t work I might try it again once but
the majority of the time I will just ‘give up’. My
brother sees these ‘failures’ as challenges to be met
and conquered. He delights in the fact that he never
has to stop learning because there will always be a
new challenge to conquer. He loves the fact the
information technology is such a dynamic field that
it is always changing, improving and making new
breakthroughs. (Phelps et al., 2001)

Performance orientation—Ofra:

If something goes wrong when I am using the
computer I freak out and panic, but when I see these
people use the computer they seem to be able to
work it out on their own. It is obvious to me that I
learn differently to them when it comes to
information technology. (Phelps et al., 2001)

63

© Jens Kaasbøll, 5 January, 2018

5.2. Research cycle
In a study of people learning operating a toy car by means of a series of instructions, they had
to find out about the syntax and semantics of symbols as well as the structure of the
instructions (Shrager and Klahr, 1986). Figure 44 illustrates what the learners had to find out
on their own.

Syntax
•Number after ←
•No argument after RPT

Semantics
←5
↑3

Turn left 5 x 6°
Move ahead 3 feet

means

←5
↑3

Program
storage↑

← →

↓

1 2 3

4 5 6

7 8 9

GO
Activation

Figure 44. Outline of the instructions of a programmable toy car.

The learners generated the understanding that the car had a memory for storing codes, and
that the codes could be activated. To come up with increasingly improved understanding of
the car, they followed a research cycle as sketched in Figure 45. Step 1 involves generating a
hypothesis, for instance that codes can be stored and plan which input to provide to store code
and check whether it has been stored. Step 2 concerns navigating to the right place in the user
interface and step 3 entering input. Output is observed and interpreted in step 4 and in step 5
the output is compared to the expected result. The learners completed several rounds of this
cycle to gradually build a structural understanding.

4.
 M

ak
e

se
ns

e
of

 o
ut

pu
t.

3. Enter input.

1. Generate hypothesis and plan input.
5. Compare output with hypothesis

2. N
avigate

Figure 45. Steps of IT use research cycle. Arrows denote actions to be carried out.

64

© Jens Kaasbøll, 5 January, 2018

Exploration
Exploration means learning what the IT can do for the enjoyment of finding out something.
Exploration involves going through many research cycles and also consult scaffolds for
learning. Learning oriented people like Youssou’s brother probably searches the web to find
answers or send messages to user communities, implying that he draws on scaffolds for
learning in his exploration.

In the ‘Hole-In-The-Wall’ test of exploration (Mitra et al., 2005), computers were set up so
that children in poor communities in India could play with the computers without any
scaffolds, see Figure 46. Groups of children explored the system. Seen from the individual
child, the other children provided scaffolds for learning. Regarding a group of children as an
entity, the group was left on their own without any help. In competence tests, the children
were asked about the meaning of icons, and a steady progress was demonstrated over nine
months. The children had developed IT skills and also exploration skills. Due to the type of
tests carried out, we do not know their understanding of the technology.

Even if learning oriented users have the ability to explore, they might choose not to. In a field
study of user learning of software, exploring for the sole purpose of learning constituted the
exception (Rieman, 1996). This was the case even if some of these users were computer
scientists. Reasons why people don’t explore is that exploration is unproductive, and that they
had too much else to do (Gravill and Compeau, 2008, Rieman, 1996, Bhavnani and John,
2000).

Figure 46. The Hole-In-The-Wall experiment. Computers were installed in poor areas such that kids could
explore (Mitra).

65

© Jens Kaasbøll, 5 January, 2018

5.3. Problem solving
Even if only a minority of users explore, they have to solve IT problems, either through
learning their way through it or getting others to solve it. In the latter case, learning has
meagre conditions.

We will distinguish between two kinds of problem solving. Experimentation takes place when
we start wondering whether IT can do something that we would like it to do, while we trouble
shoot when the technology does not respond as expected. The starting points differ, but in
both cases, we may learn how to solve the problem through research cycles.

Experimentation
Experimentation is a planned action of problem solving, starting at the understanding level
with a hypothesis of the type “It can do this, but I want it to do that. Can it? How? ” Then the
user has to navigate, run the operation, interpret the result and compare with the hypothesis.
The experiment thus includes a research process cycle from understanding and back again, as
illustrated in Figure 47.

Advanced users experiment a lot. They test the limits of software, for example “This field is
for numbers. Will it take text also?” or “Can the scanner transfer data directly to the phone, or
do I have to use the computer as a receiver?”

Not all problems are solved through experimentation. We might nevertheless have learnt
something from unsuccessful experiments.

Inadequate functional or structural understanding was found to be a main reason for failure in
a study of experimentation (Novick et al., 2009). This was the case regardless of whether the
users consulted scaffolds or not. In another study, some users were taught with functional and
structural models, while another group was given instructions only. Those who were given
models outperformed the instructions group in problem solving tasks (Halasz and Moran,
1983). This again points to the need for understanding in order to experiment.

4.
 M

ak
e

se
ns

e
of

 o
ut

pu
t.

3. Enter input.

1. Generate hypothesis and plan input.
5. Compare output with hypothesis.

2. N
avigate.

TroubleshootingExperimentation

4.
 M

ak
e

se
ns

e
of

 o
ut

pu
t.

3. Enter input.

1. Generate hypothesis and plan input.
5. Compare output with hypothesis.

2. N
avigate.

Figure 47. Experimentation and Trouble shooting. Two complete learning cycles with different starting
points.

66

© Jens Kaasbøll, 5 January, 2018

Troubleshooting
Experimentation was triggered from understanding. Troubleshooting is triggered from
practice, when noticing that the IT does not do as expected, see Figure 47. We might get help
from a colleague to interpret or search the web for an explanation, and in both cases we bring
the issue to the understanding level. Through reflection, we might find a possible solution,
which has to be tested. Troubleshooting may include the same learning cycle as
experimentation, although the purpose differs.

The people learning to operate the programmable car had to trouble shoot when the car did
not do what they intended. Their trouble shooting happened through a pattern of first
interpreting and thereafter generating hypotheses and testing them (Shrager and Klahr, 1986).

5.4. Understanding as a prerequisite for problem solving
Knowing that kids explore their environment and their toys by playing, and that animals also
learn through playing, one could assume that there is no need for teaching people the process
of exploring. Sadly, this assumption is wrong, as the case of Ofra illustrates. Users need to
learn the competence of exploration, experimentation and trouble shooting, and we will call it
problem solving competence. Since this competence is about learning, it is metacognitive
competence. We will identify several components of competence for solving IT problems.
However, first we will see through an example how understanding ease problem solving.

The findings referred in the previous section emphasized understanding IT as an element of
problem solving competence. For example, when trying to access a web page, there are many
things in different places which can go wrong.

• Virus or software bug in the web browser

• Wrong web address

• Local antenna or cable from the computer missing.

• Too weak radio signal.

• The user connection of the Internet Service Provider (ISP) boken.

• The external internet gateway of the Internet Service Provider fails.

• The server from which the web page is transmitted is broken.

A structural model like Figure 39 might guide users to an understanding for locating errors.

Antennas, cables, radio signals and transmitters are recognisable hardware devises and
properties, so dividing the user's model into hardware and a software layer would be feasible,
and it would contribute to understanding at least one useful distinction in the communication
infrastructure.

Inadequate functional or structural understanding is a main reason for failure in
experimentation (Novick et al., 2009). This was the case regardless of whether the users
consulted scaffolds or not. Other studies have confirmed that blind trial-and-error may lead to

67

© Jens Kaasbøll, 5 January, 2018

more errors instead of rectifying what’s wrong (Subrahmaniyan et al., 2008, Grigoreanu et al.,
2012). Therefore, problem solving competence requires understanding of the IT.

5.5. Research cycle competence
The people finding out how the car was working had the ability to plan trouble shooting by
controlling one variable at a time. This is part of the general experimental research
competence which we employ in many aspects of life. Ivo demonstrates how kitchen
researchers think:

• He remembers his input of
salt last time.

• He has taken notice of and
remembers the output.

• He makes the hypothesis
that by changing the input,
the output will also change.

• He changes the input of salt
the second time.

• He makes sure that all other
input which could affect the output is kept equal.

This research competence is also useful for solving IT problems, and it includes the ability to
carry out cycles of IT problem solving phases, we call it research cycle competence.

People learn problem solving in the same general way as learning anything else; through
doing it and thereafter reflecting on what they did. Problem solving competence also starts at
the skill level, implying that users can start learning it by imitating others, whether a trainer or
a peer user.

Since blind trial-and-error may increase the number of errors, research cycle competence
requires understanding of the IT. Although no research on learning the research cycle in IT
problem solving has been found, teaching methods of problem solving in general has a high
effect on the learning outcome (Hattie, 2009). Further, teaching which addresses meta-
cognitive strategies, such as self-questioning has also yielded large effects (Hattie, 2009).
Self-questioning can trigger new hypotheses.

Research has found that pairs or small groups are better problem solvers than individuals,
implying that the individuals learn some problem solving skills through cooperation. A
laboratory study where learners were given software tasks to be done but no instructions on
how to do them, compared individuals and pairs. The results showed that the pairs developed
a better understanding of how the software operated and they performed better in exercises
which introduced some novel elements (Lim et al., 1997).

Research in the kitchen—Ivo:

Ivo is making his mutton stew for the second time,
talking to himself:

Last time I added two teaspoons of salt in the pot,
and that was obviously too much. Let me reduce to
one. Oh, but I also added a stock cube last time, and
that is pretty salty. Hm, to find out how much salt is
actually needed, I will add the stock cube this time
also while reducing to one spoon. If not, I cannot
find out whether it is the salt spoon or the stock cube
which made the difference.

68

© Jens Kaasbøll, 5 January, 2018

Creating the hypothesis that if a certain change is done, the output will change in a specific
way requires the ability to think about future situations which will be counter to the current
experience. Children below 11-12 years normally struggle with the abstract way of thinking
when creating hypotheses, see Section 7.6, p.110, for more details.

Figure 48 illustrates the processes of learning the research cycle competence and
corresponding scaffolds. Since the research cycle is the general way of generating any type of
new understanding, the learning outcome 3b constitutes the insight that this is the way new
understanding is also produced for IT users. This places understanding of problem solving of
IT use in the meta-cognitive domain.

3a. Im
itate

and
RepeatProblem

Solving

Cycle

3a. Research cycle skill.
IT skill and understanding

3b. Understanding generation
of IT use understanding

3b. Com
pare

scaffold
w

ith
execution

of
Problem

 Solving
Cycle4.

 M
ak

e
se

ns
e

of
 o

uP
pu

P.

3. EnPer inpuP.

1. GeneraPe hypoPhesis and plan inpuP.
5. Compare ouPpuP RiPh hypoPhesis.

2. N
avigaPe.

Pair Rorking

2. Understanding

Figure 48. Learning research cycle competence.

Also in line with understanding IT use, users come to an understanding of the research cycle
through reflecting on their experience and possibly comparing that experience to scaffolds
explaining the cycle. The outcome of that learning process would be that this is the canonical
way in which we develop IT understanding, see right side of Figure 48.

5.6. Stages of the research cycle
Each stage in the research cycle requires specialised skills and understanding. This section
will present ways of learning these competences.

Observing repetitive use
IT can offer an easier way for almost any repetitive
operation, since a fundamental IT principle is that a series
of operations can be repeated automatically. Observing
repetitive use is a trigger for generating a hypothesis that
additional software which can ease the current task exists.
Research emphasizes that most users keep operating the
computer with inefficient repetition of operations,
however (Carroll and Rosson, 1987, Fu and Gray, 2004, Bhavnani and John, 2000), including
users who are aware of possibly more efficient procedures. The more efficient process may

Kyung:

Now I have opened each
picture in the editor, adjusted
its size to the standard and
saved it again. This took time.
There must be an easier way

69

© Jens Kaasbøll, 5 January, 2018

not provide immediate feedback from the computer and thus may require more cognitive
effort for planning than required for the less efficient procedure (Fu and Gray, 2004).

Scaffolds to inform about additional software end convince about its personal benefits are
indicated in Figure 49. No scaffold guarantees learning, and the attempts to convince users
about more efficient operations may be amongst the less effective ones (Fu and Gray, 2004).
If users’ previous functional understanding include the series Make details  Aggregate 
Manipulate (Bhavnani and John, 2000), cases where this series is applicable may be solved
with more ease. Since observing repetitive use concerns stage 1 in the research cycle, this step
is indicated amongst the learning outcomes in the figure. The scaffolds are placed in the
middle since it can help learning skill as well as understanding.

3c. Im
itate

and
Repeatgenerating
hypotheses

Additional effort during planning is paid
back through more efficient operation.

3c. Skill of generating
hypotheses.

Understanding
usefulness of IT in own tasks

Repeating the same sequence of
operations  Functionality may exist
Rith Rhich repetitions can be avoided.

3d. Understanding generation
of hypotheses

3d. Com
pare

scaffold
and generation

of
hypotheses

2. Understanding

1. Generate
hypotheses.

Figure 49. Learning generating hypotheses about the existence of IT features.

Planning testing hypotheses
In the experiment where novice users were learning to operate the toy car, learners planned
their testing through making only one change at a time, such that they could observe the effect
of the individual change (Shrager and Klahr, 1986).

3e. Im
itate

and Repeat
planning changes

3e. Skill of
planning changes

Pair Rorking

3f. Understanding
experimental control

Identical input  identical output.
TRo changes in input  Not alRays
possible to knoR Rhich input
change that caused output changes.

3f. Com
pare

scaffold
w

ith
plans for changes

2. Understanding

1. Plan input.
.

Figure 50. Learning controlling experimentation.

70

© Jens Kaasbøll, 5 January, 2018

Controlled manipulation of variables is a well-known research principle; its learning is
summarised in Figure 50, and a scaffold example is provided in Figure 51.

1. Make one change at a time:
a. Ill-structured chart  change Series, Category, Filter.
b. Values of Categories and Filters  change Organisation units or Periods.
c. Values which the graph displays  change Indicators, Gata elements or

Reporting rates.
d. Title, trend lines, target lines, axis etc.  change Options

2. Click Update
3. Repeat

The general way of improving charts

Figure 51. A guideline for experimental control when generating graphs from tables.

Mediating hypotheses
While some users customise software on their own, changes in organisations often require
cooperation.

Most business information systems would have access control, meaning that some users have
the right to change data, others can read it and some have no access. Access control is a
frequent source of
issues (Deng and Chi,
2012). Users wanting
wider access to
reading data will have
to understand that
access restrictions are
the reason why they
cannot find the data.
Finally, they need the
ability to argue for
making a superuser or
a manager changing
it.

Melly demonstrates
understanding of how
IT systems affect her
and the organisation,
and how the systems
can and should be
changed. She is also
arguing about a
societal issue like the
access to data versus
privacy.

Solving problem of IT fit in business—Melly:

After we got the basic patient information in the computer system,
I don’t have to waste my time waiting for the patient record any
longer. I look forward to the time when the record in the computer
is complete with x-rays and attached documents, but we can do
most of what we need by the diagnoses and lab info which is there
now. Also, when we receive a patient from Jakarta Central, they
also send us the patient info, so that before the patient is here, we
know what to do.

The main trouble with this system has been the security. You have
to log in here and there, and after 20 minutes of idle time, you are
logged off. If a nurse has logged on in the meantime, we were
stuck, and had to find her to log off before we could access the
data. We discussed this with the IT guys several times, but they
said it was a policy decision such that medical data should not be
spread to those who have no rights to see it. However, in my
opinion, it is more important that the medical staff who needs the
information gets it than that others are denied access. That means
that we give priority to providing the right medical treatment
rather than protecting the patient’s privacy. The latter will never
cure their illnesses. So since the IT people did not help us out, we
found out that all staff in the department should have the same
password. Thereafter we have had no trouble opening the system
when needed.

71

© Jens Kaasbøll, 5 January, 2018

Melly is also capable of requesting the IT people to change the system. In addition to
understanding the misfit, two specific competences are required to make others change the
software if you cannot do it yourself.

1. Understanding whom to contact.

2. Having the skill of persuading the IT people to carry out the request.

Even though Melly might have known how to do this, she was unsuccessful due to company
regulations. Instead, she developed the workaround for the organisation.

If she had succeeded in convincing the hospital about the changes, she might have cooperated
with IT people on redesign of the security function.

An introduction to persuasion principles can be found in (Cialdini, 2001). Learning requesting
changes is summarised in Figure 52.

3g. Repeatcontact
IT staff and request
changes

3g. Skill of mediating changes.
IT understanding

Iist of IT staff

3h. Understanding mediating
changes

3ha. Com
pare

suggested IT staff
w

ith
previous

experience

2. Understanding

Persuasion
principles

3hb. Com
pare

principles
w

ith
experienced

effects

1. Mediate hypothesis.

Figure 52. Learning mediating hypotheses.

Changes in software carried out by IT people to cater for a misfit between business and IT
requires the IT people to learn from the users and vice versa. Such mutual learning will be
presented in Chapter 13, after organisational learning has been introduced.

Systematic interface browsing
When adding IT features to the work, users would at some point have an understanding of the
existence of additional functionality but may not know what it is called and where to locate it.
The terminology problem is recurring, and the search and help seeking method may be the
solution.

Systematic interface browsing is another method, and it can be done in two manners;
browsing operations or browsing objects.

User interfaces and web pages are not organised in uniform ways. A window may have tabs
and menus for organising buttons and options. Then you would normally select one such
operation first, and then select the object which this operation will apply to. We will call this

72

© Jens Kaasbøll, 5 January, 2018

operation first. A systematic walk-through of the tabs and menus from left to right could
unveil the operation searched for. As previously noted as the terminology issue, the software
designers may have used other terms than the user expects, and the user will thus not notice it.

Hovering over a menu item may trigger a tool-tip appearing (see p.90). The description in the
tool-tip may be expressed in words that resonate more with the user’s terminology, such that
the appropriate choice can be made.

The other method for sequencing human computer interaction is the object first. This entails
first selecting the object to be worked on, for instance a field in a database, some text in a text
processor, or an element in a web-page. Hovering over it or clicking on it, right or left, may
produce a menu of operations available to manipulate the object.

Figure 53. Learning interface browsing. illustrates the learning processes for understanding
and skills for interface browsing. Since interface browsing is a navigation method, this
learning concerns navigation in general, and no particular software. Since navigation in this
case is the object of learning, it is placed in the lower middle of the figure..

In order to learn systematic interface browsing, users need to know the difference between
operations and objects; hence this is suggested as the scaffold in Figure 53.

3j. Select an operation
or an objects brow

sing
strategy

3ia. M
ove system

atically
through interface item

s

3j. Navigation understanding3i. Navigation skill.
IT skill

ONjects Mnd
operMtions

2. Understanding
2. N

MvigMte.

3ib. Interpret interface
item

s and tool-tips

Figure 53. Learning interface browsing.

Self-efficacy
In Section 5.1, fear of the technology was identified as a barrier against problem solving. The
opposite of computer anxiety has been identified as IT self-efficacy (Compeau et al., 1999),
meaning an individual’s belief in her/his ability to perform a specific task using a computer
(Compeau and Higgins, 1995). Self-efficacy is therefore another element of problem solving
competence, which concerns the user’s ability to carry out the actions, and research has
identified it as an important affective competence for IT users.

The most important basis for self-efficacy is one’s own experience (Ormrod, 2012). Previous
successes in using IT will boost the self-efficacy, while failures have the opposite effect. A
person who has consistently performed poorly with technology is likely to have a low self-

73

© Jens Kaasbøll, 5 January, 2018

efficacy, which will undermine future performance and also increase the person’s anxiety
towards IT (Compeau et al., 1999). It may look like Ofra (Section 5.1) is a victim of such a
vicious circle.

A trainer could try convincing anxious learners that when things do not work, it is not because
they have destroyed the computer. Also, reminding them that there is normally an Undo
operation which can bring them back to where they were could calm their nerves.

One approach towards improving self-efficacy is watching peers. People identify with peers
who are believed to have similar
abilities as themselves, being
colleagues at work or classmates in
school. Assume that Cheb identify
with Rahel in this sense. Watching
Rahel’s way of working and
perseverance as she fixes the
problem is likely to raise Cheb’s
self-efficacy, such that he might try
himself the next time. Watching a
trainer solving the problem is less
effective than watching a peer do it
(Ormrod, 2012).

Self-efficacy can also be improved by others saying “You can do this. Just try.” However, if
the learner then fails, self-efficacy would be lowered even further. Therefore, make sure that
the task is simple enough.

People collaborating in groups have different competences, and the group as a whole may
succeed even though individual members might have failed. Being member of a successful
group boosts self-efficacy (Ormrod, 2012). The peer, for example Rahel, and the successful
group are included as scaffolds in Figure 54.

Being one of the reasons for people’s decision to actually use an application (Compeau et al.,
1999), improving low IT self-efficacy is an important part of learning problem solving.

Ways of improving self-efficacy are illustrated in Figure 54. Since low self-efficacy triggers a
fear of doing something on the computer, improving the self-efficacy will enable more button
pushing and input from the user. Entering input is the main object of learning and is therefore
incldued in the figure.

Watching peer solving problems—Cheb and Rahel:

Cheb: I can’t do this.
Rahel: Let’s try. I find the menu there and keep the
Standard option. Then I paste the image in the right
place and … No. I don’t want all that white space
around. Maybe the Standard option was not a good
idea. If we click on the image and go back to the
menu, will the options show up again? No. Hm. So
let’s delete the image and try again from the start.
… I see “in front of” and “narrowly fit.” We want
the image above and not in front of the drawing, so
let’s try the narrow fit. … This looks much better!

74

© Jens Kaasbøll, 5 January, 2018

3l. Com
pare yourself

w
ith colleagues.

3k. O
bserve

colleagues
solving

problem
s.

Take
part in groups

solving
problem

s.

3l. Understanding own efficacy
3k. Higher self efficacy.

IT skill and understanding

Colleagues

3. Enter input.

1. Self-efficacy 2. Understanding own efficacy

A group wOicO succeeds in
problem solving

Figure 54. Improving the confidence to operate the computer.

Input checks
Spell checking is a commonly applied method for trouble shooting input in natural language.
Correspondingly, a database system may warn when a number is out of the normal range.

While some corrections suggested by the input check are obvious, users also need syntax and
semantics competence to allow for non-standard expressions. When troubleshooting input,
three choices may be available

• Strict syntax: Adhere to the rule and change input accordingly.
• Semantic correspondence: Make an exception to the rule.
• Semantic correspondence: Change the rule.

The latter may have consequences for future input, while the first choice may imply poor
semantic correspondence between the data entered and the phenomenon it is representing.
Coming to grips with how to make the right choice implies developing an understanding of
troubleshooting input. Manuals and other user documentation may constitute scaffolds for this
learning process, see example in Figure 55 and the general learning process in Figure 56.

If you double-click the field of data entry, a data information
window will open.
2: Here the min/max range is shown, and we can see the average
value.
3: Data history is shown. This is a capture of the last 12 values
that have been entered for this value. With this chart you can
spot values that are higher, or lower than normal.
4: If you single-click the star button it will change colour and the
value is marked for Follow-up. This allows a questionable value
to be kept in the system, but needs to be further investigated.
Always leave a comment on why you have marked a value in the
comment field.

2

3

4

Figure 55. A scaffold for understanding exceptions.

75

© Jens Kaasbøll, 5 January, 2018

3n. Com
pare docum

entation
w

ith choice and judge
consequences of exceptions
and rule change

3m
. Repeatchoose

one:
•

Adhering
to rule

•
Exceptionally

breaking
rule

•
Changing

rule

3n. Understanding exceptions
and rule modifications

3m. Skills for
correcting input

Functional and
structural models

Minimal manuals

2. Understanding syntax and semantics of input

Other documentation

3. Enter input.

Figure 56. Learning trouble shooting input.

Precise observation
While adding a teaspoon of salt is easy to control, users often do not notice exactly which
buttons they push. Fast and erroneous typing may be productive, for instance when writing,
since it is often easier to correct a
typo than to express an idea in a
sentence, and slow typing may
inhibit the process of expressing
oneself. When experimenting, typos
will flaw the logic, however. The
ability to watch input precisely is
therefore a necessary ingredient in
the user research competence.

Ksenija would have benefitted from
watching her typing more closely. Samira’s response could be asking Ksenija starting over
and re-typing. If the computer performs as Ksenija expects this time, Samira could bring up
the issue of observing precisely what one is doing before blaming the computer. Also, Samira
could also have told Ksenija that in such cases, a useful method is restarting and doing the
operation slowly and carefully, such that one makes sure that the input is correct.

Correspondingly, users do not always take notice of the output. When calling support and
saying that the computer failed, the supporter will return with the question “Exactly what
happened?” If the user has no answer, there is little hope of finding out anything, unless the
flaw can be recreated. Therefore, the ability to watch output precisely is also necessary for
problem solving competence. We combine the input and output and say that the ability of
precise observations is needed for solving IT problems.

Precise observation of input implies watching the buttons pushed on the keyboard in addition
to what is happening on the screen. Precise observation of output includes the abilities to note
down what happened, copy error messages and take screen shots, both of intermediate and
end results.

Imprecise observation—Ksenija and Samira:

In a training course, when trying to repeat an
operation which she had done before, Ksenija says:

This worked last time, why did the computer do
something else now?

The trainer Samira noticed that this time Ksenija hit
F8 instead of F9, while she thinks that she repeated
exactly the same typing.

76

© Jens Kaasbøll, 5 January, 2018

In line with other teaching of meta-cognitive strategies, teaching awareness of inconsistencies
is effective in general (Hattie, 2009). Observation ability is an element in becoming aware of
inconsistencies.

In the experiment on trouble shooting spread sheets, users who observed precisely were able
to generate appropriate hypotheses and interpret the outcome of changes (Grigoreanu et al.,
2012).

Figure 57 summarises learning precise observation. Since precise observation concerns steps
3 and 4 in the research cycle, these steps are indicated amongst the learning outcomes in the
figure.

3p. Com
pare scaffold w

ith
observations

3o. Repeat
•

observe
buttonspressed

•
take

notes
•

m
ake screen shots

3p. Understanding precise
observation

3o. Skill for precise
observation.

Functional IT understanding.

2. Understanding
4.

 M
ak

e
se

ns
e

of
 o

ut
pu

t.

3. Enter input.

Without knoRing
Rhat happened
 Fannot knoR
Rhich input change
that caused output
changes.

Without knoRing the
input
 Fannot knoR Rhy
the output appeared.

Figure 57. Learning precise observation.

Information search and help seeking
Users’ choices when trying to solve problems have been found to be (Novick et al., 2007):

1. Experimentation or trouble shooting without any scaffold
2. Asking others for personal help
3. Giving up
4. Looking up inline help and searching the web
5. Looking up in printed manuals

This is a ranked list based on several studies, where number 1, problem solving without
scaffold, counted for approximately half of the cases. Printed manuals were hardly used at all.

A study of effectiveness of problem solving compared three methods (Andrade et al., 2009):

• Experimentation without any scaffold.
• Only consulting an inline help system.
• Switching between experimentation and consulting the inline help.

77

© Jens Kaasbøll, 5 January, 2018

The combined method was the most effective. Comparing with what users do when solving
problems, we see that people in general do not choose the best way of solving problems.

Consulting inline help is one possible way of finding scaffolds. This way has traditionally
been regarded as information search while help seeking denotes asking other people. Both of
the abilities to search and to ask have been established as metacognitive skills which are
useful for learning. Asking others has the benefit of getting the response tailored to the needs
after a dialogue on what exactly the user wants. However, those being asked may not know
the answer and may have to search the web or look up in the IT department’s knowledge base
of user requests. Asking for help may therefore become a mediated information search. Due
to the massive amount of information on the web, searching with the text from an error
message or a precise description of the problem may provide the wanted response
immediately. Also, searching the web or inline help in the software may give access to
repositories of user support communication or an e-mail discussion in a user group, both of
which could be responses from human helpers to a previous user having the same problem.
While previously regarded as distinct, the two ways of finding means for learning can
therefore be regarded as a continuum from no (encyclopaedia) to complete (human expert)
adaption to the learner (Puustinen and Rouet, 2009).

For help seeking, the user needs to know whom to contact. This could be a friend or
colleague, an appointed superuser in the work place, an IT department or the vendor. Users
approaching a software vendor’s support service may receive the message that the error is due
to network problems, and they have to contact the network provider instead. They may deny
any error and send the user back to the software vendor. Getting a non-commercial advice
may be needed in such situations.

Inline help and search engines on the web can possibly deliver useful means of learning. A
comprehensive account of people’s search behaviour is found in (Case, 2012). Search is often
needed, and the problem solving skill of precise observation comes in handy when searching
for help for trouble shooting. Typing or pasting the error message as the search term will often
provide an explanation and possibly also a way out. The next challenge for the user is
interpreting the explanation.

Figure 58 is an example of a scaffold for interpreting search results. It points to specific traits
in the hits hinting at the price to pay (free), what to do (download a program), who supplies
the information (Microsoft support), and which software to use (Media player).

For help seeking, the user needs to know whom to contact. This could be a friend or
colleague, an appointed superuser in the work place, or an IT department or the vendor.

The challenge when searching for information for experimentation is often the terminology
problem (see Section 2.2, p.20). Searching the web is more likely to hit relevant directions
and instructions than inline search due to the richness of expression on the web. Also, chances
of success when searching documentation decreases. This terminology trouble has been
confirmed by other research. Many of the participants in a study of problematic use episodes
were not able to find the functionality which they knew existed (Novick and Ward, 2006).

78

© Jens Kaasbøll, 5 January, 2018

Figure 58. A scaffold for learning to interpret search results.

When turning to the documentation, they reported additional trouble, since they also could not
find the right place in the documentation. Often, their search terms did not match the
keywords in the documentation. This causes a challenge for writing directions, where the
functionality should be described with the terms that users know. For instance, the search
terms “reference table document OpenOffice” would not find the directions and instructions
in Figure 2. To be more searchable, the page could be equipped with more terms like “inline
link, reference, hyperlink, pointer, automatic update, …” Figure 59 illustrates the general
outline of directions. The user interface item could continue with a sequence of instructions.

Figure 59. Directions consist of functionality expressed in many ways plus the place in the user interface to
trigger the functionality.

In order to overcome the terminology problem, directions generated by a community of many
users may increase the likelihood that a user’s search term hits one of the other users’ help.
This is the web solution, which was the most frequently used type of help amongst 107 users
(Martin et al., 2005). Half the users had problems with finding what they were looking for,
and also half of them had trouble interpreting the documentation found.

79

© Jens Kaasbøll, 5 January, 2018

For business internal systems, the www may have little to offer. Instead, user questions and
responses can be made available for searching also inside the interface of the system, so that
the threshold for use is as low as possible.

Methodological training of information search contributes to search competence (Walraven et
al., 2010). Pairs demonstrate in particular a richer repertoire of search strategies (Lazonder,
2005).

Finding alternative search terms is in general more difficult for younger children. They rarely
consider synonyms when failing in their search (Bilal, 2002, de Vries et al., 2008).

The learning processes and scaffolds for search for help and help seeking are illustrated in Figure 60
and Figure 61.

3r. Com
pare scaffold w

ith
search results

3q. Im
itate

and Repeat
•

Search
w

eb and inline
help

•
Find

alternative search
term

s
3r. Understanding search3q. Skill for search for help.

IT skill and understanding

Paste error messages
in search engine.

2. Understanding and 3o. trecise observation

Pair Rorking

SoftRare documentation
Rriters use technical terms.
 Fommon terms
 Search the Reb

4.
 M

ak
e

se
ns

e
of

 o
ut

pu
t.

2. N
avigate.

Figure 60. Learning search for help.

tr. Com
pare issue and help

received to judge the choice
of person asked for help

3s. Im
itate

and Repeat
•

Ask colleaguesfor help
•

Ask IT support for help

3t. Understanding
help seeking

3s. Help seeking skill.
IT skill and understanding

HT support

Colleagues,
including
superusers

4.
 M

ak
e

se
ns

e
of

 o
ut

pu
t.

2. Understanding

Figure 61. Learning help seeking.

80

© Jens Kaasbøll, 5 January, 2018

5.7. Strategies for iterations
Several research cycles may be necessary to find a solution, hence competence on organising
a sequence of cycles will be presented in this section.

Backtracking
When errors are detected, a chain of events might have occurred. Backtracking is one possible
strategy for managing the sequence of research cycles needed for troubleshooting. The
troubleshooter identifies the immediate computer operation producing the error, tests this in a
research cycle, and if found OK, proceeds to the operation prior to this one, and so on.

Elimination
Elimination is a strategy which speeds up troubleshooting through eliminating correctly
operating components. For instance, when the internet browser fails to load a page, first
checking the browser, thereafter the network connection on the computer, and so on, is a
tedious strategy. Whether these components work might be determined by trying to open
another web page. If this succeeds, we have eliminated browser and network faults from
further test.

Explicit teaching of the principles of elimination coupled with training for understanding has
shown improved elimination skills (Gugerty, 2007). The scaffold should convey the principle
that to eliminate searches for errors, the user should check whether possibly faulty
components deliver sound output elsewhere.

3x. Com
pare scaffold

w
ih the sequence of

research cycles

3w
. Im

itate
and repeat

elim
ination

3x. Understanding elimination3w. Elimination skill.
IT understanding

Pair working

2. Understanding

To eliminate search for errors:
Check whether possibly faulty
component delivers sound
output elsewhere.

1. Plan input.

4.
 M

ak
e

se
ns

e
of

 o
ut

pu
t.

3. Enter input.

2. N
avigate.

Figure 62. Learning elimination.

Figure 62 illustrates the scaffold for learning elimination. In order to eliminate faults on the
internet connection as mentioned above, an understanding of the components and interaction
similar to the structural model in Figure 39, p.57, would be needed.

81

© Jens Kaasbøll, 5 January, 2018

Changing work routines
Often, the introduction of new information systems in organisations also aims at changing
work routines, both individual and cooperative. The new work routine would constitute an
additional task which will replace an existing one. Understanding the purpose increases the
rate of adoption, and adoption would in this case imply changes of work routines.

For example, an engineering business needs traceability of its operations in order to clarify
responsibilities. Therefore, a work flow system is installed, which requires that a customer
request is first registered at the front office and thereafter forwarded to the engineer.
Previously, the customer might have called or sent an e-mail to the engineer directly. This
change of work routine requires three people to learn the new way of working; the engineer,
the front office clerk, and the customer. While the individual adaptations are simple, such
changes of organised work often go wrong due to one of the participants keeps going in the
old fashion.

A prerequisite for learning new ways of cooperation is to understand its purpose. This means
that in the engineering case, both the engineer and the clerk have to understand why
traceability is important for the company. The way to learn new routines is to have the

• involved people practicing and discussing the new cooperation,

such that the engineer can tell the clerk about particular customers, and the clerk can inform
the engineer about the regulations on who is allowed to do what.

A more difficult learning challenge in the example is to change the customer’s behaviour.
Although the customer may understand the company’s need for traceability, they may be
more interested in efficient communication, therefore nevertheless trying to contact the
engineer directly.

Repeated, consistent feedback is another mechanism which leads to change of behaviour
(Ormrod, 2012).

• Repeated, consistent response according to the new routines

from the company would eventually change the customer’s behaviour. If the customer finds
the new routines too awkward, there is a risk that the customer will hire another engineering
company instead.

Thus, managerial and collegial feedback reinforcing new routines while extinguishing old
behaviour, would be ways of changing the routines; summary in Figure 63.

82

© Jens Kaasbøll, 5 January, 2018

Repeated, consistent
feedback

3z. Understanding changing
routines

3y. Skill for changing routines.
Skill and understanding of new routine

3z. Com
pare

scaffolds w
ith

experienced
effects

2. Understanding

3y. Repeat
•Carry out new

routine

•Discuss purpose
of new

 routine

Discuss purpose of
neR routine

Figure 63. Learning new work routine.

5.8. Innovative research cycles
Misfits between what the IT can offer and user needs can be rectified through changing the IT
or using it in innovative ways. Four types of user innovations are following here. The fifth,
which requires cooperation between users and developers, will be presented in Section 13.3.

Customizing
Creating reports in a business information system is an area which often requires
customization (Deng and Chi, 2012). Most software offers options for customising, which
could make the IT address an existing task in a better way or open for using the IT in new
tasks. Customising normally requires setting parameters and selecting options, in other words,
IT skills and understanding, as also observed by Deng and Chi (2012). The customization
process needs to come up with the requirements, and then the research cycle and the
navigation method could address the implementation work.

Installing new software
A misfit could be resolved by extending the functionality of a computer system, either stand-
alone programs including phone apps or add-ins to increase the functionality of existing
software. A user said:

I just use plugins or widgets that are user friendly. I just have to download, put a link and
that’s it. (Bagayogo et al., 2014)

The IT might be extended by installing new software, either stand-alone programs including
apps or add-ins to increase the functionality of existing software. Installing new software
utilizes the universality of computers. In addition to understanding this principle, users may
need information search competence to find the appropriate software and check its reputation,
see Figure 64.

83

© Jens Kaasbøll, 5 January, 2018

3aa. Im
itate

and Repeat
•

Search
•

Dow
nload

•
Installsoftw

are.
•

Rem
ove

ifneeded.

3aa. Skill of installing software.
IT understanding

SoftRare is data.
SoftRare can be doRnloaded.
SoftRare can be installed.

3ab. Understanding installing software

3ab. Com
pare

scaffold
and

installation
of

softw
are

SoftRare can be malicious
 Search for revieRs.
Remove if needed.

2. Understanding, skill for (3q) search for help and (3s) help seeking

Iook up alternativeto.net

Figure 64. Installing software.

Introducing new devices
New devices like phones, tablets and sensors of various kinds can be beneficial for current
work tasks and provide support for new tasks. Software like drivers may have to be installed
on the host computer. The new device may also be in need of software to be used as intended.
While a smart phone is a universal computer in the sense that it stores programs as data and
can process programs, a sensor may have a fixed pattern of behaviour. Users would need to
understand this difference, see Figure 65.

3ac. Hook up device
and installsoftw

are
ifneeded

3ac. Skill of introducing devices.
IT understanding

Software is needed on host
computer  Hnstall

3ad. Understanding
introducing devices

3ad.C
om

pare
scaffolds

w
ith

experienced
effects.

2. Understanding

Software is needed on new
device and software can be
installed on new device  Hnstall

Figure 65. Introducing devices. New devices may or may not be universal computers.

Workaround
Mismatch between the domain
and the data fields often occurs in
information systems. Angelique is
trying to buy something online.
Her experience is common, since
domestic conventions are not
necessarily valid elsewhere.
Angelique has a semantic

Solving problem of IT fit in business—Angelique:

That web-shop requires me to fill a field called State,
but Benin is not divided into states. Since this address
data is probably going to be glued to the package, I’d
better not mislead the post office. Just let me repeat
the city name Cotonou.

84

© Jens Kaasbøll, 5 January, 2018

problem of filling a State field when there is no such thing as a state in her country. The task
which the information is used for, distribution by mail, determines her choice of data to be
entered. She is using her understanding of the postal services to fit the information in the
system to the business. Such problem solving which includes using IT systems in unintended
ways is called workaround (Gasser, 1986). The semantic mismatch between the data
“Cotonou” which is a name of a city and that it is stored in a field called “State” is accepted
by Angelique as well as by the information system.

Solving a misfit with a workaround requires two steps.

1. Based on the business need, can the IT produce an acceptable result? The city name
repeated on the package label would constitute an acceptable output according to
Angelique’s judgement.

2. Can we make the IT produce this result, possibly by using the technology in ways
which were not intended? Entering the name of a city in the field for State made the
trick for Angelique.

Step 1 requires an understanding of the fit between the output of the IT and the task
requirements. In Angelique’s case, understanding IT in her own task was sufficient. Step 2
requires a functional understanding of the input and output of the computer system

Practicing workarounds requires experimentation skills. Since manuals and inline help tend to
be kept aligned with the software and its intended use, chances of finding workarounds in
such documentation are small. Searching the web or help seeking might yield more useful
results, since these problem solving strategies give access to other users’ experience.

See summary of learning workarounds in Figure 66.

3ah. Understanding
workaround

3ag. Skills for workaround.
Skill and understanding of

the particular solution

3ah. Com
pare scaffolds

w
ith experienced effects

1. Observe that IT operation
does not fit business goal

2. Determine wanted output
3. Compare wanted output with

result of other IT operations
4. Provide input that may

produce desired output

Pair working

3 ag.wepeat research
cycle until output m

eets
business needs

2. Understanding and 3a, 3o and 3q.

Figure 66. Learning workaround.

85

© Jens Kaasbøll, 5 January, 2018

5.9. Summary
Users who are better able to learn on their own become more proficient and require less
attention by support services. Users who can solve problems on their own are also fitted for
becoming superusers of support personnel who can help out others.

Table 4 provides an overview of problem solving methods. Research cycle is the general
method applicable for all problem solving and exploration activities.

Table 4. Problem solving methods.

Area Problem solving methods

Research cycle
Exploration
Experimentation
Troubleshooting

Stages of
the research

cycle

Generate hypotheses Observing repetitive use
Mediate hypotheses

Navigate Systematic interface browsing

Enter input Self-efficacy
Input checks

Enter input and make sense of output Precise observation
Navigate and Make sense of output Information search and help seeking

Strategies for iteration
Backtracking
Elimination
Changing work routines

Innovative research cycles

Customizing
Installing new software
Introducing new devices
Workaround
Mutual learning

Learning these methods improve users’ ability to cope on their own. Learning problem
solving builds on understanding the topic. Some of the problem solving methods also build on
the specific method of searching for information and seeking help from others,

4. Train users so that they can solve problems and learn on their own.

86

© Jens Kaasbøll, 5 January, 2018

Part II User Interface and Training
The previous part of the book has discussed learning of IT use and presented scaffolds for
particular learning processes:

• Instructions for imitation.

• Minimal Manuals for understanding the purpose of the IT and for imitation.

• Business oriented models for understanding usefulness of IT in the business.

• Functional models for comparing input and output.

• Structural models for conceptualisation.

A three level model of competence building was also presented.

Based on these learning processes and associated material, this part will consider how the
scaffolds are organised into helpful configurations for user training and design of user
interface for ease of learning.

Pedagogical theory – behaviourism
Within a training and transfer view of user competence, the outcome of the learning
process which takes place during training is our focus. This view of learning is in
accordance with the behaviourist approach, where learning is considered a relatively
stable change of the potential for action. That means, after learning, the learners should be
able to do things which they could not do before, and that this ability is not a random
change. Being able to do something does not necessarily imply that it is done, since
required conditions like time and money might not be present. The behaviourists only
consider observable behaviour, meaning that what goes on in people’s head is outside the
area of interest.

The typical way of regarding learning in the behaviourist perspective is that a person is
presented with a stimulus from the environment, for example Arja’s computer displaying a
spreadsheet table and a document. Thereafter Arja responds to the stimulus, for instance
by importing by a link. If this response was different from the previous ones, and also that
Arja continues with this response later when she is presented with the same stimulus, she
has learnt a new behaviour.

After a response, the person can receive a new stimulus, which can reinforce the learning,
for example that the numbers in the document are updated according to changes in the
spreadsheet. If seeing this makes her more inclined to import by link the next time she
sees a spreadsheet table and a document, then the updating constitutes a reinforcement for
her learning.

87

© Jens Kaasbøll, 5 January, 2018

Chapter 6. User interface for learning

The learning aim of this chapter is to be able to design and evaluate software for learnability,
and in particular design in-line help.

6.1. Learnability
Seen from a user point of view, IT applications can be considered having the qualities of
learnability, usability and usefulness. This chapter will focus on learnability, but the other
qualities will be mentioned briefly first.

Usefulness concerns effectiveness, meaning the quality of the result of the IT operations
compared to the business needs. Low effectiveness means that there is a misfit between the IT
and the business. Usefulness can also be evaluated by asking users about their satisfaction
with the results that the IT is producing. When alternative IT systems are considered for a part
of the business, users can be asked to rank the systems on different outputs.

Perceived ease of use, as described in the technology acceptance model in Section 3.1, will be
divided into usability and learnability. Usability concerns the efficiency with which skilled
users are able to use the IT for tasks in their business. Efficiency can be measured in time to
carry out a set of operations, in the number of mouse clicks and keys to be pushed, the
number of screens to be opened, etc. Another way of evaluating usability is asking users about
how satisfied or comfortable they are with the IT.

Learnability concerns the ease with which people develop user competence for the system.
This has traditionally been regarded as bringing the novice up to having the skills for using a
system (Nielsen, 1993). Later, also more advanced learning has been taken into the
learnability concept, and the ability to improve competence has also been included (Grossman
et al., 2009). The latter is what was called metacognition or problem solving competence in
Chapter 5. As seen in Part I, user competence can be at the skill, understanding and problem
solving levels. The learnability of IT is therefore considered as the ease of climbing up one
competence step. A large software package can have many modules and functionalities, some
which are easy and other which are difficult to learn. Learnability might therefore address
only parts of an application and some business tasks.

Users also differ concerning their ability to learn. First, some learn IT use quicker than others.
Second, some users know, for instance, more about the information in the system than others,
such that they learn the data structure earlier than others. The learnability of an IT component
may be measured by the average time to learn for a group of users.

Deciding what to be learnt is also necessary. In case of a mobile phone app, the majority of
users probably only need the skills of using it. For a business information system, some need
to develop problem solving competence, but the majority may also here be satisfied with a
skill level. Therefore, measuring time from first encounter to skilled use may be a relevant
measure of learnability for many systems.

88

© Jens Kaasbøll, 5 January, 2018

For network components and printers, which seem to break down more often than other IT,
learning trouble shooting may be the learnability aimed at.

If introducing a general communication system for cooperative work, there is a risk that users
do not understand the purpose of the system for their work. Without understanding the
usefulness, people are less willing to learn, as seen in the technology acceptance model. The
effort needed to understanding usefulness is therefore an important aspect of learnability.

For systems which are used intermittently, maybe once or twice a year, users tend to forget
how to operate them. A relevant evaluation of learnability for such systems is time required
for recalling the skills.

6.2. Design for learnability
This section introduces user learning issues to consider when developing IT. As previously
stated, usefulness is in general a more important quality than learnability in order to for a new
system to be accepted, and designing for usefulness is described in textbooks on IT design
and information system development. Textbooks on design of human computer interaction
may cover usability. When designing data structures, functionality and interface, learnability
needs to be considered alongside usefulness and usability.

Reinforcement
The behaviouristic learning theory states that feedback from the IT on user actions may
constitute a reinforcement of user learning. Positive reinforcement like appraisals and
negative reinforcements like the disappearance of an error message will both strengthen
learning.

Immediate reinforcements are better than delayed ones. Long response time when using a web
system may leave the user doubting whether the input was correct or the connection is poor.
Informative reinforcements are better than uninformative ones, also called extinctions. For
example, changing directory in the command style user interface might produce a feedback
like Figure 67 a. It does not inform the user whether the operation has been successful or not.
Consistently repeated extinctions will in general wipe out competence. Users of command
interfaces may avoid this by watching the effect of the following command.

Figure 67. The effect of feedback on learning.

89

© Jens Kaasbøll, 5 January, 2018

The message in Figure 67 b is informative, since it provides a response about what happened,
and it even gives the reason for the outcome. Hence, it strengthens learning. Punishments
weaken learning and are the opposite of reinforcements. For instance, the message in Figure
67 c would for most users constitute a punishment, making them less likely to try the print
command again.

Consistency
Since learning new things is based on what we already know, learning is eased if the new
thing resembles the old ones. Hence, learnability will in general be enhanced if new IT is
consistent with existing technology or objects which the user are familiar with.

Users spend most of their time on a few applications, and most users are familiar with the
basic functionality and interface of browsers and text processors. Hence, when building a new
application, locating operations in menus, ribbons and screens in the same way as in browsers
and text processors will ease navigation.

Users can get quite upset by small changes in user interface when introducing new software
versions. Microsoft made a larger change in the organisations of operations in their Office
package in 2007, switching from a menu to a ribbon structure. Despite some loud protests,
users learnt the new interface without too much trouble (Dostál, 2010).

Using known icons on buttons can ease interpretation and hence bring the user up to a
functional understanding quicker than if introducing novel signs and symbols. Icons can also
be brought in from other gadgets, for example, the symbols for play, stop, fast forward and
backward from audio tape players have penetrated digital players and eased learning of these.

Designers may also exploit consistency with the domain of the system. The hotel information
system could use iconic symbols for guests, rooms, travel agents, cleaners, etc. While it is
possible to draw intuitive icons for physical objects, icons for more abstract phenomena like
an event or a reservation may require explanations. A calendar seems to be a frequently used
icon for reservations, see Figure 68 for a small selection of reservation icons without text.

Figure 68. Icons for Reservations.

New applications will obviously introduce novel functionality, which needs a name. The fact
that people use many terms for the same concept (Furnas et al., 1987) creates trouble with
deciding the name, and the best we can do is asking a number of people and selecting the
most frequently used term.

Terminology is also an issue when naming data fields. Established terms from existing
systems create less need for learning, and when redesigning business information systems,
keeping the terminology is essential, regardless of whether a new system is replacing paper
forms or digital databases.

90

© Jens Kaasbøll, 5 January, 2018

Structures of data entry forms and reports can also be used as templates for new interfaces,
reducing the learning of new patterns of data and sequences of operation.

6.3. Inline help
When simple things need instruction, it is a certain sign of poor design (Norman, 1988).

When users do not learn skills easily, improving the functionality and user interface is
normally a better option than providing additional functionality for scaffolds for learning.
This certainly applies to simple apps, social media, web shops and gadgets, as the quotation
from a usability expert says. However, many systems have complex data or a multitude of
functions, and everything cannot be depicted in one screen. For example, an amateur video
camera may have tens of options, and the cinematographer needs a functional understanding
of these before shooting. And a business system with a database as complex as the medical
record system in Figure 33 would need a structural understanding which is difficult to obtain
when only accessing a small part of it at a time. While the video amateur cannot split her
attention by looking for help with camera settings while shooting, users in less intensive
activities will have the opportunity to do so.

We saw in Section 5.4 that looking up inline help and searching the web was the fourth most
common choice of users when trying to solve a problem (Novick et al., 2007). Here, we will
present ways of providing inline help.

Tooltips
My first personal experience with accessing help in an interactive program happened in the
days of alphanumeric displays where one application filled the whole screen. I used an editor
where help would appear by pushing Ctrl/H. One day when looking for some options, I
pushed the key combination and quite rightly, help appeared. The annoying thing was that the
help filled the whole screen, such that I could not see the file I was working on. What was
even worse was that the help screen lacked instructions on how to get back to the file. With
nobody around to ask, I had to kill the editor process and lost the work since last saving. It is
probably unnecessary to say that I never accessed the help again.

Help windows covering the programs was one shortcoming of early attempts at inline help,
and another was the excessive length of explanations presented (Carroll, 1990).

Balloon help is a small box with explanation which pops up when holding the cursor over an
interface item, being a button, menu item, data field or other specific places in a window. It
was introduced in Apple computers in 1991, and the help appeared immediately when the
cursor was located over the item. Most users found it annoying, since it cluttered the screen.

Later, Microsoft created a version with a time delay of about one second between when the
cursor is placed over an item and when the scaffold pops up. This delay gives the user the
opportunity to push a button before the help appears, and it prevents balloons from popping
up all over when moving the cursor. This version was called tooltip or screentip and is now
favoured.

91

© Jens Kaasbøll, 5 January, 2018

Tooltips avoid distraction. When busy working with the spreadsheet, users prefers keeping
attention to their tasks, not having to divert into a separate help system. The other way
distraction is avoided is through providing help about what users are attending to. No search
or lookup is needed.

The example in Figure 69 shows a tooltip from MS Excel. In response to users’ negative
reactions to long explanations, it consists of only 13 words. The first sentence gives a short
functional model of this button. The second sentence explains the purpose of line charts,
“display trends over time,” thereby also showing which business task this function fits into.
This is a quality which has been emphasized in particular in previous research on learnability
(Carroll, 1990, Grossman et al., 2009)

Figure 69. Tooltip help from Microsoft Excel.

The example demonstrates that even short help messages can show the user both a functional
model and the business fit. A relevant question is; can tooltips convey instructions, directions
or structural models also?

Instructions include a list of steps to be undertaken, often including several buttons to be
pushed and choices to be made. Since tooltips are attached to individual buttons and disappear
once the cursor is removed or the button is pushed, they do not provide a list of steps which
keeps stable on the screen for several buttons to be pushed.

Directions tell where to find an interface item. Since tooltips tell about the specific item it is
attached to, it does not provide guidance for navigation. However, users might browse tabs
and buttons in search of a specific function, without knowing its name in the particular
application. Tooltips may help present alternative terms for the name on the button or data
field, thereby possibly solving the terminology problem. For example, a user looking for the
“time trend function” might find it by reading the tooltip in Figure 69.

Structural models display relations between several elements, something which requires space
and possible graphics. Again, the tie between the tooltip and one particular interface item
leaves little opportunity for relating the item to the rest of the system.

In an experiment where tooltips were attached to data fields, users looking up tooltips made
less mistakes, and they said that they learnt correct data entry from the tooltips (Isaksen et al.,

92

© Jens Kaasbøll, 5 January, 2018

2017). Interestingly, users also opened tooltips after data entry to check whether they had
done it correctly. In this case, the tooltips functioned as reinforcement for learning.

Wizards
A wizard is a sequence of smaller windows forcing uses through a predefined sequence of
steps. In each step, the user may have to choose options and can go back or forward. Figure
70 shows a window from a wizard for creating a line chart.

Wizards are semi-automatic instructions preventing users from doing operations in a wrong
sequence. They are the number one choice amongst software producers for installing
software. Wizards provide users with low IT self-efficacy with the security of reaching an
acceptable result by clicking Next repeatedly. At the same time, advanced users can pick and
choose some options along the way.

Figure 70. One window from a wizard from OpenOffice Calc.

Successful completion might boost users’ self-efficacy. The individual windows have some
space for explanations, which can help understanding. However, users might run through a
wizard without learning anything.

Users are more likely to learn through repeated runs through a wizard, in the same way as
people learn from repeatedly following instructions. Creating graphs with a spread sheet, as
illustrated in Figure 70, creates an opportunity for repeated use.

Context-sensitive document help
Some applications have help buttons which display a help window related to the place where
the button is located. The help window, which is smaller than the application window, pops
up at a location where it hides as little as possible. As an example, Figure 71 shows a help
window which appears in a data entry screen of a business information system.

Data is registered for an
organisation unit, a period, and
a set of data elements (data set)
at a time. A data set often
corresponds to a paper-based
data collection tool.

Figure 71. A context-sensitive help window from DHIS2.

93

© Jens Kaasbøll, 5 January, 2018

This explanation provides the part of the structural information model which is relevant for
the data entry screen.

Section 4.4 on structural models provides some ways of visualising hidden structures.
Showing the relations between master slides and slides in the presentation might for instance
be an option similar to the visualisation of dependants in spreadsheets (Figure 29).

Business information systems like the hotel and the medical record systems in Section 4.5
may have used interfaces where hundreds of operations are organised in menus in tabs in a
ribbon. The data visible in a screen may be one record or a table shown in isolation from
related data, while the data structure may be at least as complicated as shown in Figure 72.

Customer

Occupancy Room

Reservation

Event Travel Agent

CleanerRestuarant
expense

Restuarant

Figure 72. Data model of a larger part of the hotel information system.

Such a model might also be displayed by a context-sensitive help button.

Having such a small model visible in a corner of the screen with a colour indicating which
table is active at the moment may provide the user with a continuous map both reinforcing a
structural understanding and easing navigation in the data.

Context-sensitive video help
As explained in Section 2.3, videos are good substitutes for a live trainer and can provide
more effective instructions for novices than can documents. Videos triggered from a button in
the interface can therefore provide valuable help, for example when opening a screen in a
business information system and being told how to operate the functions therein.

Context-free help
A help window with a complete manual for a system is often what pops up when selecting a
general help function in a program. The user is then to search or browse to find the topic of
interest. Figure 73 is an example which can be searched and browsed.

When trying to navigate to the right spot, the user does not know the location of the relevant
item in the application and can therefore neither find context-sensitive help nor tooltips.
Context-free help can therefore be a useful alternative. However, these help systems are often

94

© Jens Kaasbøll, 5 January, 2018

written by the vendor and have therefore the terminology problem (Furnas et al., 1987). If the
user cannot locate the item on the screen due to not knowing its name, it may be equally
difficult in the context-fee documentation. Mixing user written questions and discussions into
the help system may alleviate some of the terminology problem.

Figure 73. Context-free help system from SAP.

System-initiated help
As a response to user struggling with IT, vendors and researchers have developed automatic
help based on logging user actions. The most wide spread was Microsoft’s Clippy, a pop-up
window which appeared in the lower right corner of the screen, see Figure 74.

This “office assistant” was heavily criticized by users for providing irrelevant and too trivial
help (Olsen and Malizia, 2011) and being intrusive,

much like an insensitive colleague who pops in to one’s office far too often (Waytz et al.,
2010)

 and Microsoft dropped it after a few years.

Figure 74. Clippy, a system initiated help from Microsoft.

95

© Jens Kaasbøll, 5 January, 2018

Research has continued, and it has been found that system-initiated instructions were effective
for novice users, while expert users benefitted from functional models (Babin et al., 2009). To
be effective, system initiated help thus needs to target the users’ level of competence, and the
levels of skill, understanding and problem solving may be a basis for characterizing
competence levels for such systems.

Summary
The various forms of inline help seem to be fitted to different learning processes, as illustrated
in Figure 75.

4.
 M

ak
e

se
ns

e
of

 o
ut

pu
t.

3. Enter input.

1. Generate hypothesis and plan input.
5. Compare output with hypothesis

2. N
avigate

D
irections in
Searchable

context-free help
Tooltip

Structural model in
Context-sensitive document help

Instructions in
Wizard

Context-sensitive video

Fu
nc

tio
na

l m
od

el
 in

To
ol

tip

Figure 75. The roles of inline help for supporting steps in the research cycle.

6.4. Evaluating learnability
During design, the learnability of user interfaces and help systems can be evaluated in several
ways. Three ways of increasing validity and costs are heuristic evaluation, question-
suggestion and measuring learning.

Heuristic evaluation
Heuristic evaluation is carried out by 2-3 experts on IT usability. They inspect every detail of
the application and compare it to known guidelines and principles. The sections 6.1 to 6.3
provide several guidelines to which interface and help system can be compared. Concerning
inline help, three issues to consider in particular are

• Do tooltips provide both functional model and business fit?

• Are structural models included in any help?

• Does the help include terminology from common users in addition to the vendor’s
terms?

96

© Jens Kaasbøll, 5 January, 2018

Heuristic evaluators should note down each time a guideline is broken and note this as a
possible learning issue. Even if the design does not match a guideline, this may not pose any
learning problem for users. For finding out, real users need to test the system.

Despite this insufficiency, heuristic evaluation is suggested as a first test by human computer
interaction specialists due to that it is cheap and can reveal issues to be solved before more
costly user evaluations are carried out.

Question-suggestion
Thinking aloud has become an established method for evaluating ease of use. A think aloud
session consist of a user given some tasks to be carried out on an IT component and asked to
say what she thinks when trying to carry out the task. Thinking aloud unveils many usability
issues.

A related procedure has been demonstrated to yield more results when assessing the
learnability of software. In the Question-Suggestion procedure, an expert user with many
years of varied experience with the software sits beside the learner. The learner can ask
specific questions to the expert, who answers the questions, and this provides for a more
natural dialogue than the artificial thinking aloud (Kato, 1986). The expert can also, when
judged appropriate, suggest alternative and better ways of working to the learner. In a
comparison with 10 learners on an architectural design system, the Question-Suggestion
procedure unveiled 2-3 times as many learnability issues as thinking aloud (Grossman et al.,
2009).

Both thinking aloud and Question-Suggestion requires an experimenter who takes notes on
the learnability issues. Also, through video recording of the screen and audio recording of the
learner, one can gain more insight into the learning processes.

Bringing in a number of users and experts add to the cost compared to heuristic evaluation.
Although no exact estimate exists, rough measures has shown that 5-10 users find the large
majority of usability problems in thinking aloud (Nielsen, 1994). This number cannot be
automatically transferred to learnability, but the similarity in concepts and procedures suggest
that the number is closer to 10 than to 100 for finding the majority of learnability issues.

One hour of video recording may require 10 hours for analysis, also adding to the effort of
Question-suggestion evaluation. For systems where learnability is critical, like a web shop, a
variety of evaluation methods is needed.

Measuring learning
A simple way of comparing learnability of two systems or two versions of the same system is
measuring how long time it takes to learn specific tasks. A group of around 10 people are
given a set of tasks they have never done before and told to fulfil these tasks with the IT. The
time they spend is measured and errors counted.

97

© Jens Kaasbøll, 5 January, 2018

Such measurements may show which system is more learnable, and thereby tell us whether a
new software version has improved learnability. Learning measurements can also be used
when deciding on purchasing one or the other software package.

These pure measurements are less useful for pointing to specific design problems or locate
concepts in the software which are difficult to learn and therefore need inline help or training.

98

© Jens Kaasbøll, 5 January, 2018

Chapter 7. Training modules

We have so far considered the sequence of learning from skill through understanding to
problem solving competence, and scaffolds for improving learning have been discussed.

The learning objectives of this chapter are to be able to combine scaffolds to a training
sequence and to design a sequence for training related topics within IT use.

7.1. Training modules for skills and understanding
A training module is a small sequence of activities with a learning objective. For instance, if
the learning objective is the ability to use functions in spreadsheets, the training module could
consist of a list of exercises with increasingly complicated functions. A training module could
be taught by a trainer in a class, be available as an online tutorial for self-study, or through
any combination of media and people.

Studies of training for understanding have shown that presentation of functionality and
structure prior to practice improves learning (Mayer, 1989), and that reflecting upon the same
functionality/structure after practice also helps understanding. This sequence is also in
accordance with a general sequence of teaching for skills and understanding (Gagné and
Briggs, 1974). Concerning IT user training, the same sequence of teaching helped
understanding for students in high income countries (Hadjerrouit, 2008, Bhavnani et al.,
2008) and in a disadvantaged community in a middle income country where few learners
were familiar with computers (Marsh, 2007).

Understanding business fit has shown similar advantages. In an experiment, two out of 16
hours of skill training was substituted with a session aimed at understanding the
organisational level for half of the participants (Coulson et al., 2003). Those who received the
training for understanding business fit developed better mental models than those who only
had skills training.

In addition to motivating the learners, presenting functionality, structure and usefulness prior
to practice also helps trainees combining the new material with what they already know. For
instance, if paragraphs in text processors are to be taught, an introduction showing the
similarities and differences between the concept of paragraph in natural language and that of
text processors might bring the learner’s understanding in the right direction and avoid
interference.

We have previously stated that people need to practice and develop skills before they can
understand. The learning outcome after the Introduction part is therefore characterised as
“vague understanding,” since most learners at that stage will only have a hunch about what
the models mean. The research on training referred above has nevertheless found that the final
learning outcome of a module becomes better with this initial motivation through usefulness
and the vague understanding. A training module for learning skills and understanding should

99

© Jens Kaasbøll, 5 January, 2018

have the parts described in Figure 76. Usefulness should be repeated after the learners have
practiced the IT to motivate the learners for using the software after training.

Training activities and scaffolds

1. Introductory presentatiosn of
a. Usefulness
b. Business, Functional or Structural model

2. Practicals
a. Provide Minimal Manuals and Exercises
b. Help learners who have reached an impasse

3. Summary
a. Review Usefulness (organisational benefits)
b. Review Functionality and Structure

Learning outcomes

Vague understanding

Skills

Understanding

Figure 76. A teaching module aiming at skills and understanding.

A module which follows this scheme is presented in Figure 77.

Motivation
When you enter data, the system can be used to analyse it, make reports and compare
of data across time and place.
Data set: The data is associated with a period (when) and an Organisation unit (where).

Practical exercise - Data Entry
1: Click on the Apps button up at the right on the screen.
2: Click the Data Entry button.
3: Click once to display organisation units.

Questions
Which three dimensions does a number you have entered belong to?
Why should you enter data in the system?

Figure 77. A training module for skills and understanding. The summary consists of two questions to the
learners and subsequent discussion.

100

© Jens Kaasbøll, 5 January, 2018

During introduction and summary, instructions for particular software installations are
avoided in all written materials and presentations for three reasons. First, the introduction and
summary should focus on understanding. Second, the strict separation allows learners using
different versions of software to be taught, as long as there are instruction sheets for all
versions. Third, a modularised design of training material is achieved. When a new software
version appears, the material for introduction and summary can be kept untouched.

One module should cover 1-3 new functions or structures, such that the trainees understand
these before progressing to the next module. In order to develop skills, the time for practicals
should cover the majority of the duration of the module. For instance, a 30 minutes session
might be planned for 5 minutes introduction, 20 minutes practical assignments and 5 minutes
summary. Overburdening a module with too much material is particularly detrimental for the
learners’ understanding (Rourke and Kanuka, 2009).

When working on the practicals, many learners get stuck, observe an error or are uncertain
about their actions. These learners have reached an impasse, which is a good opportunity for
learning. Trainers should therefore plan for impasses to take place by providing increasingly
difficult exercises. The first assignment in the practicals could be imitating the instructions,
while a second could introduce a minimal change, for example asking the trainees to operate
on some other data. Larger deviations from the instructions are considered under training for
problem solving in the next section.

During the practicals, the trainer should walk around in the classroom and help out. Helping
out during impasses has good effect on learning, while trying to help when the learners are
coping on their own is wasted effort (VanLehn et al., 2003). The trainer’s explanation should
be questions or short explanations. These could be parts of functional or structural models
triggering the learners to compare with what they do (Roscoe and Chi, 2007). Lengthy
explanations beyond what the learners need to continue from the impasse are to be avoided.

During the practical, obviously the learners are busy on their computers. This is necessary for
developing the initial skill. Since talking while doing contributes to understanding, it might be
better if the learners were discussing while running the computer. This can be achieved
through having two learners at each computer. One is operating the keyboard and mouse,
while the other is making comments, asking questions, checking the documentation etc. Then
the pair swaps roles, such that both do the hands-on exercise. A laboratory study showed that
learners operating in pairs outperformed individuals on understanding. The pairs could
explain more about how the software operated and they performed better in exercises which
introduced some novel elements (Lim et al., 1997).

Operation in pairs is known from computer science education as ‘pair programming.’ Several
studies have been carried out, and pair programming is found more effective for bringing
more students through exams than individual programming (McDowell et al., 2006). The
lesson from learning of programming addresses learning objectives of understanding and
problem solving.

101

© Jens Kaasbøll, 5 January, 2018

Motor skills were not considered, neither in the user learning nor the computer science cases.
It would be reasonable to believe that learners who still struggle with the mouse and
keyboard, should be practicing this as much as possible, while pair learning fits better for
those above this level.

When school students or participants in a formal in-service training with a test to be passed
know the type of exams or tests, they focus on learning the competence tested. If assessments
only address skills, chances of reaching understanding are smaller than when including
assessment of learners’ understanding as well in the exam (Ramsden, 2003).

7.2. Training modules for improving problem solving competence
Since problem solving competence builds on understanding, trainees should be prepared for a
module on problem solving after completing one on skills and understanding.

In a study of adult computer novices, half were trained through a series of exercises for the
whole duration of the experiment. The other half was given a few exercises followed by a
prompt to explore the operations (Davis and Bostrom, 1993). There was no difference in the
learning outcome. This indicates that encouragement to explore is not sufficient for
developing problem solving competences.

Encouraging users to make errors during training by emphasizing that errors constitute good
opportunities for learning has shown promising effects both for performance and learning
oriented users (Keith and Frese, 2008). By coupling error encouragement with emphasizing
that the learning objective is improved competence and not achieving a high performance,
also performance oriented users above 40 years dared to explore and learnt more than those
only receiving instructions (Chillarege et al., 2003).

Problem solving can be learnt more effectively when methods for solving problem are
presented explicitly (Hattie, 2009). Inserting a module which teaches a problem solving
strategy between modules aiming at skills and understanding is more effective than grouping
all problem solving approaches into a specific course (Abrami et al., 2008).

Training which addresses the problem solving methods presented in Chapter 5 requires a
similar module as teaching any concept, idea, theory, functionality structure or other abstract
thought. This module can be illustrated as in Figure 78, where the vague understanding after
the introductory presentation corresponds to that of the module for understanding..

102

© Jens Kaasbøll, 5 January, 2018

Training activities and scaffolds

1. Introductory presentation of
a. Needs for problem solving
b. Problem solving strategy

2. Practicals
a. Provide problem exercise
b. Help learners who have reached an impasse

3. Summary
c. Discuss the problem solving strategy

compared to the practical

Learning outcomes

Vague understanding of
problem solving strategy

Skills in applying the problem
solving strategy

Understanding of the problem
solving strategy

Figure 78. The sequence of teaching a module for learning problem solving.

Corresponding to the training for understanding, pair working during the practicals may help
the learners gain more understanding of the problem solving method as well as of the IT (Lim
et al., 1997). Also the trainer helping out during impasses in the same manner as mentioned
above may help. For improving the learners’ problem solving competence, the trainer’s
comments should focus on the problem solving method more than on the IT.

As mentioned in Section 5.4, self-efficacy can be improved by watching a peer, who is
considered at the same level of IT competence, solving a problem. This is an additional
argument for pair working during IT use learning.

Training generation and testing of hypotheses could be to done by providing the learners with
an incomplete functional or structural model of the topic to be learnt (Brown and Newman,
1985). For example, when training layers in a picture editor, the presentation may say that
layers are stacked upon each other, and that the image in one layer hides those in layers
below. After learners have worked with layers in this sense for a period, a file can be
presented where the lower layers are partly visible through layers above. The exercise could
be to find out how this came about. This calls for questioning previous understanding and
hypothesizing that layers may be transparent in some way.

Learning problem solving is especially important for superusers; since they are supposed to
help others solve their problems. The sequence of training for understanding prior to training
for problem solving as illustrated in Figure 79 is therefore recommended for superuser
training in particular.

Training for understanding a topic

Training for problem solving in the same topic

Figure 79. The sequence of training for understanding prior to training a problem solving strategy..

103

© Jens Kaasbøll, 5 January, 2018

If the learners have been taught the problem solving strategies earlier, there is no need for
specific modules presenting the approaches again. The non-trivial exercises which require
problem solving can then be added to the exercises in a skills and understanding module.

7.3. Teaching a module
Training by a trainer is more efficient than self-exploration (Simon and Werner, 1996). Also
when exploring IT systems, trainer intervention through asking questions relevant to the
domain to be learnt triggered a similar number of learning events as the students generated on
their own (Price and Falcão, 2011).

The main advantage of having a trainer leading the training modules compared to self-
studying a tutorial is the interaction between trainees and trainer. A trainer can answer
questions, help out when learners are stuck, adjust the explanations to fit the trainees’
understanding, discuss usefulness with them and discuss pros and cons of different problem
solving methods. These advantages should be exploited when planning and carrying out
teaching of modules.

When learners work on their own, the trainer can move around freely in the classroom to help
out when needed. Instructing by means of a demo at the projector means that the trainer has to
rush between the screen and the learners to help out those who are stuck. Experience shows
that working with instruction sheets or videos relieves the trainer from most of the requests,
since the learners have material to consult (Herskin, 2006). The trainer is gaining time to
respond to the questions from the learners.

To ease learning, users should have both the instructions and the software to be learnt visible
on the screen at the same time, not hiding the windows behind each other. The trainer should
therefore tell the learners to reserve one part of the screen for the instructions. Reminding the
trainees to stop and start the video according to their own speed of working is also useful for
easing learning.

When observing learners
practicing, the trainer also
assesses their skill level.
Sufficient skills do not mean
that the learners have
understood usefulness,
functionality and structure,
however. The summary should
therefore continue the
assessment, by asking the
students to express their
understanding. Kylie has taught
styles and has observed that all
participants were able to change and apply styles in their documents. Nevertheless, their
understanding is poor. Dmitri does not seem to be aware of that styles apply to units called

Assessing understanding during summary—Trainer
Kylie and two learners Dmitri and Julia.

Kylie: Can you tell us what a style is?
Dmitri: It is formatting.
Kylie: Yes, and what does it format?
Dmitri: The document.
Kylie: Does one style format the whole document?
Julia: No, each paragraph has a style.
Kylie: Yes. Can two paragraphs have the same style?
Julia: I am not sure, … but I think so.
Kylie: OK, look at this document. Now, I change …

104

© Jens Kaasbøll, 5 January, 2018

paragraphs. Even if Julia knows this, her last statement indicates a poor understanding of the
usefulness of styles, namely that one can keep and change formatting in a consistent way
throughout a document by applying the same style to paragraphs that should have the same
format. Kylie knows that confronting learners’ misconceptions is crucial for making them
interpret the computer output again, reflect more and develop a more adequate understanding
(Ramsden, 2003). Based on her assessment of the trainees’ understanding, Kylie therefore
decides repeating the whole explanation by means of demonstrating the function and
usefulness of styles. Thereafter, she will check the trainees’ understanding once more.

During classroom training, another way of improving trainees’ self-efficacy is available. The
trainer could assign average performing trainees to demonstrate their skill on the projector,
such that the other trainees see that their peers have learnt it.

Developing functional and structural models plus instruction sheets consumes time, which
may be one of the reasons why trainers often skip this preparation and rather present
interaction with a projector for the users to imitate. Users who were asked to rank the quality
of different aspects of IT support gave the lowest score to documentation in training (Shaw et
al., 2002). Knowing that reviewing material from training is twice as successful as searching
for help other places (Novick et al., 2009) and that users look it up after training (Kaasbøll,
2014), putting more effort into training material could make users become better problem
solvers and save the IT supporters from many encounters.

In summary, the trainer could carry out a module for skill and understanding like this:

1. Introduction
a. Present learning objective and usefulness and discuss these with the trainees.
b. Present functional or structural models for the concepts of the session.

2. Practicals
a. Hand out directions and instructions and exercises.
b. Observe the trainees’ performance.
c. Help them if needed, not by doing the exercises, but by explaining

functionality and structure.
3. Summary

a. Discuss usefulness in the business with the trainees.
b. Ask the trainees to explain the new functionality/structure to assess their

understanding.
c. If the trainees’ understanding is poor or they have misunderstood, the trainer

needs to confront their misconception, repeat the explanations and redo the
assessment.

Problem solving modules can be taught in much the same way as the training for
understanding. Usefulness will in this case refer to the applicability of the problem solving
strategy in other settings.

When the exercise is difficult, the learners might have to go through many cycles of
experimentation. For efficient learning, the trainer needs to provide lots of support during
such exercises (Hmelo-Silver et al., 2007). Since the aim is learning problem solving, the

105

© Jens Kaasbøll, 5 January, 2018

trainer should explain how the trainees should work with the problem solving strategy to find
out on their own how to solve the IT use problem. A module for learning problem solving
could be taught like this

1. Introduction
a. Present the usefulness of the problem solving strategy.
b. Present the problem solving strategy.
c. Encourage trainees to try on their own and learn from mistakes.

2. Practicals
a. Hand out description of problem solving strategy and non-trivial exercises.
b. Observe the trainees’ performance.
c. If needed, help them in their problem solving by addressing their problem

solving approach, and not by telling them the solution to the exercise.
3. Summary

a. Discuss with the trainees their approach to solving the problem and the
applicability of this approach for other problems.

7.4. Online tutorial for a module
Training by a trainer is normally not available when wanted, so users need to learn without a
trainer in most cases. While the advantages of a trainer was spelled out in the previous
section, there is also one main advantage of following an accessible tutorial; you can do it
whenever suited and at your own speed. The challenges with designing tutorials for training
modules are to compensate for the lack of a trainer.

The introduction lends itself reasonable easy to be recorded or written. As previously stated,
users want to act, not read. In an online tutorial the introduction and summary should
therefore include only the necessary contents.

Previously the use of video for presenting models and instructions has been described, and
usefulness can also be presented in a video. If the usefulness of the IT in the business is
presented by a known person, preferably working in the same organisation, the message may
become more persuasive than if presented by an anonymous trainer.

The practical is mainly the learner’s activity, but the trainer’s observation and guidance will
be missing in an online tutorial. Assuming the first practical exercise is following instructions,
the software could be programmed to monitor the user’s interaction and alert if the user
pushes the wrong buttons. However, this is a very expensive means with an unknown
outcome and would probably only be implemented in flight simulators or other high tech
learning environment for safety critical tasks.

Following the general advice of two learners working together may be a simpler and more
effective way of compensating for a trainer who observes and helps out during practicals.
Asking a colleague or a friend for help may also do the trick.

The summary has the highest demand for interactivity. A few written sentences or a talking
head in a video repeating the usefulness and the novel functionality or data structure is a way

106

© Jens Kaasbøll, 5 January, 2018

of training that leaves the learner completely passive, hence the learner might not reflect at all.
Also, such a presentation provides no mechanism which checks whether the learner has
reached the understanding of the IT or of the problem solving strategy. The learner may
therefore proceed to the next module without the prerequisite competence.

Multiple choice questions is a simple, interactive way of testing competence. Questions
addressing understanding as well as business fit can be made. Software exists that can provide
feedback on right and wrong answers and guide the learner to the next module or repeating
the current.

The tutorial module in Figure 80 is constructed according to the module for skill and
understanding:

1. Introduction
a. Motivation. Users know that they need to print and export.
b. Structure and functions. Learners of this software are familiar with spread

sheets, where the input is done in the same sheets that are printed for output. A
frequent misunderstanding amongst these learners has therefore been that the
input form should also be printed as output.

2. Practical
a. Instructions to follow

3. Summary, multiple choice questions on
a. functional understanding
b. structural understanding
c. skill

(from (Bjørge et al., 2015))

The first multiple choice question forces the learner to reflect on the difference between how
this database system works and a spreadsheet, and the second addresses the contents of the
report. In the IT version, if the learner does not pick a correct answer, an explanation of why
it is wrong pops up. The learner gets three attempts at answering correctly before being
allowed to proceed to the next module. In this way some interactivity is achieved as well as a
control of competence prior to continuing the training.

107

© Jens Kaasbøll, 5 January, 2018

Figure 80. A tutorial module with multiple choice assignments (1 and 2) which test understanding.

7.5. Sequence for teaching related topics of IT use
The sequence of teaching understanding before problem solving concerned the teaching of
one topic within IT use. If learning two distinct applications, like a spread sheet and a text
processor, there is no obvious advantage of starting with one or the other. Normally, training
includes several related topics, for instance, cell references, functions and graphs in a spread
sheet course. When topics are related, and possibly build on each other, the teaching sequence
should be designed accordingly.

Concepts which build on each other
Assume that you are going to learn making Table of Contents in a text document. Generating
the table presupposes that the items to be included have been styled with the appropriate
heading styles, so you have to learn about styles before the table of contents. Teaching of

108

© Jens Kaasbøll, 5 January, 2018

Styles is therefore scheduled prior to teaching Table of Contents, as illustrated in the upper
row in Figure 81.

Scheduling can be done during planning of teaching. During the actual teaching of styles, the
trainer also has to ensure that the learners have grasped the Style concept. Structural
understanding means that the learner can use the concept while talking about other concepts.
This implies that heading styles should be understood at the structural level before learning
table of concepts. The trainer Kylie in the textbox at p.103 is just checking that her trainees
has a structural understanding of styles. She should only proceed to Table of Contents after
the learners demonstrate that they are at this level.

Training Styles in text processors Training Table of Concents

Training a Window browsing strategy

Figure 81. Top row: Teaching the concept Styles before Table of Contents since the latter builds on the
former. Left column: Teaching a problem solving method after teaching Styles.

If Kylie wanted her trainees to find out more about styles on their own, she could also have
started a session on problem solving methods aimed at styles. She could for instance select the
interface browsing strategy (p.71) and make the learners carry it out for the main window for
modifying a Style, see left column of Figure 81.

Concepts which are specialisations of other concepts
Table of Contents creates a list of references to the sections in the document. There are other
ways of making references inside a document also, for instance footnotes.

Normally, people learn in a process from the specific to the abstract. Users who have learnt
table of contents and footnotes would have seen two types of references and can understand
the similarities and differences between these two types. This will enable learning the more
abstract concepts of references or links, enabling a teaching sequence as illustrated in Figure
82, left side.

After having learnt the more abstract concept of reference, learning more specific types of
references like index, cross reference and bookmarks will be easier. These teaching sequences
are illustrated in the right part of Figure 82.

109

© Jens Kaasbøll, 5 January, 2018

Index
Table of Contents

Reference Cross reference

Footnote
Bookmark

Figure 82. Sequence of teaching from two specific (left) to an abstract concepts (middle) and further to
more concrete concepts (right).

Victor is a learner in these teaching
modules. After training on Table of
Contents and Footnotes, he explains
these as shown in the textbox. He
partly refers to how these are
created, which points to the skill
level. Also, he mentions the inputs
needed for table of contents, and he
compares footnotes with those in books, which indicates a functional understanding. All in
all, Victor is somewhat above the skills level, but not quite at the functional understanding.
Hence, he is below where we would like him to be when proceeding to the Reference session.

Reference
connections between text a document

Table of Contents
References from a table to

sections in the document

Footnotes
References from footnote numbers in the
text to the note at the bottom of the page

Specialisations

Figure 83. A structural models of relationships between Reference concepts.

Table of Contents and Footnotes 1—Victor:

We can make a table of contents by first styling the
headlines that we want to include, and then do the
Insert table of contents where we want the table.

Footnotes are like we see them in books. We make
them by Insert footnote.

110

© Jens Kaasbøll, 5 January, 2018

However, the trainer proceeds
nevertheless. She presents the more
general idea of references and how
footnotes and table of contents are
two different types of references,
and she uses the structural model in
Figure 83 as an illustration in her presentation. Thereafter, Victor has to explain again. He no
longer explains the concepts of footnotes and table of contents with mentioning how they are
made. His last sentence points to a functional understanding. Also, he uses the two concepts
when explaining references in general, which is a hallmark of IT structural understanding, but
since he does not mention what a reference is, we cannot be sure that he has reached this
level.

When designing a sequence of teaching for IT concepts, a directed graph of how they relate as
shown in Figure 82 would be useful. However, there is no definite point where the more
abstract concepts should be introduced, and there is no unique level of abstraction that is
feasible at any point. Figure 84 provides a brief summary of IT concepts which fall in under
the functional dependency category. Considering that people in general learn from the specific
to the abstract, the bottom level in the figure might be appropriate as starting points for user
learning.

Functional dependency

Data link Type-instance General-special type

Reference
Hyperlink Foreign keys Style-paragraph

Master-slide

Number format - number

A style is more special
than the style it is based
on (or ’linked with’)

Table of
Contents

Index

Cross
reference

Bookmark

Footnote

Figure 84. IT concepts from abstract at the top to more specific at the bottom.

7.6. Age levels of abstraction
While computer scientists may find Figure 83 intuitive, they may struggle with Figure 84.
Correspondingly, users with less insight into computers and lower abilities for abstraction will
also have trouble understanding the model in Figure 83 and also the idea it presents,
regardless of the way of presentation.

Children become more able to deal with abstraction with age. Teaching at the right level of
abstraction is the single most important consideration when trying to make children
understand concepts, principles and general ideas (Hattie, 2009).

Table of Contents and Footnotes 2—Victor:

Footnotes and table of contents are references. That
means that they point to where the text is in the
document.

111

© Jens Kaasbøll, 5 January, 2018

The thinking of preschool children is strongly influenced by their perception (Ormrod, 2012)
and they conceive of objects as belonging to one category only. This might, for example,
imply that the child regards the functionality of an Android device as separate from that of an
iPad, and the idea of a file system is beyond their ability of abstracting. Structural
understanding is not achievable unless the structures can be perceived directly.

Children up to age 11-12 are characterised as at a “concrete operational stage.” While still
having trouble thinking about hypothetical or counterfactual situations, children at this age
can sort objects according to various aspects such as colour and size and deal with subclasses
(Ormrod, 2012). This implies that these children can understand that table of contents and
footnotes have similarities and differences, like Figure 83 illustrates. The figure is not
designed for this age group, however.

From the early teens, there is no marked difference between adolescents and adults. However,
children as well as adults vary a lot in their abilities to handle abstract concepts and ideas
(Ormrod, 2012). Some may therefore grasp many structural models at an early school age,
while others will have poor structural understanding of IT throughout their lives.

7.7. Instructions, functional and structural models – slide design
Designing functional and structural models of information is covered in the area of
information visualisation. The books by Edward Tufte constitute a comprehensive
introduction to the area (Tufte, 1990, Tufte, 2011). Marti Hearst (2003) has made a tutorial on
graphical elements and how people experience them, while Rosling (2006) provides a video
of visualisation of numbers and statistics. This section presents some functional and structural
models for a representation system which is also useful in user training, namely slides.

Figure 85 presents the information structure of a file of slides generated with a presentation
program. The model might contain the most frequently used data elements and data structure
for a user. It shows that the file content is broken down into smaller and smaller parts in a
hierarchy. Also, that there are master slides which determine the layout and design of the
slides and their contents, and that the master slides also can be parts of larger structures,
called templates. The model is an example of how type-instance and data structures are mixed
in a file.

112

© Jens Kaasbøll, 5 January, 2018

Presentation

Slides

Paragraphs

Characters

Instances

and Links

Slide
master

determines
layout of

Graphics
Sequential order

Sequential order

Sequential order

Template

Types

Figure 85. The structure of a file generated by means of a presentation program. The notation is derived
from UML class models.

The model in Figure 85 is presented with a notation taken from computer science. It is
therefore inappropriate as a means of communication with users, since they are not acquainted
with the abstract notation utilized here, even though it is intended to capture the syntax
concepts from a user point of view. Figure 86 shows a smaller part of the data structure of a
presentation file with recognisable screen shots and an example. This structural model may
help users understand relations between master slides and slides.

Figure 86. A structural model of master slides and slides.

113

© Jens Kaasbøll, 5 January, 2018

While the structural models might help users understand how the data in a spreadsheet file is
combined, slide design skills are also useful for creating useful slides.

Slide design depends on several ways of representing the world; it brings in the written
language and all possible kinds of illustrations. Using already known representation systems
makes slide design appealing, since people do not consider that designing slides require any
additional competence. However, this is also the pitfall of slide design; people use Impress,
Keynote, PowerPoint or Prezi as if it were a word processor with page organisation of the text
and easy manipulation of the format and figures. The outputs of presentation programs are
used for accompanying a presentation or for displaying a slide show on its own, and both of
these differ from the purpose of a written text, which is meant to be read at the readers’ speed.
Also, each of the two purposes of a slide show has its own design rules, and we will in this
section address the design of slides which accompany an oral presentation. The principles
from at p. 46 on videos are also valid for an automatic slide presentation with recorded audio.

A main reason for using slides in a presentation is that it allows for several ways of presenting
material simultaneously. Since some people learn better by hearing, others through reading
and still others through seeing a figure, all three groups in the audience can be satisfied at the
same time. Moreover, most people learn even better through a combination of media, so that
presenting in oral, written text and figures at the same time is advantageous for all the
audience. This brings us to the first instruction for slide design:

1. Combine text and illustrations.

When we are listening to a presenter at the same time as reading the text on the slide, we
would easily lose out on one or the other. In order to minimize this fall out, we would
normally write text which reads very fast, and this could be seven words in one line. This line
should present the essence of what the presenter is saying in a few sentences, which could
constitute a paragraph if written. Copying full sentences from a textbook or a web page onto a
slide, which some presenters are doing, is therefore a dysfunctional way of using slides. The
slide in Figure 87 illustrates the result of copying full sentences into a slide. In order for the
audience to grasp the message, the presenter has to read the full text aloud. The main message
of this slide is rewritten in Figure 88. The text on the slide can be read in five seconds, and the
design illustrates the process of producing the letters. After pointing to the four elements in
this slide for explaining the essence of mail merge, the presenter can subsequently tell about
how the list of recipients is stored and other details from the full text.

114

© Jens Kaasbøll, 5 January, 2018

Mail merge
• Mail merge is a software function describing the production

of multiple (and potentially large numbers
of) documents from a single template form and a
structured data source. This helps to create
personalized letters and pre-addressed envelopes or mailing
labels for mass mailings from a word processing document
which contains fixed text, which will be the same in each
output document, and variables, which act as placeholders
that are replaced by text from the data source. The data
source is typically a spreadsheet or a database which has a
field or column matching each variable in the template. When
the mail merge is run, the word processing system creates an
output document for each row in the database, using the
fixed text exactly as it appears in the template, but
substituting the data variables in the template with the values
from the matching columns

Figure 87. An inappropriate slide design. Text from Babylon Online Dictionary.

Mail mergeOne master letter
A list of recipients

One letter per recipient

Figure 88. One point per line. A functional model.

In some cases, for instance when presenting a quote of a couple of sentences, we need to
display the full text on the slide. To avoid fall out in such a case, the presenter should read the
quote in full, so that the oral and visual impressions are synchronised. In general the
instruction is:

2. Write each point on one line.

Simplicity is also an advantage concerning illustrations. These should display the essence of
the point and avoid disturbing details. If the point of the illustration is to show the reality, a
photo is appropriate, but unnecessary surroundings should be cut to avoid distracting details.
If the point is of a more abstract character, a drawing is better suited for communicating the
essentials and avoiding the disturbances. In summary:

3. Keep illustrations as simple as possible

Text and figures displayed on a screen may look large for the presenter, but the audience in
the back of the class room may have trouble reading the text. To ensure legibility, use
minimum 18 points font size and sans-serif typeface (Figure 89), since these are clearer when
displayed on projectors than the serif fonts.

115

© Jens Kaasbøll, 5 January, 2018

Use legible fonts

T Serifs tie letters together into words
– High resolution display or print

Low resolution screens and projectors:
 Fonts without (sans) serifs are clearer T

Figure 89. Typefaces with and without serifs. A structural model.

Slides are also often printed as handouts and reduced in size to accommodate more slides on
one page. Font size 14 on the original will then become tiny and difficult to read for the long-
sighted, while the near sighted have trouble reading 14 point size on the screen. The
conclusion is:

4. Minimum 18 point font size with a sans serif font.

The other factor which affects legibility is the contrast between the text and the background.
Black on white or white on black are safe, but nearly all other combinations are reducing
legibility. Also backgrounds which can be chosen in a commercial presentation program may
hamper legibility. The yellow marker colour is the only background colour which actually
improves legibility, and should therefore be used for emphasizing. Black letters on a light
blue background may help dyslectics, and this combination is also fine in general. Visibility
of figures also require sufficient contrast, and even if the contrast looks good on a computer
screen, a projector might require a larger difference between light and dark in order to deliver
easy to see pictures. Hence,

5. Keep contrast between text/graphics and background close to black versus white.

More thorough introductions to slide design can be found in (Duarte, 2008) and (Reynolds,
2010). Many instructions can also be found on the web, for example at SlideShare.

5. Divide training into 30 minutes modules and include problem solving modules

116

© Jens Kaasbøll, 5 January, 2018

Chapter 8. Training for transfer

The learning objective of this chapter is to be able to design training which maximises the
possibility for using learnt competence in business tasks after the training.

8.1. Transfer
Seen from the training perspective, learners have some competence when starting up, and
hopefully a bit more when completing. This new competence is what the learners will bring
back to the tasks, and the effect of the training on the changes in business tasks is called
transfer. We can illustrate the process as in Figure 90.

TrainingLearners doing
business tasks

IT competence
when training

starts

IT competence
at the end of

training

Transfer

Learners doing business
tasks in new ways

Figure 90. A transfer model of training. Competence is learnt in a course and transferred to tasks.

Some project managers may believe that after users are trained, they will master the
application and use it. This assumption is in general false, and the problems of transfer of
competence from courses to the activity where the competence is to be used have long been
acknowledged. Factors influencing transfer can be divided into training design and the
business where the transfer is to take place. Training design will be covered in the next
section.

Business factors which are important after training include the opportunity to perform, social
influence and support (Grossman and Salas, 2011). The two first ones will be considered here,
while support will be considered in Chapter 11 and Chapter 12.

The opportunities to perform include the obvious condition that the IT system is up and
running when the trainees return to work. If training is provided weeks before the IT system is
put into operation, the users will forget much of their new competence, so the possibility for
transfer has decreased seriously (Finnegan, 1996,
Karuppan and Karuppan, 2008). On the other hand, if
training is provided long after a new system is
installed, the users may react like Edita. When coming
to training, she brings a negative attitude and may
blame the trainer for the delay. In a Dutch study, a

Timing—Edita:

Why training this late? The
system has been up for ages, but
nobody knows how to use it.

117

© Jens Kaasbøll, 5 January, 2018

positive attitude towards the information system was found to have a greater impact on use
than satisfaction with the training had (De Waal, 2012).

Opportunities to perform include also the facilities for adoption of technology, as presented in
the revised technology acceptance model in Section 3.1.

Another factor of the technology acceptance model is social influence, and this is also an
important factor for transfer. Peers and managers using a system and encouraging those who
have attended training to use it are favourable conditions, as well as incentives for use and
remediation for lack of use.

Chances of transfer are increased if the training motivates, includes practicals with imitation
of instructions and problem solving, improves self-efficacy and provides an environment
which is similar to the business. Figure 91 summarises beneficial factors for transfer during
and after training.

TrainingLearners doing
business tasks

IT competence
when training

starts

IT competence
at the end of

training

Transfer

a)
+ Motivation
+ Imitation
+ Problem solving
+ Self-efficacy
+ Realistic training

environment

b)
+ Opportunities to perform
+ Social influence
+ Support

Learners doing business
tasks in new ways

Figure 91. Factors improving transfer a) during and b) after training.

8.2. Motivation and objectives
Learners’ motivation improves when clear objectives are set and the learners accept these as
their own goals. Trainers therefore need to specify training objectives concerning

• Outcome. The change in the business tasks as a result of transfer.

• Learning objective. The IT competence to be gained at the end of the training. The
competence after training is a means for achieving the outcome.

118

© Jens Kaasbøll, 5 January, 2018

Objectives become clearer when expressed as what the trainee should be able to do after the
training, instead of “knowing,” or “having received an introduction to.” It is reasonably easy
to check what people can do, while “knowing” is vague, such that neither the trainees nor the
trainer could be sure as to who knows what. In order for the trainees to understand and accept
the outcome, it needs to be presented, given reasons, and discussed with the trainees.

Both the outcome and
the learning objectives
for the training in
Shipping International
are expressed in
behavioural terms.
During training, the
trainees should reach the
learning objectives,
while reaching the
outcome describes the
transfer, which is
beyond the trainer’s
control.

The learning objectives
for the 8th graders are
more general, since
school children are supposed to learn skills that are applicable also outside of school. The
outcome is nevertheless made specific for two areas of application within the school. Such
short term outcomes
may be more motivating
for the pupils. The
outcomes also enable
checking whether the
kids are actually able to
apply their spreadsheet
skills outside the IT
class.

The last learning
objective for the 8th
graders says “being able
to explain …” This is a
way of expressing
understanding in
behavioural terms. A student who can explain spreadsheet formulas to others has understood
the concept, while those who can only select a formula in the spreadsheet only have skills.

Training objectives—Shipping International:

The company has bought a new intranet communication system
to replace e-mail and Skype.

Outcome: After training, trainees stop using e-mail and Skype,
convert files to the new medium and start using it.
Learning objectives:

• Being able to use the system for
o asynchronous messaging with specified people

(e-mail)
o synchronous video communication with

specified people
o publishing documents and videos to all

employees
• Being able to convert from e-mail to the new system by

importing message threads

Training objectives—8th grade:

In the IT training, there is one month for spreadsheets.

Outcome: After training, the students are able to use
spreadsheets in biology and the grammar project.
Learning objectives:

• Being able to use spreadsheets for
o structuring data in columns
o calculating totals and average
o calculating percentages
o drawing bar charts

• Being able to explain
o Cell-referencing and formulas

119

© Jens Kaasbøll, 5 January, 2018

Since understanding improves retention, pupils who have understood formulas are more likely
to transfer their skills to biology and grammar.

The 8th graders had an explicit goal of understanding, and the learners at Shipping
International must probably have to understand how messages and documents are organised
in their new system. Understanding is in general known to enhance transfer of competence
from courses to work (Bransford, 2000). Improved understanding also helps users remember
longer during periods of not applying a software (Karuppan and Karuppan, 2008). Training
for transfer should therefore address understanding.

When using IT in the business, conditions will always vary, so the benefit of problem solving
competence should not be surprising. Transfer also requires the ability to continue learning
constructively and independently in post-training situations (Van der Sanden and Teurlings,
2003).

People’s general cognitive ability is another trainee characteristic that influences transfer
(Grossman and Salas, 2011). Assuming that course participants cannot be selected according
to their intelligence, trainers have to deal with the trainees attending a course, being an in-
service course in an organisation or a class in school. Trying to improve problem-solving
skills and understanding can contribute to improvements of general cognitive abilities.

8.3. Realistic training environment
The last factor to consider during training for improving transfer is to make the training as
equal to the business as possible. When back in business after training, there is no trainer who
demonstrates on a projector or walks around helping out. Hardware, software, data,
assignments, documentation and peer trainees can be made similar, however.

Even if training is carried out on one hardware brand and the trainees use another at work, the
computers may be similar enough. Response time and connectivity might be issues, though, if
training concerns using databases on servers, possibly through internet connections.
Classroom computers are often set up with a separate server to avoid interference with
production systems. Therefore, trainees have little opportunities to experience slow responses
during training. If there is connectivity trouble in the business, the trainees have not learnt
how to work in such circumstances and might give up the whole system for such reasons.
Practicing with slow connections during the last part of training and discussing what to do
might be a way to prepare the trainees for the not so ideal set up at work.

It may be obvious that the software used in training should be equal to the version at work,
but this is not always the case. First, there may be several versions of a package in use, and if
the training is centralised, the classroom might have only one of these versions. Second, for a
web based system, the browser and operating system may influence the user experience, and
these components differ from computer to computer.

If spreadsheet training only uses accounting data as examples, while the participants are not
familiar with accounting, they may not understand the meaning of formulas or columns.
Making the trainees bring their own data to the training can resolve this issue, making sure

120

© Jens Kaasbøll, 5 January, 2018

that the trainees don’t misunderstand the technology because they don’t share the information
competence area of the trainer.

Also, courses go wrong due to the trainer not being familiar with the business of the learners.
If the participants will use spreadsheets for statistical analysis of the local flora and the trainer
gives assignments on analysing a budget, transfer is severely hampered.

Instruction sheets, models and other documentation provided during training can be brought
back to the business. If training is taking place on specific classroom computers with soft
copies of the documentation, the learners need to get an electronic copy in their hand, sent to
their e-mail or published on the web. Trainers who say that “you can find it on our server” are
not aware of the poor impact of context-free user documentation, as also mentioned under the
skill training section 2.4.

Last, but not least, there are co-learners in courses. If more people who collaborate in business
participate in the same course, they can also collaborate on learning the IT after courses.
Therefore, sending only one individual to a course means that there is nobody else around to
ask when stuck. The result might be that the IT is abandoned and the expenses and time of
training are lost.

8.4. Summary
When competence learnt during training leads to changes in the way the trainees carry out
their business tasks, we say that there has been a transfer from training to business. Transfer
can be improved during training by motivating the trainees, by letting them imitate and learn
problem solving and by strengthening their self-efficacy. Transfer is also eased by making the
training environment similar to the business. For transfer to happen, the trainees need to be
able to use the system after the training.

6. Organise training at the same time as the system is installed.

7. Train a local group of users, not only individuals.

121

© Jens Kaasbøll, 5 January, 2018

Chapter 9. Evaluation of training

The learning aim of this chapter is to be able to design appropriate evaluations of training.

The guidelines for creating learning material constitute a basis for heuristic evaluation, see
Section 6.4 for brief explanation. This chapter will cover systematic evaluation of other
aspects of training, including the teaching, the organisation of learners, learning outcome,
impacts etc.

Organisations evaluate their activities to find out whether these are worth the cost or whether
they can be done in a better way the next time. In general, there are four levels of evaluating
training (Kirkpatrick, 1959, Kirkpatrick, 1975, Kirkpatrick and Kirkpatrick, 2006)

1. Reaction. Reaction is the participants’ opinion of the course. It is normally gauged
during the training session. For example, the reaction can be found through a
questionnaire to the participants asking their opinion of the course and the trainer.

2. Learning. This is an assessment of what the participants learnt during the course. An
exam assesses learning, but in order to evaluate training, the exam should be
administered also before the training, such that the difference in competence before
and after can be found.

3. Behavioural change. An investigation of people’s use of the IT when back at work or
in other activities. For example, ask the participants about which functionality in a
software system they use two months after the course.

4. Impact. This is a measurement of changes in organisational performance, for example
the number of clients which can be taken care of by means of new IT learnt in the
course.

Levels 3 and 4 evaluate the outcome of training, requiring transfer of competence from course
to work, see Section 8.1. The four levels are ordered in time as shown in Figure 92.

122

© Jens Kaasbøll, 5 January, 2018

TrainingLearners doing
business tasks

Learners doing business
tasks in new ways

1. Reaction
to training 3. Behavioural

change

4. Impact2. Learning

Figure 92. The timing of four ways of evaluating training.

A combination of evaluations will normally provide more relevant results than a single one.
For example, an evaluation of behavioural change might find that some of the intended effects
of the IT had not come about. Then an evaluation of reaction to training might point to
particular weaknesses in the teaching. It might as well happen that evaluation of learning
concludes that the staff has learnt what was intended, but the evaluation of impact did not
demonstrate any change. This could mean that the training is fine, while transfer did not take
place. There might, for instance, be no opportunities to use the competence at work.

A review of research on training in organisations showed that the effect sizes of training for
the four ways of evaluation were similar (Arthur Jr. et al., 2003). However, within each study,
there were large variations between the effects measured in the four ways. Therefore, we
cannot assume that changes of behaviour will occur, even if we can observe that learning
takes place during training.

The levels do not imply any causal relationships between reaction, learning, behavioural
change and result (Holton III, 1996). Learner motivation will influence the learning process
and enabling factors in the organisation have major consequences on change and impact.
Despite this known weakness, the Kirkpatrick model dominates as an evaluation framework
amongst practitioners (Aguinis and Kraiger, 2009).

9.1. Evaluation of reaction to training
Learners’ reactions can be observed in the class as spontaneous statements concerning
anything taking place there. The trainer might hear

Now I got it right.

I don’t see the point of this topic.

Good I got to know you, so that I can ask you later.

The lunch was delicious.

123

© Jens Kaasbøll, 5 January, 2018

Statement 1 concerns the learning process, while no 2 is about the motivation for some of the
course contents. The third one hints at an important organisational issue, namely that the
learner has met somebody whom can be approached for help during transfer. The fourth
statement concerns the course environment. Knowing the learners’ reactions to any of these
topics may be relevant when revising courses.

A trainer observing learners constitutes no systematic approach to evaluation, however. If
observation is wanted, an independent person will be able to observe both the learners and the
trainers systematically. If no additional person is available, interviews or questionnaires are
alternative ways of gauging the learners’ opinions. Questionnaires have the advantage of
anonymous responses.

Questions in interviews or questionnaires could address any of the topics in the examples
above. Since learning and transfer might depend on several factors, and since there can be
large individual differences, getting acquainted with other users might be as important as
motivation and course environment.

Concerning the business side, questions like

Did the course address your needs in your job? If some needs were not met, which
ones?

could be used. The first, closed question addressing the needs could be responded to on a
scale from 1 to 6. The latter, open question can provide knowledge on specific tasks and
functionality to include.

Participants’ reaction to the IT and information contents of the training could be addressed by
asking

Did the training provide a sufficient background for understanding the IT system? And
for using it?

Did the course explain the data in the system sufficiently?
The latter question should be more specific, for example

Did the course explain the account types thoroughly enough?
if an accounting system was to be taught. Again, scales could be used in the response, and the
closed questions could be followed up by open ended ones as in the activity fit case.

In an evaluation of user training, the users responded that the hands-on exercises with real world
data were useful for keeping their motivation (Mahapatra and Lai, 2005). This response was
useful for the trainers, who became even more focused on crafting training material to fit the
background and expectations of the learner group.

9.2. Evaluation of learning – assessing competence
Assessing IT competence is an activity which can take place for many reasons in various
settings.

124

© Jens Kaasbøll, 5 January, 2018

• An organisation wants their staff to be at a certain competence level, hence they
organise a test for everybody to take.

• When planning a course for a group of participants, we want to know their
competence, such that the course can start at the appropriate level.

• When a course plan has been settled, we screen the possible participants, such that
those at a too low or too high level are channelled into other training.

• Employers test the IT competence of job applicants.

• Applicants document their competence through completing a certified test.

• A school administers an exam in their IT class.

• For evaluating a training course, we assess IT use competence prior to the course and
afterwards. The difference between the two levels will tell us the contribution which
the course has made.

Levels of IT competence have been described as skill, understanding and problem solving
competence, and tests of competence can be arranged accordingly. Basically, skills are
assessed through practical tests, and understanding with written or oral questions and answers.
Testing problem solving competence could involve both practical and theoretical tests.
Telling the accountant Rigo, who sits in front of a computer to

Print the spreadsheet.
would test his IT skills. Assuming that a reimbursement claim is registered in a database,

Check the reimbursement claim.
is a task which can be given him to test his IT and business skills. In order to test his
understanding, the following types of questions could do:

What is a spreadsheet program?

What is the purpose of double-entry bookkeeping?
People can express competence which is only at the level of skills also, like Kirsten talking
about her sequence of tasks in Section 3.2. Asking questions like

Which menu choices and buttons do you use for creating a numbered list which starts
at the number 3?

does not require a response at the level of understanding.

Questions concerning business purposes could be open ended. Focusing on a software tool:

Note down a task in your job where you use or could use spreadsheets. What is the
advantage of using a spreadsheet in this task?

Taking a task as the point of departure, we could design a test for the level of understanding
possible changes:

125

© Jens Kaasbøll, 5 January, 2018

You are organising a sports event. For which tasks can IT be helpful, and which IT
hardware and software would you use?

Skills test:

Create a spreadsheet for currency conversion.

Multiple choice questions
Multiple choice questions are convenient when testing the competence of a larger number of
users, since the responses can be assessed automatically. Properly designed, the multiple
choice questions are as reliable as any other measurement of learning. Three principles for
multiple choice questions concern the number of options, the length of options and the
wording.

First, the optimal number of options for each question is 3 (Rodriguez, 2005), assuming that
all options are realistic, such that someone would pick them. For instance, the option
“Sending money to your mother” is an unrealistic option to the question “What is a Style in a
text processor?” Having only two options, the test becomes much poorer in discriminating
between the learners. Four or more options do not contribute much in discriminating and it
takes more time for the learner. Completing 4 questions with 3 options each will yield a larger
difference between good and poor responses than 3 questions with 4 options each, even if the
two alternatives may consume the same amount of time both for the learners and the test
author.

Second, people who are totally ignorant of the correct answer have a tendency to go for the
longest option as the correct one. Therefore, to avoid random guessing yielding high scores, a
wrong option should be the longest one for most questions. However, if you consistently
follow this rule, the learners will detect it and thereafter avoid the longest alternative. Hence,
some variation is necessary (Gronlund, 1998)

Third, there should be no correspondence in wording between the question and the correct
option (Gronlund, 1998). Consider the following question:

This question fulfils the first and second criteria, since there are three options and one of the
incorrect options (c) is longer than the correct one. However, the word ‘cloud’ is used in the
question and in the correct alternative (b), associating the two, thus pointing the ignorant
learner to this alternative. The third criterion is broken. The case can be remedied by deleting
the word ‘cloud’ in alternative b.

A multiple choice question concerning IT in a task:

What does it mean to store a file in the cloud?

a. It will stay permanently in your computer.

b. It will be stored in a cloud server of a trusted provider.

c. It will be stored such that anyone can find it by searching with Google.

126

© Jens Kaasbøll, 5 January, 2018

Which of the following activities can you use a spreadsheet for when planning a new
house?

a. Draw the floor plan.
b. Compare the cost of different floor covers.
c. Find the formulas for areas of rooms and walls.

The incorrect response (c) includes the word ‘formula,’ which the learner could associate with
spreadsheets. This option is therefore misleading the ignorant learner, and the question
complies with all three criteria.

The question could also be based on the business:

You are planning a new house. Which of the following statements are correct?

a. The contract can be written with Adobe Reader.
b. Tables in text processors can be used for comparing wall and floor colours.
c. I can communicate with the architect through sharing a folder on Dropbox.

Questions should comply with the learners’ experience, such that they are familiar with the
background of the question. When testing for an organisation, addressing actual work tasks in
the questions would be appropriate.

Assessing problem solving competence
Open ended questions for checking experimentation competence could be:

Find out what goes right and wrong when copying from a pdf document and pasting
into a text processor.

Here is a new application. Find out what it does.
Multiple choice questions could assess the part of experimentation that involves generating
hypotheses. A test could be:

You have attached a file to an e-mail to Bob. Then you discover that the file contains
some statements which you do not want Bob to read, so you make some changes in the
file and save it. You wonder whether Bob will get the changed file. Which of the
alternatives below will give you the answer you need? The alternative should make us
learn what happens, not just solve the problem of sending a changed attachment this
time.

a. Remove Bob from the list of receivers and enter yourself instead.
b. Send the file to yourself from another e-mail account.
c. Remove the attachment and then re-attach the file before sending.

The flip side of such questions is that they do not necessarily test experimentation
competence. If Manu, who answers, is very familiar with the e-mailing, he might answer
correctly because he knows a lot about his e-mail service, and not because he is clever at setting
up experiments.

IT users can also learn through troubleshooting. A general way of checking users’ ideas about
troubleshooting is asking about repetitions:

127

© Jens Kaasbøll, 5 January, 2018

You observe that the computer responded in a way that you did not intend. You repeat
it, and this time it worked out. What can the reason be?

a. The quantum mechanical circuit at the mother board kicked in.
b. You made a typing mistake the first time.
c. The hard disk crashed.

Asking questions like the ones presented for experimentation is also possible, having the same
drawbacks, in the sense that we cannot always know whether we are testing the users’
troubleshooting competence or the mastery of the particular technology.

In addition to questionnaires, problem solving competence also lends itself to observation. The
trainer can observe how the learner handles the software and looks up resources for help. For a
pair of learners, also their conversations can be observed. Observations of problem solving come
out with significantly different results than questionnaires to the same users (Novick et al., 2007).
Assuming that the difference is due to poor memorisation of details of actions, observations give a
more correct account of problem solving.

Trainers normally observe learners’ activities in order to adjust the training on the spot. Such
evaluation is called formative, which has a profound effect on learning (Hattie, 2009). This
chapter concerns the summative evaluation, which aims at improving the course the next time it is
carried out. However, the observations which trainers carry out informally on the learners’
achievements may also be included in the assessment of learning.

9.3. Evaluation of behavioural change
Evaluation of reaction to training and of learning can be carried out in any training course,
independently of what the learners are going to do afterwards. Evaluation of behavioural
change is intended for company specific courses, where it is possible to approach the course
participants some weeks or a few months after the course has ended. If the participants use IT
in their work in a different way from what they did before, a behavioural change has taken
place. Finding the type and extent of such change is what evaluation of behavioural change
aims at.

When the IT to be learnt is a software package on a server, users’ operations can be logged.
Data on changes in user behaviour can therefore be found by analysing such logs. Details on
individuals’ use of specific functionality can be summarised with much less effort than asking
users. Like any surveillance, employees should be informed that their behaviour on a
computer system is logged. Some countries or trades may have regulations or agreements
concerning surveillance systems.

Logs do normally not tell us all we want to know, however. They provide statistics, but not the
reasons why the staff use specific functionality or avoid it. Again, observations, interviews and
questionnaires constitute possible ways of investigation. Observation takes more time and
provides more detail per individual, while questionnaires reach a larger number of users with less
detailed response. Individual and group interviews lay in between the two.

When designing questions aiming at finding reasons, the factors from the Technology
Acceptance Model (Section 3.1, p.26) can be a starting point. Usefulness, ease of use, social

128

© Jens Kaasbøll, 5 January, 2018

pressure, facilitating conditions and combinations of these are likely reasons for the use or
non-use of a specific functionality. For example, assume that the logs have demonstrated that
the functionality for search for similar cases in the client system is used to a very little extent.
A relevant question in a questionnaire to the users could be:

Regarding the “Search for similar cases” in the client system, rank your agreement
with the following statements on a scale from 1 to 6 (1=Disagree completely, 6=Agree
completely):

□ I find this search very useful in my work.

□ This search is easy to use.

□ The majority of my peers use this search.

□ The computer system responds quickly on this search.

A low score on usefulness may have two reasons. Either, this has not been taught properly
during training, such that the users have not understood its usefulness, or the functionality is
of minor value. If users say that it is difficult to use, the training might be to blame. If they say
that it is easy, the reason for low use may be that it is actually of little value. Peer pressure and
technical conditions should also be taken into account.

9.4. Evaluation of impact
The fourth level of Kirkpatrick’s model (Kirkpatrick, 1975) is evaluating whether the
introduction of IT fulfils its goals, and how the training has contributed to the impact. While
simple ways of measuring organisational performance, like the bottom line in a company,
may exist, drawing inferences from changes in results back to training courses are often
difficult due to a high number of intervening factors. For example, the business may observe
that the number of clients served after introduction of the new client information system has
risen by 20%. The reason for the change may be that the market has increased, that clients are
served better, that a new system has been introduced through successful training, or that the
staff has managed to get the new system working despite poor training.

A more feasible way is selecting some outcome which is closer to what was trained. Instead
of the number of clients, we could for example measure the time for serving each client. This
relieves us from dealing with markets or other external factors as possible explanations. Still,
the possible impact of training on efficiency of client handling has to be established.

In an evaluation of training of an information system for reporting health statistics, it was
possible to count the number of data items filled at any point in time and also perform some
automatic comparisons to judge accuracy (Ngoma et al., 2008). In order to gauge the impact
of training, the completeness and accuracy were first measured in several sites, some of which
would be trained. After training was completed, the completeness and accuracy were

129

© Jens Kaasbøll, 5 January, 2018

measured again in the same sites, and the results compared, see Figure 93. The sites which
were not trained constituted a control group. If the sites without training had improved as much as
those with training, the training would not have had any effect. The untrained improved by 10%
while the trained with 50%, leading to the conclusion that training was effective.

No training Trained

0 %

5 %

10 %

15 %

20 %

25 %

Incompleteness Inaccuracy Incompleteness Inaccuracy

Before
After

Figure 93. Measurement of results of training. The “No training” sites constituted a control group.

130

© Jens Kaasbøll, 5 January, 2018

Chapter 10. IT user competence standards

The range of technology being used has needed has evolved over the years. In the 1980’s, the
file system, individual office applications and possible business information systems
constituted the typical collection of IT for users to master. The 90’s brought local networks
and the Internet, with servers, browsers and e-mail added to the standard repertoire. During
the last ten years, Web 2.0, mobile phones, tablets, digital cameras, music players and a
number of other personal gadgets have sparked a diversification of modes of interaction as
well as hardware. Business systems have moved into the browsers or migrated to enterprise
resource planning software.

The continuous expansion of IT applications disables any stable description of the range of IT
use competence. However, some comprehensive guidelines for IT user competence have been
developed, either for the general public, for special occupations or pupils at school.

10.1. Standards and guidelines
An approach to the latter is the FITness (Fluency with IT) report, which describes a
comprehensive set of skills, concepts and capabilities, the latter corresponding to problem
solving competence to a large extent, see Table 5 (Committee on Information Technology
Literacy, 1999). Contrary to many textbooks on software use, it addresses concepts and
principles. FITness go even a step further, by including programming and algorithms, which
is considered beyond IT user competence as described in this book.

Most organisations depend on their employees being capable of operating business critical
systems. For example, the cashier needs to be able to check out goods and register payment,
police officers need to know how to use the communication equipment, and the air traffic
controller must be fluent in the IT system mapping the flights. In the latter case, and in other
high risk tasks like handling surgical equipment and nuclear power plant control, the
operators might have to be certified. A detailed specification of the competence, including
information technology, will be required for constructing certification tests.

131

© Jens Kaasbøll, 5 January, 2018

Table 5. IT user competences as described in FITness (Committee on Information Technology Literacy,
1999)

Intellectual
Capabilities
1. Engage in sustained
reasoning.
2. Manage complexity.
3. Test a solution.
4. Manage problems in
faulty solutions.
5. Organize and navigate
information structures
and evaluate
information.
6. Collaborate.
7. Communicate to other
audiences.
8. Expect the
unexpected.
9. Anticipate changing
technologies.
10. Think about
information technology
abstractly

Information
Technology Concepts
1. Computers
2. Information systems
3. Networks
4. Digital representation
of information
5. Information
organization
6. Modelling and
abstraction
7. Algorithmic thinking
and programming
8. Universality
9. Limitations of
information technology
10. Societal impact of
information and
information technology

Information Technology Skills
1. Setting up a personal computer
2. Using basic operating system
features
3. Using a word processor to create a
text document
4. Using a graphics and/or artwork
package to create illustrations, slides, or
other image-based expressions of ideas
5. Connecting a computer to a network
6. Using the Internet to find information
and resources
7. Using a computer to communicate
with others
8. Using a spreadsheet to model simple
processes or financial tables
9. Using a database system to set up
and access useful information
10. Using instructional materials to
learn how to use new applications or
features

Standards are operationalised through curricula and tests. Competence tests are used in level 2
evaluation of training, see Section 9.2. General tests of competences are presented below.

10.2. Tests
Both commercial and other organisations have developed IT user competence tests, see
(Covello, 2010) for an overview. Three major ones are:

• Educational Testing Service is a US based, non-profit organisation, known for its Test
of English as a Foreign Language (TOEFL). They offer the iSkills Assessment, which
measures IT literacy (Educational Testing Service, 2011)

• Certiport is a commercial actor, also providing courses and tests for software
professionals. (Certiport Inc., 2011)

• ECDL Foundation is a non-profit organisation providing the European Computer
Driving License, also known as International Computer Driving License (ICDL). It
was founded in 1995 by the Council of European Professional Informatics Societies in
order to improve digital literacy across Europe. Later, it has gone intercontinental, and
11 million people have conducted tests given in 41 languages. (ECDL Foundation,
2011)

132

© Jens Kaasbøll, 5 January, 2018

We will look at some sample questions to see how the tests are constructed. The ECDL is
divided into 13 modules, mainly according to software types. In addition, there are three
general modules:

• Concepts of ICT

• IT Security

• Project Planning

About Module 1, the ECDL / ICDL Sample Part-Tests (ECDL / ICDL, 2009 Module 1, p 1-2)
says:

Module 1 Concepts of Information and Communication Technology (ICT) requires the
candidate to understand the main concepts of ICT at a general level, and to know about
the different parts of a computer.
The candidate shall be able to:
- Understand what hardware is, know about factors that affect computer performance and
know about peripheral devices.
- Understand what software is and give examples of common applications software and
operating system software.
- Understand how information networks are used within computing, and be aware of the
different options to connect to the Internet.
- Understand what Information and Communication Technology (ICT) is and give
examples of its practical applications in everyday life.
- Understand health and safety and environmental issues in relation to using computers.
- Recognize important security issues associated with using computers.
- Recognize important legal issues in relation to copyright and data protection associated
with using computers.

Assume that we constructed open ended test questions for these learning objectives, like:

What is the Internet?
Karl responds:

A network through which we access all places in the world

Karl is describing a function of the Internet, so he is at the functional understanding level. His
understanding may be limited, since he does not specify the different types of functionalities,
like the www, email, chat, etc. The ECDL has multiple choice questions for testing
understanding (ECDL / ICDL, 2009 Samle Part-Test 1.2, p 3):

Which one of the following statements about the Internet is TRUE?
a. The Internet is a global network that links many computer networks together.
b. The Internet is a private company network.
c. The Internet is a visual representation of linked documents.
d. The Internet is a network operating system.

The statements a-d describes the Internet at the structural level. Given that Karl responded
like above, he would most likely tick the a alternative, so his test result would show that he
understands the Internet at the structural level.

133

© Jens Kaasbøll, 5 January, 2018

Concerning software, the spreadsheet module is selected as an example (ECDL / ICDL, 2009
Module 4, p 1):

Module 4 Spreadsheets requires the candidate to understand the concept of spreadsheets
and to demonstrate an ability to use a spreadsheet to produce accurate work outputs.
The candidate shall be able to:
- Work with spreadsheets and save them in different file formats.
- Choose built-in options such as the Help function within the application to enhance
productivity.
- Enter data into cells and use good practice in creating lists. Select, sort and copy, move
and delete data.
- Edit rows and columns in a worksheet. Copy, move, delete and appropriately rename
worksheets.
- Create mathematical and logical formulas using standard spreadsheet functions. Use
good practice in formula creation and recognize error values in formulas.
- Format numbers and text content in a spreadsheet.
- Choose, create and format charts to communicate information meaningfully.
- Adjust spreadsheet page settings and check and correct spreadsheet content before
finally printing spreadsheets.

The learning objective specifies a series of skills, which are described in some detail. The
“concept of spreadsheet” is not explained, so the understanding part of the goal is unclear.
The tests are mainly of the practical kind, for example (ECDL / ICDL, 2009):

Enter a formula in cell F5 with an absolute cell reference for one cell only that divides the
content of cell E5 by the content of cell E11. Copy the formula in cell F5 to the cell range
F6:F10.

So the goal of skills seems to correspond to the test type. An open ended question which
addresses understanding is also included (ECDL / ICDL, 2009):

Which of the two cells F4 or F5 displays good practice in totalling a cell range? Enter
your answer in cell B14.

Answers to open ended questions like this one can be assessed right or wrong or according to
a scale, for example skill – functional understanding – structural understanding. .

Responses to multiple choice tests are easy to assess. Assessing whether the candidate has
written a correct formula in a spreadsheet also requires only a quick view. Reading,
interpreting and grading an open ended answer is much more tedious.

ECDL’s division of IT competence into software types hinders questions which relate
concepts from two IT tools. For example, the following question could not be included:

What is the similarity between master slides in presentation programs and styles in text
processors?

a. They provide information for the table of contents.
b. They enable coherent formatting of the file.
c. They enable import of slides into word processors.

134

© Jens Kaasbøll, 5 January, 2018

Also differences between concepts could have been included if the tests could span more
applications, for example:

What is the difference between tables and column layout in a text processor?
a. Tables are imported from a spreadsheet, while column layout is generated

within the text processor.
b. Column layout is the vertical sequence of cells in a table.
c. Tables are composed of separate cells of text, while column layout means that

the text is displayed in sequential, vertical stripes.
The Instant Digital Competence Assessment (iDCA) is a recent test aimed at 14-18 year olds
(Calvani et al., 2012). It is organised in the three dimensions technology, cognitive and ethics,
instead of the organisation according to IT applications found in the ECDL. The cognitive
dimension addresses management and evaluation of data. Ethics covers general principles and
constrains for IT and information use and is in the business area. Since iDCA is not
compartmentalised into software products, it could cater for the two questions above.

iDCA consists of multiple choice questions and does not address skills by asking the
respondents to carry out operations on the computer. Its technological area addresses problem
solving.

Competence tests versus self-reporting
Performance on competence tests have been compared with students’ self-reporting of their
competence level. The latter was gauged by users responding to statements like:

• My spreadsheet skills are good.

• I am a more experienced spreadsheet user than most of my peers.

• I feel competent to use a range of applications.

• I feel comfortable opening and saving spreadsheet files.

The respondents would agree or disagree on a scale.

Most studies conclude that there is no correlation between how people self-report their level
of IT competence and how they perform in tests (Larres et al., 2003, Merritt et al., 2005,
Sieber, 2009, van Vliet and Kletke, 1994, Ballantine et al., 2007, Sink et al., 2008, Grant et
al., 2008). Low performing users overestimate their capabilities. On the other side, one study
found a correspondence between self-reporting and test results of IT competence
(Hakkarainen et al., 2000), and this is in line with the general findings that school students
have a very accurate conception of their level of achievement (Hattie, 2009). In school,
students are used to comparing their work with grades, which provides a good basis for
reliable self-reports. IT use is a minor topic in schools, hence pupils may not have had such
experience concerning their IT competence.. Since the majority of IT competence studies do
not find correlations, we consider self-reports and levels of competence uncorrelated.

135

© Jens Kaasbøll, 5 January, 2018

A consequence of users overrating their competence is that trainers and educators who rely on
self-reporting assume a higher competence level of their students than what is the case. For
example, in a study of 173 college students 75% perceived their word processing proficiency
as high and 20% as average (Grant et al., 2008). In the skills test, questions were grouped as
basic, moderate and advanced. Table 6 shows the ten tasks which the researchers had
characterised as moderately difficult. Tasks with correctness rank 1-7 are operations on the
main document text flow, so no understanding of the data structure of document files is
necessary. Tables and headers (rank 8-10) introduce independent text flows, requiring the
students to alter their structural understanding of a document as a single sequence of
characters to a multi sequence model. The majority of students seem to be stuck in the single
text flow understanding, even though they characterise themselves as average or highly
proficient.

Table 6. Performance of college students in the US on word processing tasks (Grant et al., 2008)

Moderate tasks Correct performance Rank
Count words 91% 1
Add bullets 88% 2
Highlight text 82% 3
Find and replace text 60% 4
Use the Thesaurus 57% 5
Insert a date 54% 6
Justify a paragraph 47% 7
Enter data in a Word table 33% 8
Insert rows in a table 27% 9
Create a document header 8% 10

Although the competence tests do not distinguish clearly between a skill and understanding
level, this test indicates that college students have a limited IT understanding. They might
base their high self-confidence on their skills in getting a document produced.

10.3. Differences in IT competence levels
This book has described three levels of individual user competence: skills, understanding and
problem solving. Results of measurements of IT user skills worldwide follow their own ways
of grading competence.

An international survey of digital reading competence at school level 5 concerned the pupils’
ability to navigate and find appropriate web pages efficiently (OECD, 2011). Also, they were
assessed on their skills in evaluating the information retrieved. Interestingly, South Korean
children outperformed the students from the other countries, including New Zealand and
Australia, Japan, European and South American countries in this ranking. Africa and North
America were not represented. While a common opinion may be that people in the newly
industrialised countries in Asia are well versed in electronics, while the European children are
more literate in the original sense, this OECD study only partly supports such a view. Korean
students perform better in digital than in print reading, while the opposite is true in Eastern
Europe and South America.

136

© Jens Kaasbøll, 5 January, 2018

Girls outperform boys in both digital and print reading (OECD, 2011). The same is found in a
study of college students in the US (Hignite et al., 2009). An ICT literacy test amongst 6 and
10 year old children in Australia included a range of tasks typical for the age groups. Both
technological and business fit competence were tested (MCEECDYA, 2010). Also in these
areas of competence girls performed better than boys. A test of high school students in China
with iDCA showed no performance difference between the sexes (Li and Ranieri, 2010),
while boys performed better than girls with the same test in Italy (Calvani et al., 2012).

The findings that girls outperform boys on technological topics contrast the results from more
than 30 previous studies summarised in (Cooper, 2006). One reason for this difference could
be that the former IT assessments were more biased towards technology, while interpretation
of information and use of IT in tasks have been given larger emphasis in recent years. Another
factor may be that young children now grow up with mobile phones and social media on the
internet, and that communication is more aligned to girls’ interests, while boys are competing
in computer games. The recent studies showing female superiority were carried out amongst
children, while former studies have addressed all age groups.

Socio-economic factors are generally influencing competence levels, and this is also the case
for IT related competences (OECD, 2011). Having a computer at home has a positive effect
on children’s IT literacy.

10.4. Summary
In high income countries, children play with digital devices from an early age and become
skilled at manipulating computers. People in low income countries may meet the digital age
through a mobile phone and few acquire computer skills. Regardless of skill levels,
standardized tests show that people may struggle with understanding and problem solving.

Having a certificate of IT user competence may help getting a job, and millions of users have
passed such formal tests. Many tests address skills to a larger extent than higher order IT use
competence. Users who perceive themselves as skilled often fail tests which require more
understanding.

While girls in high income countries score higher than boys on competence tests addressing
information use, the reverse is true for the pure IT competence. Interestingly, these
differences were not found in China.

137

© Jens Kaasbøll, 5 January, 2018

Part III - Managing development of
digital competence in organisations

The previous parts have considered the individual’s competence and learning. In order to
consider organisational aspects of IT competence, we shift focus from individuals to groups.
We will base the identification of a group on people who share a set of activities, called a
practice. Such groups constitute the units in a theory of learning at work within the class of
situated learning theories. Situated learning refers to learning that takes place within the
practice where the learning is applied.

Pedagogical theory – Situated learning – Communities of Practice
According to (Wenger, 1998) a community of practice (CoP) has three crucial elements;
domain, community and practice. The identity of a CoP is defined by a shared domain of
interest with shared competence for dealing with that domain. Members in a CoP value
their collective competence and learn from each other. Second, members in a CoP create
a community through engagement in joint interactions and discussions, by helping each
other, and also by sharing information. They also build relationships that enable them to
learn from each other. However, members of a CoP do not necessarily work together on a
daily basis. The third characteristic element of a CoP is the practice; the doing which
provides meaning and structure to the activities. The shared practice is created by
practitioners who develop a shared collection of resources such as tools, experiences, and
ways of addressing recurring problems. For example, a group of supermarket workers
would constitute a CoP when they share the concern for the goods and customers, they
interact, discuss and help each other, and they use common tools for sales and pricing of
goods.

CoPs often differ from the formal organisational units, appearing neither on an
organization chart nor on a balance sheet. In a small shop with a handful of staff,
managers may be part of the cashiers’ CoP, and in a large organisation, the accountants
spread around in different departments may interact sufficiently to constitute a CoP.

Newcomers get socialised into a CoP by imitating its members, and also by getting
punished or neglected if behaving in ways which are not acceptable in the community.
The members may also tell newcomers explicitly how to behave, and the novices may
have attended formal education which has prepared them for the introduction. When a
community of practice receives a new member, it is mainly the newcomer who will have
to adapt, while the community is less receptive for changing their practice.

138

© Jens Kaasbøll, 5 January, 2018

Pedagogical theory – Situated learning – Interaction between CoPs
In line with (Wenger, 2000) and (Cobb et al., 2003), we consider three aspects of
interaction between CoPs; boundary interactions, brokers, and boundary objects. In
boundary interactions, members from different communities take part in common
activities. This might be short encounters, like when a manager calls the computer
support for getting help in connecting to the network, or longer practices, for example
when health managers participate in a course conducted by health information specialists.

A boundary object is a material thing which makes sense in more than one CoP, and
which also has a structure that is common enough to be recognized in both CoPs (Star and
Griesemer, 1989). Boundary objects are used for communication between CoPs, and they
may provide a common understanding of a phenomenon as well as give rise to
misunderstandings. A database could be a boundary object for accountants and computer
scientists, where both parties would recognise its ability to store and retrieve financial
data. However, the accountants would emphasize its role of representing the financial
affairs of their company, while the computer specialists could regard it as an instantiation
of a relational database management system.

Brokers are at least peripheral members of two CoPs and can introduce parts of practice
from one CoP to the other. A headmaster could be a broker between the community of
teaching practice and the community of school management practice in the town.
Construction engineers could be members of engineering, architectural and construction
work practices, providing some joint understanding between the three partners.

139

© Jens Kaasbøll, 5 January, 2018

Chapter 11. Superusers

The learning objective of this chapter is to be able to identify groups with different roles as
learners and supporters and to specify conditions for these groups developing into
communities of practice.

11.1. Roles
Users in general are specialists in their business and the domain of the system. Trainers, as a
special user group, are specialists on metacognition, being a central ingredient in problem
solving competence, and IT personnel have IT as their expertise. The areas of practice of
these three types of specialists are summarised in Table 7.

Table 7. Areas of practice and corresponding communities.

Role Area of main practice Examples
Users Tasks and business Farmer. Nurse. Cook. Salesperson.
IT personnel IT IT support staff. Software developer.
Trainers Metacognition School trainer. Business instructor.
Superusers IT + at least one of the other
Users are characterised by having the domain of the information system as their primary
domain of work. Second, IT personnel have IT as their main domain of work, so these are in
the IT practice. Third, trainers enable learning and have metacognition in their competence
base. People working in each of these three roles can constitute communities of practice, since
they share a main practice.

Finally, some users or trainers develop more competence in using computers than others, such
that they provide computer support to their colleagues, and this group will be called
superusers. Superusers have at least a better understanding of some software than others and
also some problem solving competence. A superuser can also come from the IT side and
acquire competence from one of the other areas. Superusers will be members of at least two
communities of practice, hence become brokers between these communities. They can also
develop into a community of superuser practice. Each of these roles will be described in more
detail below.

Users
For the majority of IT users, the technology is a means to get work done, and not an aim in
itself. Users find IT problems annoying and prefer to spend their time on their primary
business. Their shared domains of interests are therefore not IT or data, but any other work
area; hence they may constitute communities of non-IT practice. Correspondingly, the
eventual learning of IT use taking place in these communities will be of secondary importance
to the learning of the main business.

140

© Jens Kaasbøll, 5 January, 2018

IT personnel
Larger companies or agencies would have IT personnel involved in a mix of activities.
Network administration and user support would normally constitute two time consuming
ones, while procurement and application tailoring could be other tasks.

The idea of a community of practice is that people share a domain of interest, and we could
say that the IT systems and their users in the organization is the domain of the IT personnel.
They would normally share information about the technology and its users through lunch
conversations, meetings, e-mail, documentation and random encounters in the corridors.
Larger organisations could also have a ticket system for storing user requests and responses,
where the IT personnel can search for topics with which they are unfamiliar. In these ways
they may develop a shared repertoire of cases, problems, software and users, so that they
constitute a community of IT practice. IT specialists meet users in boundary encounters on the
phone and face to face, helping out those who need more IT competence, and they learn about
users’ business through interacting with them. They also have boundary interaction with other
communities of IT practice, e.g. at computer vendors, thus keeping updated in the IT field.

Software companies and IT vendors can also have departments for support. For these
organisations, their customers constitute their users, who could be IT departments in other
organisations. A newly established, small company might just have a flat structure, where all
members carry out development and support. These would constitute a community of
practice, where the software product constitutes the shared domain of interest. A big vendor,
on the other hand, might have a call centre in India with several hundred staff members who
serve customers worldwide. If they have the opportunity to communicate and exchange
experience, they may also become a community of practice, where the users' requests and the
corresponding responses constitute the shared domain. In between these extremes, there are
many medium sized IT companies, where the user support is located in a department of a
smaller size, such that the formation of the community is simpler than in the huge call centre
case.

An IT department in a non-IT company would use the software and hardware vendors as their
lifeline for support. They would engage in boundary interactions with the vendors, and the
software and documentation would constitute the boundary objects of these practices.

Trainers
Larger organisations have human resource departments where educationalists are hired for
organising and planning training, and who may also act as instructors themselves. Schools are
obviously special in this respect, since their teachers have formal pedagogical qualifications.
They would normally constitute one or more community of teaching practice in each school.

School teachers and business instructors sometimes also do IT training. In schools, IT
competence could be an end in itself or a means for the students to learn other topics. In the
latter case, the teacher may be fluent in the subject matter to be taught, but short on the
technological competence. Professional teachers bring training methodology and competence

141

© Jens Kaasbøll, 5 January, 2018

abour learning, including knowledge of metacognition, into the realm of user support and
training. This pedagogical competence is hardly found amongst IT personnel.

Superusers

Trainers IT personnel Users

Figure 94. Super-users (yellow) being members of at least two communities of practice and brokers
between these communities.

Superusers are users or trainers who have specific IT competence and have taken on the role
of supporting their peers in an
organization. Other terms for
superusers are boundary
spanners, business coaches,
computer gurus, key users,
lead users, local experts, local
heros, peer coaches, power
users, subject matter experts,
super power users and
translators. They have also
been grouped into ‘recognised
experts,’ who have an
extended reputation in the
company, and ‘local experts,’
who are consulted by their
close peers (Spitler, 2005).
Beware that in computer
science, the term superuser is
often denoting someone with
administrative privileges for a
computer or software system,
who can grant access rights to
others (2014). In this book,
superusers are characterised
according to their role of
helping others and not their
software privileges. However,
some superusers might also
have extended access rights in

I am Mozhdeh and my main
job is administration of international students. Since I had
been working with archival systems previously, I was
selected as the local superuser when the new system
Erchive was implemented. I was introduced to Erchive in
a training course. The course covered the IT system but
not archive codes and whether a document has archive
value. Many user requests concern whether a letter should
be archived, and then I have to find out whether it has
archival value. There is a list where I can look it up, and I
can also call the central archive if in doubt. Other user
requests concern how to operate the system. Also, I solve
logon problems and upgrading to the recent version of the
browser. They need that when Erchive is updated.

Each department has a superuser, and we meet 4 times a
year. We discuss changes we would like and communicate
these to the IT department. We also get informed about
changes and have to bring the news to our local
colleagues.

 يک کاربر حرفه ای کسی است که خود از سيستم بطور مداوم استفاده کند.

142

© Jens Kaasbøll, 5 January, 2018

the computer system for
providing more effective help
or for creating accounts for
other users.

Superusers could have a
primary domain of work
completely remote from
information or IT, for example
nursing, sales or farming. They
would therefore belong to two
communities of practice; one
on the IT side, and another on
their primary domain, and they
would also be brokers between
these communities, see Figure
94. They could influence the
communities of IT practice
with their main competence,
and introduce IT competence
amongst others.

The text boxes present three
superusers. Mozhdeh had some
experience with archives when
she did archiving. She became
a superuser of an archiving
system after her job was changed, but she still draws upon her knowledge of archives in her
superuser role. Oksana is a superuser of a system which she uses frequently in her accounting
job. She knows the information in the system, how to operate the IT, and how it supports the
business. Sigrun has a computing background and was selected superuser for a web
publication system. She is familiar with how it can be used for creating structured web pages.

While these three superusers had been appointed, superusers also emerge spontaneously when
no formal appointments are made. In a purchase department of around 100 staff in a Finish
company, all staff were provided training when a new information system was installed, but
no system of superusers was established (Sykes et al., 2009). During a period of three months
after training, all staff had either given or received help from others. On the average, a user
helped five others, but some became more central, helping out more than ten, thus informally
becoming superusers. A summary of studies on organisational learning shows that people
learn more from others whom are trustworthy (van Wijk et al., 2008), and superusers can gain
trust in their role by proving their abilities. An early study of superusers found that they not
only regarded themselves as having better IT skills than others, they also used a larger number
of software tools in their work (Eveland et al., 1994)

My name is Oksana, and I do
accounting. When staff members claim reimbursement for
travels, they fill a form in the human resource system, and
thereafter I check the form. I am also helping them getting
the information into the right fields. Sometimes I invent
solutions to avoid some restrictions in the system. When I
cannot solve the problem, I ask staff members to send an e-
mail to the central support section and explain the problem,
get the answer and to try “to do the best you can on your
own.”

I was introduced to the system through a course, but I
learnt nothing there. Instead, I have gone through the e-
learning material and learnt it that way.

Last week, I presented the system to a large group of
people from all departments in a training course. We also
helped them out in their practical tasks. Тем самым
большему количествоу пользователей стало известно
об уловкax, чтобы обмануть. систему.

143

© Jens Kaasbøll, 5 January, 2018

11.2. Community of superuser practice
A group of superusers could develop into a community of superuser practice if they engage in
activities where they meet and exchange experience specifically on their superuser activities
and role. The emergence of a community of superuser practice was deemed necessary for an
enterprise information system to be adopted by its users, due to the distance in practices and
purposes between the IT and the user communities (Volkoff et al., 2004). Almnes (2001)
conducted a study of superusers amongst nursing home personnel, and McNeive (2009)
reports from nurse superusers in a hospital. Both emphasize that belonging to a group is
important for superusers, since their role is the only one of its kind amongst those whom they
meet daily. In addition to group meetings, e-mail lists, newsgroups and lists of frequently
asked questions may be advantageous. The organised group should also provide the necessary
opportunities for the superusers to update their skills, whether new software or other upgrades
necessitates it. An accounting company formalised their superusers into a group with a
coordinator in charge (Åsand and Mørch, 2006). Mozhdeh and Sigrun belong to such groups.

Selected superusers who were going to help out during implementation of a clinical
information system, spent on the average 13 hours per week for preparing
themselves(Halbesleben et al., 2009). The longer time the superusers spent on learning the
computer system, the more positive attitude did the users develop towards the system
(Halbesleben et al., 2009).

An organised group has to cross the organisational units. In the Finnish company, the
department was divided into three product lines, which again was split into a total of 11
groups (Sykes et al., 2009). A lot of the help was given across groups and also across the
product lines.

The superuser is the first person in the
support chain. She should handle most
of the normal requests dealing with use
of the computer system, for which she
has received special training. In
addition, the superuser should be able
to take care of user requests concerning
the operating system and standard tools.
Both Mozhdeh and Oksana help out on
information issues like getting the
information into the right field and on
IT issues like updating software.

Communicating frequently with users,
the superusers receive requests for
changes of computer systems. They are
in a good position to communicate
these requests to the computer
department or those in charge of the

I am Sigrun and I have a master
degree in IT. Currently, I am the leader of an
administrative group of seven and also the super-
user for the web publishing system WeBublic for
the whole department. A majority of the 250
department staff use WeBublic. The most
frequent questions concern operations which are
blocked to the common users. They also often
ask about how to reuse past information for this
year’s schedule.

All departments have a WeBublic superuser, but
we never meet. However, we e-mail each other
and solve many problems in that way. På den
måten opprettholder vi en gruppe av Webublic
spesialister.

144

© Jens Kaasbøll, 5 January, 2018

software and hardware. This aspect of their role should be exploited, such that the requests
from the users are taken into account. The meeting of superusers could also be an agenda for
discussing and distilling such requests. This is a regular item on the agenda in Mozhdeh’s
group.

The superuser should be given responsibility of the resources necessary for carrying out the
role (Almnes, 2001, McNeive, 2009). A dedicated amount of time for the superuser activities
is recommended (Almnes, 2001, Åsand and Mørch, 2006). The resources for sending users
for training, is a responsibility that should be attributed to the superuser.

The selection of people for the superuser role is an important issue for creating a decent
support system. Superusers’ ability to connect socially with other people is in general
improving the chances that others will learn from them (van Wijk et al., 2008). People with
poor social skills should therefore be avoided. They could preferably be amongst those whom
people often calls for assistance, which would guarantee a caring person. In a survey of users
and superusers, Boffa and Pawola (2006) warn against selecting users who are indifferent
about or have negative attitudes towards the information system as superusers. Halbesleben
et.al. (2009) confirm that a positive attitude amongst superusers spill over to the users. People
who are unwilling to take on the role should also be avoided. They may behave hostile or less
caring towards their peers, and if so, the users will soon stop consulting them.

Almnes (2001) warns against local managers, since they are often too busy and not always
available. In addition, many people do not like to expose their misconceptions to their
superior. Sigrun is such a boss-and-superuser which is not recommended, but she mainly
helps out people outside her subordinates.

Since superusers help others solving IT problems and also guide them in problem solving,
problem solving competence is important for superusers, as stated for the selection of
superusers during implementation of a clinical information system (Halbesleben et al., 2009).
In addition to computer skills, the superuser also ought to have skills in guiding others,
something which the trainer needs in particular. (Poe et al., 2011) emphasized that the
superusers also should have some teaching competence, placing them also as peripheral
member of a community of teaching practice.

Some IT personnel like Sigrun change their career into other occupations, and they will
naturally be more skilled in IT than their peers. If they have the necessary inter-personal
skills, they would become very good at supporting colleagues as well as communicating with
the IT specialists. People having at least one formal computer course were more likely to
become superusers in a higher education institution (Eveland et al., 1994).

11.3. Superusers’ roles
Superusers may provide a variety of tasks, as recognised in guidelines for user support (ITIL -
Axelos, 2011). The roles of superusers can be divided into those relating to other users and
roles concerning their interaction with IT specialists, see Figure 95. The chauffer role is
taking on other users’ primary work (Culnan, 1983) and helping other users (Spitler, 2005,

145

© Jens Kaasbøll, 5 January, 2018

Halbesleben et al., 2009) means either solving their problem or mentoring the users on
solving it themselves. These roles are carried out on the requests of other users who influence
superusers’ actions, hence these roles are placed near the head of the arrow from users to
superusers in Figure 95. Superusers also undertake the role of training other users (Volkoff et
al., 2004, Gallagher and Gallagher, 2012) and champion changes (Poe et al., 2011, Stuart et
al., 2009). The trainer and champion roles are initiated by the superuser aiming at influencing
the users.

S
up

er
us

er
s

Chauffeur
Problem solver

Trainer and mentor
Champion

Help requester

Learner
Mentee

Broker

Users LT personnel

Figure 95. Superusers’ roles related to other users and IT specialists. Arrows denote direction of requests
(top) and influence (bottom).

Superusers also liaise with IT specialists for support, requesting IT changes (Mackay, 1990)
or participating in developing IT solutions, thus learning to become suited for training and
helping other users (Volkoff et al., 2004). They request help from and are being mentored by
IT specialists. Also, they mediate news about IT from the specialists to the other users.

Chauffeur
Some people interested in output from information systems do not search themselves, but get
others to do it, and this role has been termed chauffeur (Culnan, 1983). When Oksana
generates a financial report to employees who do not have access to the accounting system,
she is their chauffeur.

While Oksana will continue generating the report for other staff due to her access rights, the
chauffeur role also appears for other reasons. In a study of implementation of a companywide
information system, adoption was slow (Boudreau and Robey, 2005). It was found that most
user groups did not attend the initial training programme, and when the software was
implemented, the users found ways of avoiding using it. Rather than entering data, they got
some groups accountants to be their chauffeurs by carrying out their data entry.

Problem solvers
Later in the implementation reported in (Boudreau and Robey, 2005), some self-initiated
superusers found out how to operate the new software, and this competence was spread in the
organisation. In the end, most people used the system, after the user communities had found
workarounds (see Section 5.8, p.83) in order to get the system performing as needed. This
competence was also spread throughout the relevant user communities. Being a broker
between business and technology, superusers would be in the perfect position for fitting the
two through problem solving.

146

© Jens Kaasbøll, 5 January, 2018

An e-mail support system had been set up in a global company years before the www was
introduced. It was found that users’ problems were solved if the helper was either from the IT
department or from users who considered themselves more competent on the problem than
average, who came from another country and who was not a manager (Constant et al., 1996).
There is no obvious reason why an international response is better than a domestic one.
Diversity in responses in general seems to help, and the global community may contribute in
that respect.

In a management consultancy company (Spitler, 2005), Goran was a superuser on most IT,
but he did not know a statistical software package needed for some analysis. He contacted a
superuser on the package, who had already set up an analysis model. Goran then acquired the
problem solving competence of customizing (see p.82) this package through learning how to
write scripts. He thereafter customized the analysis to the particular user’s needs.

Broker
Being a peripheral member of a community of IT practice and also another community of
practice makes the superuser a broker between the communities, enabling communication
between the two communities. Mozhdeh participated in a group which requested changes to
the IT department every quarter.

In a study of distribution of software set ups in a computer company, Mackay (1990)
observed that for each group in the organisation, one person took the role of a broker between
IT and other staff. This person was not an IT professional and also not amongst those with
low IT competence. Those who played this broker role of superusers volunteered, such that
there was no need for formal organisation, which was established in Mozhdeh’s case.

Trainer
In a community of practice, the practice would constitute the tasks of the majority, while the
minority would be peripheral people who could learn the tasks through interacting with the
majority. A training session is of an opposite kind, where the majority of learners is supposed
to adapt to the minority of trainers. Unless all trainers are superusers, it is highly unlikely that
the trainers and the trainees develop a common knowledge base during a short in-service
training session; hence such activities constitute boundary interactions rather than CoPs.

In-service training is acknowledged by Wenger (1998) as useful when providing a place for
reflection on the practice, and as an opportunity for getting to know people whom one would
otherwise not meet . However, Wenger remarks that often in-service training or education are
too detached from practice to foster learning strengthening the individuals’ participation in the
communities, an issue which was considered as transfer in Chapter 7. This could easily
happen when the business is not included in IT user training, or when the business included
does not match the learners’ experience, see the need for a realistic training environment in
Section 8.3, p 119. Including superusers amongst the trainers could make training more
realistic. Superusers who are also ordinary users could bring their understanding of IT in their
own tasks and the business into training and provide familiar examples. Superusers who also

147

© Jens Kaasbøll, 5 January, 2018

belong to the community of teaching practice could teach ways for further learning, like
problem solving competence.

Leaving the training to IT personnel only creates the risk of restricted interaction between
users and trainers in the classroom. Including a superuser also creates variety amongst the
trainers. The latter is in general an advantage for learning. Both Almnes (2001) and McNeive
(2009) recommend that superusers should be involved in planning and conducting IT user
courses, in order to include user activities in the training contents. Also, users feel more
comfortable by being taught by one from their own profession than by a computer specialist.

Oksana lectured and guided other users on the human resource system. Her experience
enabled her to convey how the system should be used to support the accounting tasks. She
could also bring her inventions to the larger audience.

Champion
The extent of people’s use has been employed as a measure of success of introducing an IT
system in an organisation (Davis, 1989, Venkatesh et al., 2003). Perceived usefulness,
perceived ease of use, social pressure and facilitating conditions have been found to influence
the amount of use (Venkatesh et al., 2003), see Section 3.1. Documentation (Chapter 2 and 4-
6), training (Chapter 7) and IT support (Chapter 12) constitute aspects of the facilitating
conditions, while superusers are members of the community of user practice, hence they can
exert pressure on system use amongst its members. In order to know whether to put the effort
into training, IT-support or superusers, knowing the relative influence of each of these factors
would be needed. No comprehensive studies of all these factors have been carried out, but a
comparison or coworkers’ influence versus training provides some insight.

In a non-profit organisation in the US, half of the 200 employees responded to a survey on IT
use, perceived usefulness, perceived quality of user training, amount of user training, and
coworkers’ IT use (Gallivan et al., 2005). 80% of the respondents were female, and the large
majority had a university degree. The extent of coworkers’ IT use had the strongest impact on
an individual’s use. Coworkers’ perception of the training quality and to a smaller degree the
individual’s perception of training quality also influenced the extent of the individual’s use.
The amount of user training and the perceived usefulness had no influence. The latter
contradicts the technology acceptance model (Venkatesh et al., 2003), and there is no obvious
explanation for this finding.

The study points to the importance of what happens in the local work group and the possible
futility of putting many recourses into training (Gallivan et al., 2005). Given that people
imitate colleagues in their computer use, and that a new system is to be introduced, people
will only use it if their coworkers do. For an innovation to be taken up, some have to lead,
such that the rest of the community can follow suit. Superusers are in a favourable position to
be the leaders, since they are well versed in IT in addition to being a colleague of the others.
In order to become a strong leader, superusers would need to be well trained and preferably a
member of a community of superusers, such that they also can learn from each other.

148

© Jens Kaasbøll, 5 January, 2018

Consequentially, providing thorough training for superusers could be more effective than
training the whole group of users.

The study also points to that the quality of the training is more important than the quantity
(Gallivan et al., 2005). Since being able to help others would probably ease the leadership role
of the superusers, their training should particularly emphasize understanding and problem
solving.

IT innovations in organisations are often driven by champions, being people who persistently
and convincingly argue for changes (Beath, 1991). McNeive (2009) and Poe et.al (2011)
emphasize that superusers should be champions for the changes that the computer system
should support. Champions who get support from the IT department are more likely to
succeed.

Innovation champions in general have a breadth of interest, view their role flexibly and
believe that they can influence events (Howell, 2005). They employ official and informal
channels to persuade colleagues and are able to frame new ideas as opportunities specifically
targeted at potential users. For instance, a successful champion will demonstrate a prototype
of a system to case file handlers, pinpointing how the new system could ease organisation and
access to their data. The champion would show the manager how the same system would
improve the overview of the company’s performance, and the IT department would be told
how the system could relieve the staff from previous maintenance trouble. Selling an
innovation means making people understand how the system improves their business and
provides a useful tool for their work. Managers can help out by letting users with particular
interests volunteer to champion systems and by recognising achievements by the champion
(Howell, 2005). Recognition could entail assigning the champion to a new, exciting project, to
make them cooperate with leaders who appreciate their style of working or with other
champions, or offer them educational opportunities.

A study of Canadian managers’ intentions to champion IT found that their knowledge of the
applications and their access to other people with IT competence were particularly favourable
for their championing role (Bassellier et al., 2003). In a study in New Zealand, school
managers’ IT competence, primarily developed through use, was the most important factor for
their intention to champion IT in their school (Stuart et al., 2009). The same conclusion was
drawn from a similar study of school managers in Iran (Afshari et al., 2012). If the same holds
for superusers, those with higher level of IT use competence and those with stronger
connections to IT personnel will be better champions.

Users who hear negative (positive) remarks from peers about a system develop negative
(positive) attitudes towards it, and subsequently negative (positive) motivation to use it
(Galletta et al., 1995). Superusers should therefore distribute positive remarks about a system
to be championed. Unfortunately, negative remarks in general have stronger effects towards
people not adopting an innovation compared to the effect that positive remarks have in the
other direction. To champion a system, superusers therefore have to try to silence those
against it and be prepared to counter their remarks and arguments.

149

© Jens Kaasbøll, 5 January, 2018

11.4. Organising for competence development
The accounting company mentioned at p.143 appointed one superuser per 10 employees, and
gave the superusers the obligation of training the others (Åsand and Mørch, 2006). Being
organised in a community of superusers helped them becoming capable of carrying out this
task. The same proportion was also utilized when introducing a patient record system for
nurses (McIntire and Clark, 2009), while in another hospital, there was one superuser per 15
nurses (Poe et al., 2011). In contrast, the superusers Oksana and Sigrun support 250 users.
The reason is, the information systems for which they are superusers are only used now and
then by most of the staff.

The Finish company trained all 100 users simultaneously (Sykes et al., 2009). The study
revealed that there was a positive correlation between how often a user gave or received help
and how much she or he used the system. If the goal is high system use, helping each other
after training is therefore effective. Seen from the individual user point of view, it would
constitute a facilitating condition in the technology acceptance model (Venkatesh et al.,
2003), see Figure 12, p.27.

When a new system has a large number of users, training is costly and can lead to disruption
of the organisational performance. The latter is unacceptable when clients have to be cared
for, like in a hospital, or when processes cannot be halted, like in a power plant. To reduce
costs and avoid disruptions, training is often provided only to a group of superusers, who are
selected from each organisational unit. All staff is given access to user documentation, and the
superusers are thereafter supposed to help out the rest of the staff when needed.

11.5. Summary
Users who help out colleagues on IT related issues are called superusers. People may develop
informally into superusers because others seek their assistance, or they may be appointed by
the organisation and given advanced training. Their background as regular staff and their
additional IT competence make them experts on the fit of IT in their part of the business.

Appointing superusers has become a common strategy for introducing information systems in
large organisations. Selected users from each department are appointed superusers with the
responsibility of assisting the other users and functioning as a liaison between their users and
the IT services.

Superusers need time and authorities to carry out their tasks. They learn more about the IT
through regular discussions with each other. Engaged superusers can convince people to start
using a system and keep them afloat by encouragement and support.

8. Identify, organise, authorise and cultivate superusers.

9. Include superusers as trainers and champions for new IT systems.

150

© Jens Kaasbøll, 5 January, 2018

Chapter 12. IT support

The learning objective of this chapter is to be able to organise user support such that IT
support personnel help users increase their competence.

Learning can take place anywhere and anytime, but some activities are carried out with
learning as their main purpose. In addition to training, supporting users also constitutes an
activity where learning may be the main objective.

12.1. How IT supporters learn
Support is normally a boundary interaction between an IT specialist or a superuser on the
supporting side and a user at the receiving end. The IT is a boundary object in the interaction,
and documentation and data may constitute other boundary objects.

Support interactions are normally of limited duration, being a few minutes conversation or a
couple of written messages. Contrary to training sessions, the topic of the support sessions are
initiated by the users and the IT support is targeting the user’s current problem. Support
personnel would normally not prepare specifically for an encounter, but they may
subsequently note down information about it.

While superusers have the advantage of knowing the business, IT personnel would constitute
the expertise for IT problems. Also, staff in an IT department in a larger organisation would
normally have user support as a main part of their job, while helping others constitutes an
additional role for superusers.

When users and IT personnel meet, they talk about the same phenomena in different ways.
For example, when a user says

we have a group of students who cannot synchronize

the technician talks about

IP-errors or server-errors (Kanstrup and Bertelsen, 2006)

We see the terminology problem from search in documentation (Section 2.1) reappearing.
When the user and supporter are co-located, they also have boundary objects like software
and documentation which they can look at, point to and interact with, and they can observe
each other’s actions. When helping out on the phone, the oral interaction is the only
communication channel. The following conversation took place when a user of a
printer/copier called the vendor’s support centre for help. The support person searches a
knowledge base for finding possible solutions (Crabtree et al., 2006):

Troubleshooter: OK, and what’s the problem you’re having with the machine?

Customer: I’m getting poor quality prints – sort of smudges on them.

Troubleshooter accesses knowledge base and selects ‘image quality’.

151

© Jens Kaasbøll, 5 January, 2018

Troubleshooter: When it’s printing?

Customer: Yes.

Troubleshooter: OK, do you get this when it’s copying?

Troubleshooter: So you get it printing and copying and they’re like smudges?

Troubleshooter selects ‘smears and smudges’ in knowledge base.

The troubleshooter questions the user to come up with a more precise description of what had
happened and what the result looked like, guiding the user in the precise observation (see the
problem solving approach at p.69). The troubleshooter might have gained improved skills in
learning the user’s terminology through this interaction, see the skill learning process to the
left of Figure 96.

4a. Repeat
•

Challenge the
userto

ovserve
precisely

•
Listen to the

user’s
term

inology
•

Direct and instructthe
userin operating the
technology

4a. Skills for learning
user’s terminology

4c. Com
pare

your
instructions

w
ith

the
user’sresponses

4b. Understanding the method
for learning user’s terminology

2. Understanding and 3. Problem solving competence

4b. Add
a phrase

to your
repertoire

ofuserterm
inology

Phone conPacP
• Carry ouP Phe

operaPions on your
oRn compuPer and
insPrucP Phe user
accordingly.

• Make Phe user Palk.

Common
user
Perminology

Figure 96. The learning processes of an IT supporter who tries to understand users’ terminology.

Likewise, the customer has to grasp the technical terms ‘image counts,’ ‘xerographic’ and
‘fuser module’ in the following (Crabtree et al., 2006);

Troubleshooter: You know your image counts, which is the amount in thousands of
copies that the xerographic and fuser module have done, check them just to see if
they’re running over their copy limit and causing that problem for you.

Troubleshooter: Of course, yeah, take your time, that’s fine.

48 second pause.

Customer: Where do I find them?

Troubleshooter describes how to use the menus to find the counts and customer goes
to find them.

70 second pause.

Customer: 43

152

© Jens Kaasbøll, 5 January, 2018

Troubleshooter: Hi, that’s from your fuser module

(writes down count).

Troubleshooter: OK could you - do you know where the xerographic module is in the
machine?

Troubleshooter: OK, I’ll tell you exactly where it is as there’s something I want you to
try, just to see if this will rectify the problem for you – if you open the front door of the
machine …

Here we see that the troubleshooter also instructed the user through some operations and
observed the user’s language at the same time. The troubleshooter may then learn how the
instructions are interpreted by the user, thus improving the skill for learning user terminology
and also possibly come to an understanding of the method for learning user terminology.
Accumulating a set of terms expressed by users contribute to improving the supporter’s
competence in this area, see the right arrow in Figure 96.

If the customer remembers the steps such that he can do them without support the next time
the problem occurs, he has learnt the particular research cycles for troubleshooting the
machine.

The troubleshooter could more easily recognise user terminology if having a rich repertoire of
how users expressed themselves. Correspondingly, an IT support person who is acquainted
with common misunderstanding may more easily detect these and clarify for the user.
Consider Herbert, who had not understood the difference between closing a program and
minimising it (Section 4.8, p.58). A support person may provide an explanation of this
difference, such that the user achieves a more adequate understanding.

4d. Repeat
•

observe
user’sreactions

•
explain

the
difference

betw
een

user’s
m

isconceotion
and an

adequate
m

odel

4d. Skills of clarifying
user misconceptions

Common
misconceptions

4f. Com
pare

your
explanation

w
ith

possible
changesin the

user’s
conception

4e. Understanding the method for clarifying
user misconceptions

2. Understanding and 3. troblem solving competence

4e. Com
pare

user’s
reaction

w
ith

possible
cconceptions

ofthe
IT

4g. Add
a m

isconception
to yourrepertoire.

4h. Add
an explanation

to yourrepertoire.

Figure 97. The learning processes of an IT supporter who tries to clarify users’ misconceptions.

IT supporters do observe users’ reactions and diagnose possible misconceptions (Allen et al.,
2013). The support person may develop skills in clarifying misconceptions through observing
users’ reactions to the explanations which the support person provides, see the left arrow in

153

© Jens Kaasbøll, 5 January, 2018

Figure 97. Comparing user reactions with possible conceptions of the IT and comparing
explanations provided with possible changes in the user conceptions improve the support
person’s understanding of what it takes to clarify misconceptions, see the arrows to the right
in Figure 97.

While the cases reported here concerns IT support staff learning, superusers and trainers may
learn about the users whom they guide in the same way. Since support staff interacts with
users constantly, while superusers may help colleagues less frequently, superusers may not
become equally skilled in learning others’ terminology and clarifying misconceptions as
support personnel.

Support persons are often technical experts, and experts in general overestimate the
competence of those whom they support (Hinds, 1999, Nathan and Koedinger, 2000). The
troubleshooter in the case above communicated interactively with the user, enabling the
troubleshooter to find out about the users’ competence level. This is more difficult if the
support person only reads a short, written message. Supporters who know the competence
level of the user will adapt their responses by translating their jargon into less technical terms,
like the troubleshooter did, and include only explanations which the supporter thinks are at the
appropriate level for the user to understand (Nückles et al., 2006). Efficient supporters interact
with a variety of users and experience a multitude of user problems and terminology, and they
are 2-10 times as efficient as supporters with more homogenous interactions (Chi and Deng,
2011). Their effectiveness may be due to having collected rich repertoires of user
terminology, misconceptions and explanations.

In addition to learning about users, IT supporters also learn IT and business fit topics during
their interaction with users. The interaction between 11 IT supporters and 61 users was
observed during implementation of a work flow system in a US bank (Santhanam et al.,
2007). In addition to support, several meetings were organised for the users and IT personnel
to jointly discuss issues. It was found that users mainly learnt IT skills during interaction. The
IT personnel gained know-why, i.e., they understood how the IT worked in users’ business
during the same encounters. Also understanding of the technology was shared. User
competence, particularly on how the IT is used in business, is hence introduced into the
community of IT practice and shared amongst the IT personnel (Santhanam et al., 2007).

12.2. Support quality
In a qualitative study, 39 users in the Finnish public and private sectors were interviewed
about their learning preferences (Korpelainen and Kira, 2010). In general, they preferred
learning IT use on the spot; formal training courses take too long. Said one of the
interviewees:

There are so many [user training] courses and other rubbish that I can’t be bothered
to do an extra thing. I haven’t left a single task uncompleted, so why would I bother. [
. . .]. I don’t need the extra information, and I am not interested. I am only interested
in being able to do my tasks; I just want to find the information and complete my tasks.
That is all I need the system for. (Korpelainen and Kira, 2010)

154

© Jens Kaasbøll, 5 January, 2018

Also, users hardly read documentation (Novick et al., 2007), they rather ask others, unless
they try and err or succeed. Getting support is therefore essential for most users both for
learning and for solving IT problems without learning how to do it themselves the next time.

A survey of 484 users in a US university examined the correlation between support factors
and user satisfaction (Shaw et al., 2002). The factors which influenced satisfaction the most
are listed in Table 8. Factor 1, 5 and 6 are all qualities of IT support. Factor 3, user
understanding, is partly influenced by previous training and support. Factor 4, software
upgrades, is also a product of decisions in IT departments. Many users get annoyed when new
upgrades appear, since they have to relearn the software, however, others push for new
versions.

Table 8. Factors influencing user satisfaction (Shaw et al., 2002).

Rank Factor
1 Fast response time from system support staff to remedy problems
2 Data security and privacy
3 User’s understanding of the system
4 New software upgrades
5 Positive attitude of information systems staff to users
6 A high degree of technical competence of systems support staff

In general, the findings point to the central position of user support and to learning issues for
user satisfaction with IT. Software upgrades and response time were the only factors found to
correspond with studies from the beginning of the 90’s.

When broken down into three distinct user groups, administration, academics and students,
there was a great variation in the factors. A previous study also found variations, concluding
that the specific business of a user department influences its perception of IT support (Speier
and Brown, 1997).

Users’ opinion of the performance of the IT support gave the lowest score to documentation
which supports training (Shaw et al., 2002). This issue is not amongst the general top factors
influencing satisfaction, since users regarded it as less important. However, non-academic
users had this item in their top factors of dissatisfaction (Shaw et al., 2002). Low quality of
training material is particularly bad since Minimal Manuals and models for understanding
used during training are twice as effective for problem solving compared to material found
elsewhere (Novick et al., 2009).

The physical place where users find IT support personnel has been called a helpdesk, while
the phone call support is called a helpline. A survey of user satisfaction with helpdesks and
helplines in the Netherlands compared user preferences (van Velsen et al., 2007). There were
64 responses concerning the helpdesk and 242 for the helpline (11% response rate).
Concerning the helpline, user satisfaction depended to a high degree on the quality of the
solution which the support personnel came up with. Surprisingly, the users who contacted the
helpdesk were more satisfied when having a good time at the helpdesk, while the solution was
of secondary importance. Thus, the helpdesk should have friendly staff, while the
knowledgeable ones should be working on the helpline.

155

© Jens Kaasbøll, 5 January, 2018

12.3. Improving IT support
An IT department will normally be responsible for parts of the IT support for the whole
organisation. IT departments previously often conceived their tasks as management of the
technical installations and organised their activities according to the hardware and software
packages. Consequently, there was one support service for each software package; hence a
user who did not know whether his problem was connectivity, web-browser or credentials
might have had to approach three support people to get a useful response.

Lately, a view of themselves as providing service under the heading IT Service Management
has become more common amongst IT departments (Iden and Eikebrokk, 2013). This change
has been influenced by a set of guidelines for IT service operations called ITIL – Information
Technology Infrastructure Library. ITIL has been developed by the British Office of
Government Commerce. The guidelines include strategy, design, transition and operation of
services. ITIL Service Operation (ITIL - Axelos, 2011) concerns user support and handling of
incidents. It suggests organising one service desk as a single point of contact to handle all user
contact, including troubleshooting, requests for software changes and warnings concerning
threats to data security. The service desk also informs users about planned downtimes and
equipment which has failed, and it monitors networks and servers, such that it often knows the
issues before users contact them. Organisations which have implemented ITIL or similar
guidelines have improved their user satisfaction and service quality, including reduced
response time (Iden and Eikebrokk, 2013).

ITIL succeeded more in larger than smaller firms in a study in Malaysia (Kanapathy and
Khan, 2012). In an international survey of IT managers, the benefits to the operation of the IT
support increased as the maturity
of adoption of ITIL grew
(Marrone and Kolbe, 2010)

The organisation of user support at
Digibank is a common way of
splitting up the services. Hayley
talks about the Ticket system,
which is an issue tracking system,
where each user request is
registered. This system enables
communication between the
support sections. If the first line of
support cannot handle the request,
the issue tracking system sends a
message to the second line for
them to pick it up.

An issue tracking system also
allows statistical analysis of the
tickets, such that Hayley can see the common issues. She would then bring the common issues

Digibank – user support manager Hayley – 1:

We have organised user support in three sections.
The Customer Desk is the service point for all of our
hundred thousand customers. Therefore, customers
can call and e-mail us 24/7, and our average phone
response time is 30 seconds.

For our staff, we run the Front Desk within working
hours. After we installed the Ticket system there also,
user satisfaction has improved. Previously, some
requests got lost and remained unanswered.

Back Office is our second line of support. If Customer
or Front desk cannot solve the problem, it is referred
to the Back office through the Ticket system. If they
can’t deal with it, they may call our IT vendors.

156

© Jens Kaasbøll, 5 January, 2018

to the attention of IT personnel dealing with software modification, such that they might
prevent the trouble from reappearing through altering the systems.

Support personnel should have a wide range of capabilities. An experienced support manager
summarised the characteristics of an ideal support person like this (Bruton, 2002):

• Patience
• Assertiveness
• Thoroughness
• Enthusiasm
• Responsibility
• Technical knowledge
• Empathy
• Communicative ability
• Works well under pressure

This list contains a mix of
technical and personal
qualities which is hard to
find amongst job
applicants, and those who
possess all of these are
unlikely to be satisfied with
a technical support job,
which is often low paid.
Hayley is well aware of this
issue and has a solution. A
large company like hers can
take advantage of people’s strong and weak sides by assigning them to a job where their
competence is most needed.

Novice support persons would benefit from being trained up to the problem solving level for
the most frequently occurring problems. ITIL suggests that they thereafter listen in to
experienced staff before they start responding to calls and messages themselves under
supervision of a mentor (ITIL - Axelos, 2011). Having a possible career path into technical,
training or managerial positions may keep valuable service staff in the organisation.

12.4. IT support versus superusers
In contrast to the single point of support by a service desk, a superuser may provide support
for specific software, which is also recognised in ITIL (ITIL - Axelos, 2011). There have been
several studies on the type of support which users prefer, and users’ preferences seem to
depend on many factors.

Interviews of 40 users with education above high school in the US, showed that users
preferred asking IT-personnel and colleagues at roughly the same rate (Novick et al., 2007).

Digibank – user support manager Hayley – 2:

For the Customer Desk, we recruit young, service-oriented
people, since it is easier to provide them with some technical
skills than to convert an introvert computer nerd into a
social person. We teach the recruits the solutions to the 10
most frequently asked questions, which constitute 85% of the
calls. Then we emphasize that other questions be forwarded
to the Back Office.

And that’s where we hire the nerds! We love their efficiency
and perseverance when solving the intricate issues.

157

© Jens Kaasbøll, 5 January, 2018

In a survey amongst university staff in Norway, 49% preferred support from the IT services,
while 31% chose colleagues (Nilsen and Sein, 2004). There were 222 responses to the
questionnaire (37% response rate).

A survey of US middle level managers’ opinion on support gave the opposite result. 38%
preferred superuser support, 26% other colleagues and 19% an IT centre (Govindarajulu et al.,
2000). These results are based on 98 informants (response rate 11%).

These three studies agree that users prefer support from both IT personnel and superusers, but
there is no consensus on which one is superior. A survey in Norwegian organisations
investigated some possible causes for choice of support (Munkvold, 2003). Responses came
from 277 informants, yielding a response rate of 41%. Short distance to the IT support
personnel made users go there, while when the distance was longer, users preferred
colleagues. Users with higher IT competence consulted the IT support to a lesser degree,
while they solved problems more often themselves than did less skilled users (Munkvold,
2003). Convenience and the users’ competence level may therefore be reasons for choosing
one source of support to the other.

12.5. Summary
IT support is an organised service for users who need help for solving their problems. Users
may learn IT during support encounters and IT support personnel may learn business fit from
the users. Support personnel learn about users’ IT competence through a diversity of
interactions, thus becoming increasingly able to adjust their technical explanations to the
user’s level. Support staff complements superusers, who are the business fit experts.

While users want support to help them understanding more, quick response time is the most
important quality of support. Large organisations have improved their user support through a
service desk, which is a single point of contact for all users. The service desk is staffed with
service minded people, who forward more tricky questions to computer scientists in the back
office.

10. Organise one service desk for all user requests with service minded staff.

158

© Jens Kaasbøll, 5 January, 2018

Chapter 13. Mutual learning during
business fit

The learning objective of this chapter is to be able to organise collaboration between users and
IT personnel during development of IT solutions such that these two groups learn from each
other.

There have been numerous cases where IT designers have developed systems which do not fit
users’ business and which therefore have not been used. When developing an information
system or any digital device, the IT personnel involved in the design hence need to know the
business into which the software and hardware are going to fit. While IT personnel have the
IT competence, users would know the business fit. In order to bring all competence areas into
development, users and IT personnel are often cooperating in what has been termed
participatory design.

While IT personnel’s need for understanding users’ business was recognised early, it was also
noted that for participatory design to become effective, users also needed to learn about IT, so
the term mutual learning was adopted (Bjerknes and Bratteteig, 1987).

Based on the identification of roles of users and IT personnel, this chapter will characterize
the competence of these roles during development of IT applications in organisations.

The competence needed for a development group consisting of both users and IT personnel
was suggested by Kensing and Munk-Madsen (1993) to consist of six categories as shown in
Table 9. This categorisation of competence in mutual learning has been repeated until lately
(Bødker et al., 2004, Bratteteig et al., 2013).

Table 9. Areas of competence in user-developer communication. Based on (Kensing and Munk-Madsen,
1993).

 Users’ present work New system Technological options

Understanding Relevant structures on
users’ present work

Visions and design
proposals

Overview of
technological options

Skill Concrete experience
with users’ present work

Concrete experience
with the new system

Concrete experience with
technological options

Before starting cooperation, users would have the concrete experience with their own work
and not necessarily more (Kensing and Munk-Madsen, 1993). This implies that if they used
computers, they would have the skills, but not necessarily understanding of the technology or
the business fit. IT personnel would start out with the technological skills and understanding.

In order to reach joint understanding of a new system, the two partners first need to
understand parts of the current situation. Mutual learning can be considered as consisting of
three processes.

159

© Jens Kaasbøll, 5 January, 2018

1. Users learning about IT

2. IT personnel learning about the business fit.

3. Based on such a mutual understanding of each other’s competence areas, they jointly
create understanding and skills of the new IT and business fit.

Users normally do not constitute one homogenous group. Rather, they do a variety of jobs in
different departments and levels in the organisation. When building new systems for larger
parts of an organisation, a diverse group of users would be needed to bring in all the
organisation’s skills in using IT for the different activities (Markus and Mao, 2004). Including
some existing superusers would have the advantage of bringing competence of the relation
between IT and business into the project team.

13.1. Users learning about IT
This is what the two first parts of this book is about. The special requirement here is that users
need to learn about technological options which can be utilized in their organisation, but
which currently are not in place. Implementations of these options in other applications can be
used for practical training, and functional and structural models can create some
understanding.

The two other learning processes differ from those having been presented previously in this
book, so they will be elaborated in the sequel.

13.2. IT personnel learning about business fit
As seen in the previous chapter, IT personnel learn about business fit during encounters with
users (Santhanam et al., 2007). This can be done in more systematic ways, including
interviews and observations. Interviews can provide an understanding of how IT fits in the
organisation in a broader sense than for one user, thereby contributing to understanding the
current situation. Observations can complement interviews through providing understanding
of how individuals use IT for their tasks.

For users lacking the understanding of IT in the business, the interviews should be as concrete
as possible, making the user telling what she actually does. Carrying out the interview at the
workplace enables talking about the IT being present, thus details of work can be included.

Other users may have more elaborate understanding of their work than anticipated. In a study
of a lawyers’ office, the interviewer noticed that they frequently discussed the meaning of
codes and that they

… were continuously experimenting with alternative strategies for coding documents. One
lesson we (re)learned was the degree to which workers themselves are engaged in
reflecting on and redesigning their own practice. (Blomberg et al., 1996)

They concluded that for learning about users’ business, the investigator should search for the
knowledge work in what is called routines, and the routines in what is called highly qualified
work.

160

© Jens Kaasbøll, 5 January, 2018

Interviews and observations need to be thorough enough to avoid generalisation based on
single cases. Anthropologists experienced in studying work in organisations emphasize that
investigations should include

comparing observations of the same individual over time and in different settings;
comparing interview and observational data from the same individual, investigating
apparent disparities between them; and comparing what people say about each other with
what they can be seen to do, again using apparent disparities to guide further
investigation. (Forsythe, 1999)

Aiming at learning the diversity of users’ business, investigations should ideally continue as
long as one learns something new. In reality, there will be budget and deadlines which limit
the amount of interviews and observations which IT personnel can carry out.

13.3. Joint creation of understanding and skills of new system
After users and IT personnel have learnt about each other’s area of competence, they would
have a platform for joint creation of new systems. Users and developers exploring new
options together and comparing with wanted changes may generate skills and understanding
of a new system. Also, the users and developers acquire skills for mutual learning, see the left
arrow in Figure 98. Understanding mutual learning can be achieved through comparing this
experience with suggested techniques for mutual learning, three of which will be presented in
the sequel.

3ae. Repeat
•

Explore
and experim

entw
ith

new
system

•
Com

pare
currentbusiness

and future
options

•
Com

pare
technological

optionsw
ith

w
anted

future

3ae. Skill of mutual learning.
Skill and understanding of new

system

Technological
options

3af. Understanding mutual learning

3af. Com
pare

scaffoldsw
ith

experienced
outcom

es

2. Understanding current use of IT and technological options

Users and
developers
Rorking together

Mutual intervieRing

Visit other installations

Future Rorkshops

Prototypes

Figure 98. Learning mutual learning.

User participation during development of information systems has in general been found to
contribute to better solutions and less user resistance during implementation, although that is
no automatic consequence (Bano and Zowghi, 2013). One way of obtaining the positive
outputs has been identified as engagement or involvement, meaning the importance and

161

© Jens Kaasbøll, 5 January, 2018

personal relevance of a system to a user (Hartwick and Barki, 1994). Involvement in
participation can be strengthened by allocating responsibilities for some tasks to users. It has
been noticed that one reason why users do not involve themselves properly during
development is scarcity of time. Rather, they become engaged after implementation, when
changes are more costly (Wagner and Piccoli, 2007). Either, management can allocate
sufficient time and promote engagement during development, or more of the mutual learning
can take place during support, as illustrated in the previous chapter.

Many ways of mutually creating new visions and plans have been proposed, and
comprehensive methods are found in the literature on user participation (Bødker et al., 2004,
Greenbaum and Kyng, 1991, Simonsen and Robertson, 2013). We will point to four
techniques with learning outcomes in different areas, and these techniques can strengthen
engagement.

Mutual interviewing
Those who ask the questions set the agenda and introduce the concepts for how to perceive
the world. An IT person interviewing users will thus be given power to interpret the situation
(Bråten, 1973). In order to create communication on more equal terms, users could also
interview IT personnel on their work. Such mutual interviewing has been carried out (Nielsen
et al., 2003) and contributed to a dialogue fostering mutual learning.

Visiting other installations
Users and IT personnel jointly visit another organisation which has implemented a similar
system. When representatives from the other organisation demonstrate and explain the
function and structure of the system, the visitors can acquire an understanding of its
technology and business fit. When trying the system themselves, they can obtain some skills.

When prospective users discuss with people in corresponding positions in other organisations,
the users may identify with these people, something which can trigger engagement. Another
way of strengthening involvement can be to make every visitor responsible for reporting the
experience concerning their speciality to the whole group when returning home.

Future workshops
The aim is primarily to create an understanding of current business fit and of future IT and
business fit. Users and IT personnel participate through three phases:

1. Critique session

2. Fantasy phase

3. Realisation phase

During the critique session, the participants create a joint understanding about problems in the
current situation. The result of the critique phase could include statements like

162

© Jens Kaasbøll, 5 January, 2018

We have to log into three different systems. This is annoying, especially since you are
logged out if inactive for a while. And I always mix up the passwords.

The fantasy phase is intended for developing ideas and visions for a different future situation
through brainstorming technological solutions and work processes. The participants can come
up with a list like

The computer will see who I am, such that there is no need for login.
All customers will enter their invoice directly into our accounting system. All we will have
to do is controlling.
I wish we had an overview of all heavy-duty machinery on an app, such that we could
easily see the closest site when allocating staff to customer visits.

In the realisation phase, plans for implementing proposals that can be realised are worked out.
The realisation also contributes to enriching the understanding of new systems such that users
can learn the technological options and the IT personnel can obtain insight into the business.

Future workshops do not require any specific professional background. This means that
anyone can be allocated responsibility for any of the phases, thus strengthening their
engagement.

More comprehensive introductions to future workshops can be found in (Greenbaum and
Kyng, 1991) and (Bødker et al., 2004).

Prototypes
While future workshops provide some understanding about possible designs, prototypes
provide the concrete experience. A prototype is a technological implementation of aspects of
an IT system. It may provide some functionality, show parts of the user interface, demonstrate
a new technological option, etc. When working with prototypes, the IT personnel will have
the specific role of developing the IT solutions.

When trying out a prototype, experimentation will be a main way of learning for users and
information officers. They will see whether it can do what they expect. They may also explore
other aspects of the system. Experimentation and exploration contribute to both skills and
understanding of the IT.

In order to learn about business fit, the prototype should be tested in the business where it is
going to be used or in similar conditions.

Development and testing of prototypes takes place in an iterative fashion. IT personnel learn
about the same topics as the users when observing their operation of the prototype and
discussing their experience.

Responsibilities can also be distributed during prototyping. Users could for example be
required to find their most complicated data structures to see whether the prototype can
handle these. Also, users can find typical and exceptional cases to be used for testing
functionality.

163

© Jens Kaasbøll, 5 January, 2018

13.4. User representatives as superusers
Users having participated in mutual learning during development will be well suited for
joining the training team of a new system and act as superusers (Volkoff et al., 2004).

A study of post-implementation of enterprise resource planning systems, mainly in the US,
showed that the companies had included user representatives in their development and
implementation projects. After implementation, the majority returned to their original
departments and functioned as superusers there (Gallagher and Gallagher, 2012). While the
goals of the projects had been business process improvements before the implementation, the
success criteria afterwards had shifted to timely response to user needs and user satisfaction.
Whether success depended on the transformation of user representatives into superusers was
not investigated.

13.5. Summary
User participation in development of information systems is considered advantageous. To
achieve fruitful participation, users need to learn about new IT options, and IT personnel need
to learn about tasks and the business. In order to design new solutions, users and IT personnel
need to develop joint understanding and concrete experience of IT and business fit for future
use of new technology. Exploring and experiment with new systems, discussing the current
situation and wanted futures, and comparing wanted futures with technological options
constitute activities which foster mutual learning. Mutual learning can be strengthened if users
become personally engaged, something which requires sufficient time and responsibilities
during development.

164

© Jens Kaasbøll, 5 January, 2018

References

2014. Superuser. Wikipedia.
ABRAMI, P. C., BERNARD, R. M., BOROKHOVSKI, E., WADE, A., SURKES, M. A.,

TAMIM, R. & ZHANG, D. 2008. Instructional Interventions Affecting Critical Thinking
Skills and Dispositions: A Stage 1 Meta-Analysis. Review of Educational Research, 78,
1102–1134.

ADOBE. 2012. Adobe Captivate 5.5 - Elearning authoring software [Online]. [Accessed].
AFSHARI, M., BAKAR, K. A., LUAN, W. S. & SIRAJ, S. 2012. Factors Affecting the

Transformational Leadership Role of Principals in Implementing ICT in Schools. The
Turkish Online Journal of Educational Technology, 11, 164-176.

AGUINIS, H. & KRAIGER, K. 2009. Benefits of Training and Development for Individuals
and Teams, Organizations, and Society. Annual Review of Psychology, 60, 451-474.

ALLEN, J. M., GUGERTY, L., MUTH, E. R. & SCISCO, J. L. 2013. Remote Technical
Support Requires Diagnosing the End User (Customer) as well as the Computer. Human-
Computer Interaction, 28, 442-477.

ALMNES, T. C. C. 2001. Superbruker. Hvordan forbedre brukerstøtte of informasjonsflyt.
MSc, University of Oslo.

ANDRADE, O. D., BEAN, N. & NOVICK, D. G. 2009. The macro-structure of use of help.
SIGDOC '09. New York: ACM.

ARTHUR JR., W., BENNETT JR., W., EDENS, P. S. & BELL, S. T. 2003. Effectiveness of
Training in Organizations: A Meta-Analysis of Design and Evaluation Features. Journal
of Applied Psychology, 88, 234–245.

BABIN, L.-M., TRICOT, A. & MARINÉ, C. 2009. Seeking and providing assistance while
learning to use information systems. Computers & Education, 53, 1029–1039.

BAGAYOGO, F. F., LAPOINTE, L. & BASSELLIER, G. 2014. Enhanced Use of IT: A New
Perspective on Post-Adoption. Journal of the Association for Information Systems, 15,
361-387.

BALLANTINE, J. A., LARRES, P. M. & OYELERE, P. 2007. Computer usage and the
validity of self-assessed computer competence among first-year business students.
Computers & Education, 49, 976–990.

BANNON, L. J. 1986. Helping users help each other. In: NORMAN, D. A. & DRAPER, S.
W. (eds.) User centered system design : new perspectives on human-computer interaction.
Hillsdale, NJ: Lawrence Erlbaum.

BANO, M. & ZOWGHI, D. 2013. User involvement in software development and system
success: a systematic literature review. Proceedings of the 17th International Conference
on Evaluation and Assessment in Software Engineering. New York: ACM.

BARNES, L. E. 1890. How to Become Expert in Typewriting: A Complete Instructor
Designed Especially for the Remington typewriter, A.J. Barnes.

BASSELLIER, G., BENBASAT, I. & REICH, B. H. 2003. The Influence of Business
Managers' IT Competence on Championing IT Information Systems Research, 14, 317 -
336.

BEATH, C. M. 1991. Supporting the Information Technology Champion. MIS Quarterly, 15,
355-372.

BEN-ARI, M. & YESHNO, T. 2006. Conceptual models of software artifacts. Interacting
with Computers, 18, 1336–1350.

BHAVNANI, S. K. & JOHN, B. E. 2000. The strategic use of complex computer systems.
Human-Computer Interaction 15, 107-137.

165

© Jens Kaasbøll, 5 January, 2018

BHAVNANI, S. K., PECK, F. A. & REIF, F. 2008. Strategy-Based Instruction: Lessons
Learned in Teaching the Effective and Efficient Use of Computer Applications. ACM
Transactions on Computer-Human Interaction, 15, 1-47.

BILAL, D. 2002. Children's use of the Yahooligans! Web search engine. III. Cognitive and
physical behaviors on fully self-generated search tasks. Journal of the American Society
for Information Science and Technology, 53, 1170-1183.

BJERKNES, G. & BRATTETEIG, T. 1987. Florence in wonderland. In: BJERKNES, G.,
EHN, P. & KYNG, M. (eds.) Computers and Democracy—A Scandinavian Challenge.
Aldershot: Avebury.

BJØRGE, E., JØNSSON, A., KAASBØLL, J. & PINARD, M. 2015. From User Training
Courses and Central Support to Creating Local User Competence for Mentoring
Colleagues: A Preliminary Study in Malawi. In: CUNNINGHAM, P. & CUNNINGHAM,
M. (eds.) IST-Africa 2015 Conference Proceedings. IIMC International Information
Management Corporation.

BLOMBERG, J., SUCHMAN, L. & TRIGG, R. H. 1996. Reflections on a Work-Oriented
Design Project. Human-Computer Interaction, 11, 237-265.

BLOOM, B., ENGLEHART, M. D., FURST, E. J., HILL, W. H. & KRATHWOHL, D. 1956.
The Taxonomy of Educational Objectives, The Classification of Educational Goals,
Handbook I: Cognitive Domain, New York, David McKay.

BOFFA, D. P. & PAWOLA, L. M. 2006. Identification and conceptualization of nurse super
users. Journal of Healthcare Information Management, 20, 60-68.

BORGMAN, C. L. 1986. The user's mental model of an information retrieval system: an
experiment on a prototype online catalog. International Journal of Man-Machine Studies,
24, 47–64.

BRANSFORD, J. 2000. How people learn: brain, mind, experience, and school, Washington,
D.C., National Academy Press.

BRATTETEIG, T., BØDKER, K., DITTRICH, Y., MOGENSEN, P. & SIMONSEN, J. 2013.
Participatory IT Design: Designing for Business and Workplace Realities. In:
ROBERTSON, T. & SIMONSEN, J. (eds.) Routledge International Handbook of
Participatory Design. New York: Routledge.

BROWN, J. S. & NEWMAN, S. E. 1985. Issues in Cognitive and Social Ergonomics: From
Out House to Bauhaus. Human-Computer Interaction, 1, 359-391.

BRUTON, N. 2002. How to Manage the IT Help Desk: A Guide for User Support and Call
Center, Oxford, Butterworth Heinemann.

BRÅTEN, S. 1973. Model Monopoly and Communication: Systems Theoretical Notes on
Democratization. Acta Sociologica, 16, 98-107.

BØDKER, K., KENSING, F. & SIMONSEN, J. 2004. Participatory IT Design: Designing for
Business and Workplace Realities, Cambridge, Mass., MIT Press.

CALVANI, A., FINI, A., RANIERI, M. & PICCI, P. 2012. Are young generations in
secondary school digitally competent? A study on Italian teenagers. Computers &
Education, 58, 797–807.

CARROLL, J. M. 1990. The Nurnberg Funnel: Designing Minimalist Instruction for
Practical Computer Skill, Cambridge, Mass., MIT Press.

CARROLL, J. M., MACK, R. L., LEWIS, C. H., GRISCHKOWSKY, N. L. &
ROBERTSON, S. R. 1985. Exploring Exploring a Word Processor. Human-Computer
Interaction, 1.

CARROLL, J. M. & ROSSON, M. B. 1987. Paradox of the active user. In: CARROLL, J. M.
(ed.) Interfacing thought: Cognitive aspects of human-computer interaction. Cambridge,
MA: MIT Press.

166

© Jens Kaasbøll, 5 January, 2018

CASE, D. O. 2012. Looking for Information: A Survey of Research on Information Seeking,
Needs, and Behavior, Bingley, Emerald.

CERTIPORT INC. 2011. Certiport [Online]. Available: http://www.certiport.com/
[Accessed].

CHI, L. & DENG, X. N. 2011. Knowledge Transfer in Information Systems Support
Community: Network Effects of Bridging and Reaching. Thirty Second International
Conference on Information Systems. Shanghai.

CHILLAREGE, K. A., NORDSTROM, C. R. & WILLIAMS, K. B. 2003. Learning from Our
Mistakes: Error Management Training for Mature Learners. Journal of Business and
Psychology, 17, 369-385.

CIALDINI, R. B. 2001. Harnessing the Science of Persuasion. Harvard Business Review, 79,
72-79.

CLARK, R. 2007. Leveraging multimedia for learning. Available:
http://www.clarix.com/whitepapers/captivate_leveraging_multimedia.pdf.

COCKBURN, A., GUTWIN, C., SCARR, J. & MALACRIA, S. 2015. Supporting Novice to
Expert Transitions in User Interfaces. ACM Computing Surveys, 47, 31:1-36.

Creating formulas using cell ranges in an Openoffice calc spreadsheet 2010. Directed by
COL CCNC. YouTube.

COMMITTEE ON INFORMATION TECHNOLOGY LITERACY 1999. Being Fluent with
Information Technology, Washington, D.C., National Academy Press.

COMPEAU, HIGGINS, C. A. & HUFF, S. 1999. Social Cognitive Theory and Individual
Reactions to Computing Technology: A Longitudinal Study. MIS Quarterly, 23, 145-158.

COMPEAU, D. R. & HIGGINS, C. A. 1995. Application of Social Cognitive Theory to
Training for Computer Skills. Information Systems Research, 6, 118-143.

CONSTANT, D., SPROULL, L. & KIESLER, S. 1996. The Kindness of Strangers: The
Usefulness of Electronic Weak Ties for Technical Advice. Organization Science, 7, 119-
135.

COOPER, J. 2006. The digital divide: the special case of gender. Journal of Computer
Assisted Learning, 22, 320–334.

COULSON, T., SHAYO, C., OLFMAN, L. & ROHM, C. E. T. 2003. ERP training strategies:
conceptual training and the formation of accurate mental models. SIGMIS '03.
Philadelphia, Pennsylvania: ACM.

COVELLO, S. 2010. A Review of Digital Literacy Assessment Instruments. Syracuse
University.

CRABTREE, A., O'NEILL, J., TOLMIE, P., CASTELLANI, S., COLOMBINO, T. &
GRASSO, A. 2006. The practical indispensability of articulation work to immediate and
remote help-giving. In: HINDS, P. J. & MARTIN, D. (eds.) CSCW'06. Banff, Alberta:
ACM.

CUEVAS, H. M., FIORE, S. M. & OSER, R. L. 2002. Scaffolding cognitive and
metacognitive processes in low verbal ability learners: Use of diagrams in computer-
based training environments. Instructional Science, 30, 433-464.

CULNAN, M. J. 1983. Chauffeured versus end user access to commercial databases: the
effects of task and individual differences. MIS Quarterly, 7, 55-67.

DAVIS, F. D. 1989. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13, 319-340.

DAVIS, S. A. & BOSTROM, R. P. 1993. Training End Users: An Experimental Investigation
of the Roles of the Computer Interface and Training Methods. MIS Quarterly, 17, 61-85.

DE MARCO, T. 1979. Structured Analysis and System Specification, Prentice Hall.
DE VRIES, B., VAN DER MEIJ, H. & LAZONDER, A. W. 2008. Supporting reflective web

searching in elementary schools. Computers in Human Behavior, 24, 649–665.

http://www.certiport.com/
http://www.clarix.com/whitepapers/captivate_leveraging_multimedia.pdf

167

© Jens Kaasbøll, 5 January, 2018

DE WAAL, B. M. E. 2012. What makes end-user training successful? A mixed method study
of a business process management system implementation. International Journal of
Knowledge and Learning, 8, 166-183.

DENG, X. & CHI, L. 2012. Understanding Postadoptive Behaviors in Information Systems
Use: A Longitudinal Analysis of System Use Problems in the Business Intelligence
Context. Journal of Management Information Systems, 29, 291-325.

DOSTÁL, M. 2010. User Acceptance of the Microsoft Ribbon User Interface. In:
MASTORAKIS, N. E. & MLADENOV, V. (eds.) Advances in Data Networks,
Communications, Computers. Faro, Portugal: WSEAS Press.

DREYFUS, H. L. & DREYFUS, S. E. 1986. Mind over Machine: The Power of Human
Intuition and Expertise in the Era of the Computer, New York, The Free Press.

DUARTE, N. 2008. slide:ology: The Art and Science of Creating Great Presentations,
Beijing, O'Reilly.

DUTKE, S. & REIMER, T. 2000. Evaluation of two types of online help for application
software. Journal of Computer Assisted Learning, 16, 307-315.

ECDL / ICDL 2009. ECDL / ICDL Sample Part-Tests. Syllabus Version 5.0.
MSXPOpenOffice3.1. ECDL / ICDL Sample Part-Tests. ECDL Foundation.

ECDL FOUNDATION. 2011. European Computer Driving Licence Foundation [Online].
Available: http://www.ecdl.org/ [Accessed].

EDUCATIONAL TESTING SERVICE. 2011. ETS [Online]. Available: http://www.ets.org/
[Accessed].

ESCHENBRENNER, B. 2010. Towards a Model of Information Systems User Competency.
PhD, University of Nebraska - Lincoln.

EVELAND, J. D., BLANCHARD, A., BROWN, W. & MATTOCKS, J. 1994. The role of
“help networks” in facilitating use of CSCW tools. In: SMITH, J. B., SMITH, F. D. &
MALONE, T. W. (eds.) Proceeding CSCW '94. New York: ACM.

FINNEGAN, L. 1996. GCN training survey finds what works, what doesn't and why.
Government Computer News, 43-44.

FORSYTHE, D. E. 1999. “It’s Just a Matter of Common Sense”: Ethnography as Invisible
Work. Computer Supported Cooperative Work, 8, 127–145.

FU, W.-T. & GRAY, W. D. 2004. Resolving the paradox of the active user: stable suboptimal
performance in interactive tasks. Cognitive Science, 28, 901–935.

FURNAS, G. W., LANDAUER, T. K., GOMEZ, L. M. & DUMAIS, S. T. 1987. The
vocabulary problem in human-system communication. Communications of the ACM, 30,
964-971.

FURUTA, T. 2000. The Impact of Generating Spontaneous Descriptions on Mental Model
Development. Journal of Science Education and Technology, 9, 247-256.

GAGNÉ, R. M. & BRIGGS, L. J. 1974. Principles of Instructional Design, New York, Holt,
Rinehart and Winston.

GALLAGHER, K. P. & GALLAGHER, V. C. 2012. Organizing for post‐implementation
ERP: A contingency theory perspective. Journal of Enterprise Information Management,
25, 170 - 185.

GALLETTA, D. F., AHUJA, M., HARTMAN, A., TEO, T. & PEACE, A. G. 1995. Social
influence and end-user training. Communications of the ACM, 38, 70-79.

GALLIVAN, M., SPITLER, V. & KOUFARIS 2005. Does Information Technology Training
Really Matter? A Social Information Processing Analysis of Coworkers' Influence on IT
Usage in the Workplace. Journal of Management Information Systems, 22, 153-192.

GASSER, L. 1986. The Integration of Computing and Routine Work. ACM Transactions on
Office Information Systems, 4, 205-225.

http://www.ecdl.org/
http://www.ets.org/

168

© Jens Kaasbøll, 5 January, 2018

GINNS, P. 2006. Integrating information: A meta-analysis of the spatial contiguity and
temporal contiguity effects. Learning and Instruction, 16, 511-525.

GOVINDARAJULU, C., REITHEL, B. J. & SETHI, V. 2000. A model of end user attitudes
and intentions toward alternative sources of support. Information & Management, 37, 77-
86.

GRANT, D. M., MALLOY, A. D. & MURPHY, M. C. 2008. A Comparison of Student
Perceptions of their Computer Skills to their Actual Abilities. Journal of Information
Technology Education, 8, 141-160.

GRANT, D. M., MALLOY, A. D. & MURPHY, M. C. 2009. A Comparison of Student
Perceptions of their Computer Skills to their Actual Abilities. Journal of Information
Technology Education, 8, 141-160.

GRAVILL, J. & COMPEAU, D. 2008. Self-regulated learning strategies and software
training. Information & Management, 45, 288–296.

GREENBAUM, J. & KYNG, M. 1991. Design at Work: Cooperative Design of Computer
Systems, Hillsdale, New Jersey, Lawrence Erlbaum.

GRIGOREANU, V., BURNETT, M., WIEDENBECK, S., CAO, J., RECTOR, K. & KWAN,
I. 2012. End-user debugging strategies: A sensemaking perspective. ACM Trans. Comput.-
Hum. Interact., 19, 1-28.

GRONLUND, N. E. 1998. Assessment of Student Achievement, Neeham Heights, MA, Allyn
and Bacon.

GROSSMAN, R. & SALAS, E. 2011. The transfer of training: what really matters.
International Journal of Training and Development, 15, 103-120.

GROSSMAN, T., FITZMAURICE, G. & ATTAR, R. 2009. A survey of software
learnability: metrics, methodologies and guidelines. CHI '09: Proceedings of the 27th
international conference on Human factors in computing systems. New York: ACM.

GUGERTY, L. 2007. Cognitive components of troubleshooting strategies. Thinking and
Reasoning, 13, 134 – 163.

HADJERROUIT, S. 2008. Using a Learner-Centered Approach to Teach ICT in Secondary
Schools: An Exploratory Study. Issues in Informing Science and Information Technology,
5, 233-259.

HAKKARAINEN, K., ILOMÄKI, L., LIPPONEN, L., MUUKKONEN, H., RAHIKAINEN,
M., TUOMINEN, T., LAKKALA, M. & LEHTINEN, E. 2000. Students' skills and
practices of using ICT: results of a national assessment in Finland. Computers &
Education, 34, 103-117.

HALASZ, F. G. & MORAN, T. P. 1983. Mental models and problem solving in using a
calculator. CHI '83 Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York: ACM.

HALBESLEBEN, J. R. B., WAKEFIELD, D. S., WARD, M. M., BROKEL, J. &
CRANDALL, D. 2009. The Relationship Between Super Users’ Attitudes and Employee
Experiences With Clinical Information Systems. Medical Care Research and Review, 66,
82-96.

HARTWICK, J. & BARKI, H. 1994. Explaining the role of user participation in information
system use. Management Science, 40, 440-465.

HATTIE, J. 2009. Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to
Achievement, Oxon, UK, Routledge.

HEARST, M. 2003. Information Visualization: Principles, Promise, and Pragmatics. CHI
2003 tutorial.

HERSKIN, B. 2006. Brugeruddannelse i praksis, Copenhagen, Nyt Teknisk Forlag.
HIGNITE, M., MARGAVIO, T. M. & MARGAVIO, G. W. 2009. Information literacy

assessment: Moving beyond computer literacy. College Student Journal, 43, 812-821.

169

© Jens Kaasbøll, 5 January, 2018

HINDS, P. J. 1999. The curse of expertise: The effects of expertise and debiasing methods on
prediction of novice performance. Journal of Experimental Psychology: Applied, 5, 205-
221.

HMELO-SILVER, C. E., DUNCAN, R. G. & CHINN, C. A. 2007. Scaffolding and
Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller,
and Clark (2006). Educational Psychologist, 42, 99-107.

HOLTON III, E. F. 1996. The Flawed Four-Level Evaluation Model. Human Resource
Development Quarterly, 7, 5-21.

HOWELL, J. M. 2005. The right stuff: Identifying and developing effective champions of
innovation. Academy of Management Perspectives, 19, 108-119.

IDEN, J. & EIKEBROKK, T. R. 2013. Implementing IT Service Management: A systematic
literature review. International Journal of Information Management, 33, 512– 523.

ISAKSEN, H., IVERSEN, M., KAASBØLL, J. & KANJO, C. 2017. Design of Tooltips for
Data Fields: A Field Experiment of Logging Use of Tooltips and Data Correctness. In:
MARCUS, A. & WANG, W. (eds.) DUXU 2017. Springer.

ISO/IEC 2008. Systems and software engineering - Requirements for designers and
developers of user documentation. Geneva: International Organization for Standardization.

ITIL - AXELOS 2011. ITIL Service Operation. London: TSO.
KAASBØLL, J. 2014. Suitability of diagrams for IT user learning. ISDOC '14 Proceedings of

the International Conference on Information Systems and Design of Communication New
York: ACM.

KANAPATHY, K. & KHAN, K. I. 2012. Assessing the Relationship between ITIL
Implementation Progress and Firm Size: Evidence from Malaysia. International Journal
of Business and Management, 7, 194-199.

KANSTRUP, A. M. & BERTELSEN, P. 2006. Participatory IT-support. In: JACUCCI, G. &
KENSING, F. (eds.) PDC 2006 - Proceedings of the ninth Participatory Design
Conference. Trento, Italy: ACM.

KARUPPAN, C. & KARUPPAN, M. 2008. Resilience of super users' mental models of
enterprise-wide systems. European Journal of Information Systems, 17, 29-46.

KATO, T. 1986. What “question-asking protocols” can say about the user interface.
International Journal of Man-Machine Studies, 25, 659–673.

KEHOE, E. J., BEDNALL, T. C., YIN, L., OLSEN, K. N., PITTS, C., HENRY, J. D. &
BAILEY, P. E. 2009. Training adult novices to use computers: Effects of different types
of illustrations. Computers in Human Behavior, 25, 275–283.

KEITH, N. & FRESE, M. 2008. Effectiveness of error management training: A meta-analysis.
Journal of Applied Psychology, 93, 59-69.

KENSING, F. & MUNK-MADSEN, A. 1993. PD: structure in the toolbox. Communications
of the ACM, 36, 78-8.

KIILI, K. & KETAMO, H. 2007. Exploring the Learning Mechanism in Educational Games.
Journal of Computing and Information Technology, 4, 319–324.

KIRKPATRICK, D. L. 1959. Techniques for evaluating training programs. Journal of
American Society of Training Directors, 13, 21-26.

KIRKPATRICK, D. L. 1975. Evaluating Training Programs, San Francisco, Berrett-Koehler.
KIRKPATRICK, D. L. & KIRKPATRICK, J. D. 2006. Evaluating Training Programs: The

Four Levels San Francisco, Berrett-Koehler.
KORPELAINEN, E. & KIRA, M. 2010. Employees' choices in learning how to use

information and communication technology systems at work: strategies and approaches.
International Journal of Training and Development, 14, 32–53.

KUMAR, S. 2010. DebugMode Wink [Online]. DebugMode. Available:
http://www.debugmode.com/wink/ [Accessed 5 Jan 2012].

http://www.debugmode.com/wink/

170

© Jens Kaasbøll, 5 January, 2018

LARRES, P. M., BALLANTINE, J. & WHITTINGTON, M. 2003. Evaluating the validity of
self-assessment: measuring computer literacy among entry-level undergraduates within
accounting degree programmes at two UK universities. Accounting Education: An
International Journal 12, 97-112.

LAZONDER, A. W. 2005. Do two heads search better than one? Effects of student
collaboration on web search behaviour and search outcomes. British Journal of
Educational Technology, 36, 465–475.

LI, Y. & RANIERI, M. 2010. Are ‘digital natives’ really digitally competent?—A study on
Chinese teenagers. British Journal of Educational Technology, 41, 1029–1042.

LIM, K. H., WARD, L. M. & BENBASAT, I. 1997. An Empirical Study of Computer System
Learning: Comparison of Co-Discovery and Self-Discovery Methods. Information
Systems Research, 8, 254-272.

LIMAYEM, M., HIRT, S. G. & CHEUNG, C. M. K. 2007. How Habit Limits the Predictive
Power of Intention: The Case of Information Systems Continuance. MIS Quarterly, 31,
705-737.

MACKAY, W. E. 1990. Patterns of sharing customizable software. CSCW '90 Proceedings of
the 1990 ACM conference on Computer-supported cooperative work. New York: ACM.

MARKUS, M. L. & MAO, J.-Y. 2004. Participation in Development and Implementation -
Updating An Old, Tired Concept for Today's IS Contexts. Journal of the Association for
Information Systems, 5, 514-544.

MARRONE, M. & KOLBE, L. M. 2010. Uncovering ITIL claims: IT executives’ perception
on benefits and Business-IT alignment. Information Systems and E-Business Management,
9, 363–380.

MARSH, C. 2007. Strategic Knowledge of Computer Applications: The Key to Efficient
Computer Use. Issues in Informing Science and Information Technology, 4, 269-276.

MARTIN, A. P., IVORY, M. Y., MEGRAW, R. & SLABOSKY, B. 2005. Exploring the
Persistent Problem of User Assistance. ResearchWorks. Seattle, WA, USA: University of
Washington.

MAYER, R. E. 1989. Models for Understanding. Review of Educational Research, 59, 43-64.
MCDOWELL, C., WERNER, L., BULLOCK, H. & FERNALD, J. 2006. Pair programming

improves student retention, confidence, and program quality. Communications of the
ACM, 49, 90-95.

MCEECDYA 2010. National Assessment Program - ICT Literacy Years 6 & 10 Report 2008.
Carlton South, Victoria, Australia: Ministerial Council for Education, Early Childhood
Development and Youth Affairs.

MCINTIRE, S. & CLARK, T. 2009. Essential Steps in Super User Education for Ambulatory
Clinic Nurses. Urologic Nursing, 29, 337-342.

MCNEIVE, J. E. 2009. Super Users Have Great Value in Your Organization. Computers,
Informatics, Nursing, 136-139.

MERRITT, K., SMITH, K. D. & DI RENZO JR., J. C. 2005. An investigation of self-reported
computer literacy: Is it reliable? Issues in Information Systems, VI, 289-295.

MITRA, S. Kalkaji [Online]. Available:
http://www.flickr.com/photos/tedconference/8493285132/ [Accessed 6 Nov 2013].

MITRA, S., DANGWAL, R., CHATTERJEE, S., JHA, S., BISHT, R. S. & KAPUR, P. 2005.
Acquisition of computing literacy on shared public computers: children and the “hole in
the wall.” Australasian Journal of Educational Technology 21, 407-426.

06 Google Spreadsheets Cell Formula pt 6 of 7 2009. Directed by MRWAYNESCLASS.
YouTube.

MUNKVOLD, R. 2003. End User Support Usage. In: GORDON, S. R. (ed.) Computing
information technology: the human side. Hershey, PA, USA: Idea Group Inc.

http://www.flickr.com/photos/tedconference/8493285132/

171

© Jens Kaasbøll, 5 January, 2018

NATHAN, M. J. & KOEDINGER, K. R. 2000. An Investigation of Teachers' Beliefs of
Students' Algebra Development. Cognition and Instruction, 18, 209-237.

NGOMA, C., KAASBØLL, J. J. & AANESTAD, M. From User Training to In-Service
Support. In: CUNNINGHAM, P. & CUNNINGHAM, M., eds. IST-Africa 2008
Conference Proceedings, 2008 2008. International Information Management Corporation
Limited.

NIELSEN, J. 1993. Usability Engineering, Boston, AP Professional.
NIELSEN, J. 1994. Estimating the number of subjects needed for a thinking aloud test.

International Journal of Human-Computer Studies, 41, 385–397.
NIELSEN, J., DIRCKINCK-HOLMFELD, L. & DANIELSEN, O. 2003. Dialogue Design-

With Mutual Learning as Guiding Principle. International Journal of Human–Computer
Interaction, 15, 21-40.

NILSEN, H. & SEIN, M. 2004. What is really important in supporting end-users?
Proceedings of the 2004 SIGMIS conference on Computer personnel research: Careers,
culture, and ethics in a networked environment. ACM.

NORMAN, D. 1988. The Psychology Of Everyday Things, New York, Basic Books.
NOVICK, D. G., ANDRADE, O. D. & BEAN, N. 2009. The micro-structure of use of help.

SIGDOC '09. New York: ACM.
NOVICK, D. G., ELIZALDE, E. & BEAN, N. 2007. Toward a more accurate view of when

and how people seek help with computer applications. SIGDOC '07. New York: ACM.
NOVICK, D. G. & WARD, K. 2006. Why don't people read the manual? SIGDOC '06. New

York: ACM.
NÜCKLES, M., WINTER, A., WITTWER, J., HERBERT, M. & HÜBNER, S. 2006. How

do Experts Adapt their Explanations to a Layperson’s Knowledge in Asynchronous
Communication? An Experimental Study. User Modeling and User-Adapted Interaction,
16, 87-127.

OECD 2011. PISA 2009 Results: Students on Line: Digital Technologies and Performance
(Volume VI).

OLSEN, K. A. & MALIZIA, A. 2011. Automated Personal Assistants. Computer.
ORMROD, J. E. 1995. Human Learning, Englewood Cliffs, New Jersey, Merrill.
ORMROD, J. E. 2012. Human Learning, Englewood Cliffs, New Jersey, Merrill.
PAPASTERGIOU, M. 2005. Students’ Mental Models of the Internet and Their Didactical

Exploitation in Informatics Education. Education and Information Technologies, 10, 341-
360.

PHELPS, R., ELLIS, A. & HASE, S. 2001. The role of metacognitive and reflective learning
processes in developing capable computer users. . Meeting at the crossroads: proceedings
of the 18th Annual Conference of ASCILITE. Melbourne: Southern Cross University.

POE, S. S., ABBOTT, P. & PRONOVOST, P. 2011. Building Nursing Intellectual Capital for
Safe Use of Information Technology: A Before-After Study to Test an Evidence-Based
Peer Coach Intervention. Journal of Nursing Care Quality, 26, 110-119.

POLITES, G. L. & KARAHANNA, E. 2012. Shackled to the Status Quo: The Inhibiting
Effects of Incumbent System Habit, Switching Costs, and Inertia on New System
Acceptance. MIS Quarterly, 36, 21-42.

POOLE, E. S., CHETTY, M., MORGAN, T., GRINTER, R. E. & EDWARDS, W. K. 2009.
Computer help at home: methods and motivations for informal technical support. CHI '09.
New York: ACM.

PRICE, S. & FALCÃO, T. P. 2011. Where the attention is: Discovery learning in novel
tangible environments. Interacting with Computers, 23, 499–512.

PUUSTINEN, M. & ROUET, J.-F. 2009. Learning with new technologies: Help seeking and
information searching revisited. Computers & Education, 53, 1014–1019.

172

© Jens Kaasbøll, 5 January, 2018

RAMSDEN, P. 2003. Learning to Teach in Higher Education, London, RoutledgeFalmer.
REYNOLDS, G. 2010. Presentation zen design : simple design principles and techniques to

enhance your presentations, Berkeley, New Riders.
RIEMAN, J. 1996. A field study of exploratory learning strategies. Transactions on

Computer-Human Interaction, 3, 189-218.
RODRIGUEZ, M. C. 2005. Three Options Are Optimal for Multiple-Choice Items: A Meta-

Analysis of 80 Years of Research. Educational Measurement: Issues and Practice, 24, 3-
13.

ROSCOE, R. D. & CHI, M. T. H. 2007. Understanding Tutor Learning: Knowledge-Building
and Knowledge-Telling in Peer Tutors’ Explanations and Questions. Review of
Educational Research, 77, 534-574.

ROSLING, H. 2006. Hans Rosling shows the best stats you've ever seen. New York City and
Vancouver: TED Ideas worth spreading.

ROURKE, L. & KANUKA, H. 2009. Learning in Communities of Inquiry: A Review of the
Literature. Journal of Distance Education, 23, 19-48.

SANTHANAM, R., SELIGMAN, L. & KANG, D. 2007. Postimplementation Knowledge
Transfers to Users and Information Technology Professionals. Journal of Management
Information Systems, 24, 171-199.

SCHOENFELD, A. H. 1992. Learning to think mathematically: Problem solving,
metacognition, and sense-making in mathematics. In: GROUWS, D. A. (ed.) Handbook
for Research on Mathematics Teaching and Learning. New York: Macmillan.

SCOTT, J. E. 2006. Post-Implementation Usability of Erp Training Manuals:The User's
Perspective. Information Systems Management, 22, 67-77.

SEIN, M. K. & BOSTROM, R. P. 1989. Individual differences and conceptual models in
training novice users. Human–Computer Interaction, 4, 197-229.

SEIN, M. K., BOSTROM, R. P. & OLFMAN, L. 1998. Conceptualizing IT training for the
workforce of the future. SIGCPR, 30, 223-241.

SEIN, M. K., BOSTROM, R. P. & OLFMAN, L. 1999. Rethinking End-User Training
Strategy: Applying a Hierarchical Knowledge-Level Model. Journal of End User
Computing, 11, 32-39.

SFARD, A. 1991. On the Dual Nature of Mathematical Conception: Reflections on Processes
and Objects as Different sides of the Same Coin. Educational Studies in Mathematics, 22,
1-36.

SHARMA, R. & YETTON, P. 2007. The contingent effects of training, technical complexity,
and task interdependence on successful information systems implementation. MIS
Quarterly, 31, 219-238.

SHAW, N. C., DELONE, W. H. & NIEDERMAN, F. 2002. Sources of dissatisfaction in end-
user support: an empirical study. ACM SIGMIS Database, 33, 41-55.

SHNEIDERMAN, B. & PLAISANT, C. 2010. Designing the User Interface: Strategies for
Effective Human-Computer Interaction, Boston, Pearson.

SHRAGER, J. & KLAHR, D. 1986. Instructionless learning about a complex device: the
paradigm and observations. International Journal of Man-Machine Studies, 25, 153-189.

SIEBER, V. 2009. Diagnostic online assessment of basic IT skills in 1st-year undergraduates
in the Medical Sciences Division, University of Oxford. British Journal of Educational
Technology, 40, 215-226.

SIMON, S. J. & WERNER, J. M. 1996. Computer training through behavior modeling, self-
paced, and instructional approaches: A field experiment. Journal of applied psychology,
81, 648-659.

SIMONSEN, J. & ROBERTSON, T. 2013. Routledge International Handbook of
Participatory Design, New York, Routledge.

173

© Jens Kaasbøll, 5 January, 2018

SINK, C., SINK, M., STOB, J. & TANIGUCHI, K. 2008. Further evidence of gender
differences in high school-level computer literacy. Chance, 21, 49-53.

SMART, K. L., WHITING, M. E. & DETIENNE, K. B. 2001. Assessing the Need for Printed
and Online Documentation: A Study of Customer Preference and Use. Journal of Business
Communication, 38, 285-314.

SPEIER, C. & BROWN, C. V. 1997. Differences in end-user computing support and control
across user departments. Information & Management, 32, 85–99.

SPITLER, V. K. 2005. Learning to Use IT in the Workplace: Mechanisms and Masters.
Organizational and End User Computing, 17, 1-25.

STAMATOVA, E. & KAASBØLL, J. J. 2007. Users’ Learning of Principles of Computer
Operations. Issues in Informing Science and Information Technology, 4, 291-306.

STODOLSKY, S. 1988. The subject matters : classroom activity in math and social studies,
Chicago, University of Chicago Press.

STUART, L. H., MILLS, A. M. & REMUS, U. 2009. School leaders, ICT competence and
championing innovations. Computers & Education, 53, 733–741.

SUBRAHMANIYAN, N., BECKWITH, L., GRIGOREANU, V., BURNETT, M.,
WIEDENBECK, S., NARAYANAN, V., BUCHT, K., DRUMMOND, R. & FERN, X.
2008. Testing vs. Code Inspection vs. ... What Else? Male and Female End Users’
Debugging Strategies. In: BURNETT, M. (ed.) Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems. New York: ACM.

SYKES, T. A., VENKATESH, V. & GOSAIN, S. 2009. Model of Acceptance with Peer
Support: A Social Network Perspective to Understand Employees’ System Use. MIS
Quarterly, 33, 371-393.

TAYLOR, P. J., RUSS-EFT, D. F. & CHAN, D. W. L. 2005. A Meta-Analytic Review of
Behavior Modeling Training. Journal of Applied Psychology, 90, 692-709.

TUFTE, E. 1990. Envisioning information, Cheshire, Conn, Graphics Press.
TUFTE, E. 2011. The work of Edward Tufte and Graphics Press [Online]. [Accessed].
VAN DER SANDEN, J. M. M. & TEURLINGS, C. C. J. 2003. Developing competence

during practice periods: The learner’s perspective. In: TUOMI-GROHN, T. &
ENGESTROM, Y. (eds.) Between school and work: New perspectives on transfer and
boundary crossing. Oxford, UK: Elsevier Science.

VAN VELSEN, L. S., STEEHOUDER, M. F. & DE JONG, M. D. T. 2007. Evaluation of
User Support: Factors That Affect User Satisfaction With Helpdesks and Helplines. IEEE
Transactions on Professional Communication, 50, 219-231.

VAN VLIET, P. J. A. & KLETKE, M. G. 1994. The measurement of computer literacy: a
comparison of self-appraisal and objective tests. International Journal of Human-
Computer Studies, 40, 835–857.

VAN WIJK, R., JANSEN, J. J. P. & LYLES, M. A. 2008. Inter- and Intra-Organizational
Knowledge Transfer: A Meta-Analytic Review and Assessment of its Antecedents and
Consequences. Journal of Management Studies, 45, 830–853.

VANLEHN, K., SILER, S., MURRAY, C., YAMAUCHI, T. & BAGGETT, W. B. 2003.
Why Do Only Some Events Cause Learning During Human Tutoring? Cognition and
Instruction, 21, 209-249.

VENKATESH, V., MORRIS, M. G., DAVIS, G. B. & DAVIS, F. D. 2003. User acceptance
of information technology: Toward a unified view. MIS Quarterly, 27, 425-478.

VESSEY, I. & CONGER, S. A. 1994. Requirement Specification: Learning Object, Process,
and Data Methodologies. Communications of the ACM, 37, 102-113.

VOLKOFF, O., ELMES, M. B. & STRONG, D. M. 2004. Enterprise systems, knowledge
transfer and power users. The Journal of Strategic Information Systems, 13, 279–304.

174

© Jens Kaasbøll, 5 January, 2018

VON NEUMANN, J. 1945. First Draft of a Report on the EDVAC. Philadelphia: University
of Pennsylvania.

WAGNER, E. L. & PICCOLI, G. 2007. Moving beyond user participation to achieve
successful IS design. Communications of the ACM, 50, 51-55.

WALRAVEN, A., BRAND-GRUWELB, S. & BOSHUIZEN, H. P. A. 2010. Fostering
transfer of websearchers’ evaluation skills: A field test of two transfer theories. Computers
in Human Behavior, 26, 716–728.

WAYTZ, A., CACIOPPO, J. & EPLEY, N. 2010. Who Sees Human?: The Stability and
Importance of Individual Differences in Anthropomorphism. Perspectives on
Psychological Science, 5, 219–232.

WENGER, E. 1998. Communities of practice : learning, meaning, and identity, Cambridge,
Cambridge University Press.

WESTBROOK, L. 2006. Mental models: a theoretical overview and preliminary study.
Journal of Information Science, 32, 563–579.

WITTWER, J. & RENKL, A. 2010. How Effective are Instructional Explanations in
Example-Based Learning? A Meta-Analytic Review. Educational Psychology Review, 22,
393-409.

ÖSTBY, J. 2012. KRUT [Online]. sourceforge. Available: http://krut.sourceforge.net/
[Accessed 5 Jan 2012].

ÅSAND, H.-R. H. & MØRCH, A. 2006. Super Users and Local Developers: The
Organization of End User Development in an Accounting Company. Journal of
Organizational and End User Computing, 18, 1-21.

http://krut.sourceforge.net/

175

© Jens Kaasbøll, 5 January, 2018

Index

abstract concepts, 36

abstract entities, 51

abstraction, 110

Adobe Captivate, 22

adolescents, 111

adults, 111

advanced, 20

age, 110

algorithms, 130

analogy model, 46

anxiety, 72

architecture, 51

assessing competence, 123

assessing IT skills, 24

assessment, 101

balloon help, 90

Behaviour, 121

behavioural change, 121

behaviourism, 25

behaviouristic learning theory, 88

Bloom's taxonomy, 11

boundary interaction, 137

boundary object, 137

boys, 136

brevity, 17

broker, 137

bug tracking, 155

Certiport, 131

champions, 148

child, 110

children, 64, 68, 135

Clippy, 94

coding, 9

cognitive load, 14

command style user interface, 88

community of practice, 137

comparing input and output, 36

competence, 12

competence standards, 130

competence tests, 131

completeness, 16, 25

computer science education, 9

computer supported learning, 10

conceptualisation, 36

concrete experience, 36

concrete operational stage, 111

confidence, 72

confronting business misconceptions, 33

Confronting functional misconceptions, 41

confronting misconceptions, 33, 104

176

© Jens Kaasbøll, 5 January, 2018

constructivism, 36

constructivist, 8

context-free help, 93

context-sensitive help, 92

contrast, 115

counterfactual situations, 111

coworkers’ influence, 147

critique session, 161

customizing, 146

data model, 50

descendants, 47

direction, 16

directive, 16

discrimination error, 58

distinction between concepts, 59

document structure. See

documentation, 18

documentation in training, 104

ease of use, 26

ECDL, 131

educational science, 10

Educational Testing Service, 131

error encouragement, 101

European Computer Driving License, 131

examples, 51

experimentation, 65

exploration, 64

explore, 101

external source for learning, 46

extinctions, 88

facilitating conditions, 27

fantasy phase, 162

feedback, 16

file system, 44

FITness, 130

Fluency with IT, 130

folders, 44

font size, 115

frequently asked questions, 156

functional depencdency, 47

functional models, 38

functional understanding, 36

Future workshops, 161

girls, 136

grid, 47

guide, 103

hardware, 119

heuristic evaluation, 95

hidden structures, 43

hierarchy, 47

Hole-In-The-Wall, 64

homonyms, 60

human computer interaction, 9

hypothesis, 68

177

© Jens Kaasbøll, 5 January, 2018

hypothetical situations, 111

ICDL, 131

icon, 89

illustrations, 114

imitating peers, 73

imitation, 14

immediate reinforcements, 88

impasse, 100

Impress, 113

information literacy, 9

information systems, 9

informative reinforcements, 88

inline help, 90

input state, 38

instruct, 14

instruction, 103

instruction sheet, 15

instruction video, 21

instructions, 15, 101

interference, 40

International Computer Driving License,
131

Internet, 57

Internet Service Provider, 57

Introduction, 104

issue tracking system, 155

IT concepts, 35

IT literacy, 136

IT personnel, 139

IT skills, 13

IT specialists, 8

IT structures, 44

ITIL, 155

Keynote, 113

Kirkpatrick’s model of evaluation of
training, 121

KRUT, 23

layered architecture, 56

layers, 56

leaders, 147

learn, 36

learnability, 87

learning, 12, 61

Learning, 121

learning competence, 61

Learning objective, 117

learning oriented, 62

learning oriented users, 101

learning styles, 46

lecturer, 8

level of abstraction, 110

level of mastery, 37

local area network, 57

master slides, 112

178

© Jens Kaasbøll, 5 January, 2018

mental models, 38

metacognition, 61

minimal manual, 17

minimal manuals, 29

minimalism, 17

misconception, 104

misfit, 84

misunderstanding, 104

Mitra, Sugata, 64

motivation, 117

multiple choice, 33

mutual learning, 158

negative reinforcements, 88

network, 47

network protocol, 56

non-trivial assignments, 105

novelty, 40

novice, 20

object first, 72

office assistant, 94

operation first, 72

organisational learning, 10

Outcome, 117, 121

output state, 38

overburdening, 100

own data, 119

pair, 100

pedagogy, 10

perceived ease of use, 26

perceived usefulness, 26

performance oriented, 62

performance oriented users, 101

positive reinforcement, 88

PowerPoint, 113

Practicals, 104

practice, 137

precedents, 47

preschool children, 111

presentation program, 112

Prezi, 113

problem solving approach, 105

problem solving competence, 12, 66

problem solving competences, 101

programming, 130

projector, 23, 103

protocol, 57

Prototypes, 162

proximity, 15

psychology, 10

punishments, 89

qualities of IT support, 154

Question-Suggestion, 96

Reaction, 121

realisation phase, 162

179

© Jens Kaasbøll, 5 January, 2018

recognizable, 15

relationships between concepts, 59

repetition, 13

research cycle competence, 67

response time, 154

Responsibilities, 162

Result, 121

scaffolds, 12

screentip, 90

search behaviour, 77

self-efficacy, 72, 102

self-reporting, 134

sequence, 47

sequential, 16

Sequential, 16

service desk, 155

short, 17

short term memory, 14

situated learning, 137

skill levels, 20

skill training, 23

skills, 11

skills acquisition, 11

slide, 111

slide design, 111

slow connections, 119

slow learners, 38

social influence, 27, 117

soft copies of the documentation, 120

software, 119

Software upgrades, 154

structural models, 42

structural understanding, 36

Summary, 104

superusers, 12, 102, 139, 149

supporters, 153

System-initiated help, 94

tasks, 28

teacher, 8

teacher training college, 9

teachers, 139

technology acceptance model, 147

Technology Acceptance Model, 26

terminology, 89

terminology issue, 20

terminology problem, 94

text and illustrations, 113

text flow, 135

thinking aloud, 96

ticket system, 155

tooltip, 90

topology, 47

training environment similar to the
business, 120

180

© Jens Kaasbøll, 5 January, 2018

training generation and testing of
hypotheses, 102

training material, 154

training module, 98

transfer, 116

troubleshooting, 66

type-instance, 52

types, 51

understanding, 11

Understanding IT in business, 30

usefulness, 26, 28

user group, 51

user interface, 24

user training, 14

verbal abilities, 39

versions, 119

video, 21, 46, 103

Visiting other installations, 161

visual ability, 45

visualising data structure, 48

von Neumann architecture, 55

web host, 57

Wink, 23

wizard, 92

workaround, 84, 145

	Table of contents
	Ten golden rules for improving IT users’ competence

	Chapter 1. Introduction
	1.1. Why bother?
	1.2. Aims and target groups
	1.3. Related areas
	1.4. Organisation

	Chapter 2. IT skills
	2.1. Learning IT skills
	Repetition
	Imitation and instructions

	2.2. Instruction sheets – scaffolds for imitation
	Recognizable
	Proximity
	Sequential
	Direction
	Completeness and Feedback
	Short
	Level of detail
	Terminology
	Tools for creating instruction sheets

	2.3. Instruction videos
	Tools for creating instruction videos

	2.4. Training for skills
	2.5. Assessing IT skills
	2.6. Summary

	Chapter 3. Learning business fit
	3.1. Usefulness
	3.2. Understanding usefulness of IT in own tasks
	3.3. Minimal Manuals
	3.4. Understanding IT in business
	3.5. Business oriented models
	3.6. Confronting misconceptions
	3.7. Summary

	Chapter 4. Understanding IT
	4.1. From skills to understanding
	4.2. Functional models
	4.3. Confronting functional misconceptions
	4.4. Structural models
	IT structures — Recognisable elements
	Videos

	4.5. Data structures
	Networks

	4.6. Data types and instances
	4.7. Layers
	4.8. Structural and functional misconceptions
	Concepts with related meaning
	Homonyms

	4.9. Summary

	Chapter 5. Learning solving IT problems
	5.1. Learning oriented users
	5.2. Research cycle
	Exploration

	5.3. Problem solving
	Experimentation
	Troubleshooting

	5.4. Understanding as a prerequisite for problem solving
	5.5. Research cycle competence
	5.6. Stages of the research cycle
	Observing repetitive use
	Planning testing hypotheses
	Mediating hypotheses
	Systematic interface browsing
	Self-efficacy
	Input checks
	Precise observation
	Information search and help seeking

	5.7. Strategies for iterations
	Backtracking
	Elimination
	Changing work routines

	5.8. Innovative research cycles
	Customizing
	Installing new software
	Introducing new devices
	Workaround

	5.9. Summary

	Performance orientation—Ofra:
	Chapter 6. User interface for learning
	6.1. Learnability
	6.2. Design for learnability
	Reinforcement
	Consistency

	6.3. Inline help
	Tooltips
	Wizards
	Context-sensitive document help
	Context-sensitive video help
	Context-free help
	System-initiated help
	Summary

	6.4. Evaluating learnability
	Heuristic evaluation
	Question-suggestion
	Measuring learning

	Chapter 7. Training modules
	7.1. Training modules for skills and understanding
	7.2. Training modules for improving problem solving competence
	7.3. Teaching a module
	7.4. Online tutorial for a module
	7.5. Sequence for teaching related topics of IT use
	Concepts which build on each other
	Concepts which are specialisations of other concepts

	7.6. Age levels of abstraction
	7.7. Instructions, functional and structural models – slide design

	Chapter 8. Training for transfer
	8.1. Transfer
	8.2. Motivation and objectives
	8.3. Realistic training environment
	8.4. Summary

	Chapter 9. Evaluation of training
	9.1. Evaluation of reaction to training
	9.2. Evaluation of learning – assessing competence
	Multiple choice questions
	Assessing problem solving competence

	9.3. Evaluation of behavioural change
	9.4. Evaluation of impact

	Chapter 10. IT user competence standards
	10.1. Standards and guidelines
	10.2. Tests
	Competence tests versus self-reporting

	10.3. Differences in IT competence levels
	10.4. Summary

	Chapter 11. Superusers
	11.1. Roles
	Users
	IT personnel
	Trainers
	Superusers

	11.2. Community of superuser practice
	11.3. Superusers’ roles
	Chauffeur
	Problem solvers
	Broker
	Trainer
	Champion

	11.4. Organising for competence development
	11.5. Summary

	Chapter 12. IT support
	12.1. How IT supporters learn
	12.2. Support quality
	12.3. Improving IT support
	12.4. IT support versus superusers
	12.5. Summary

	Chapter 13. Mutual learning during business fit
	13.1. Users learning about IT
	13.2. IT personnel learning about business fit
	13.3. Joint creation of understanding and skills of new system
	Mutual interviewing
	Visiting other installations
	Future workshops
	Prototypes

	13.4. User representatives as superusers
	13.5. Summary

	References
	Index

