
Store og komplekse
informasjonssystemer

Gruppetime INF3290 uke 43
kribrae@ifi.uio.no

Agenda

- Interactive Systems: Bridging the Gaps Between Developers and Users
(Grudin)

- Software engineering beyond the project – Sustaining software ecosystems
(Dittrich)

- Generification as Ecology (Nielsen)

Interactive Systems: Bridging the
Gaps Between Developers and Users

Grudin

Interactive Systems: Bridging the Gaps Between
Developers and Users

Artikkel fra 1991

En del organisasjonsstrukturer og utviklingsprosesser ble definert før
brukermedvirkning var vanlig

Fossefallsmodellen for systemutvikling var dominant, men denne er lite egnet for
brukermedvirkning

(Grudin, 1991)

Interactive Systems: Bridging the Gaps Between
Developers and Users

Three development contexts provide a framework for understanding interactive
software projects:

- Competitively bid
- Commercial product
- In-house/custom development

(Grudin, 1991)

Identifying developers and users

Figure 1 presents three
paradigms for software
project development
based on when users
and developers are
identified.

(Grudin, 1991)

Identifying developers and users

- In contract development or software acquisition, the user organization is
known from the outset, but the development organization is identified after a
contract is awarded.

- In product development, also called commercial off-the-shelf or shrink-wrap
software development, the developers are known from the outset, but the
users often remain unknown until the product is marketed

- Finally, in in-house development, also called internal or information systems
development, both the users and the developers are known at the project
outset.

(Grudin, 1991)

Identifying developers and users

The timing gap between user and developer involvement in a product or
competitively bid contract development project is an obstacle to collaboration.

Many aspects of development practice have evolved to “communicate across
time” - to bridge the gaps shown in Figure 1 - as well as to bridge the physical
distances that often separate developers and users

(Grudin, 1991)

Three development contexts

- Contract development: focus on software methods
- Waterfall model
- The reliance on specification documents imposes a “wall” between users and developers

- Product development: focus on the user interface
- The market and the customer in product development represent a thick hedge. Information

about users’ needs gets through, but it takes time and is muffled. Individual voices are not
heard.

- In house and custom development: focus on user participtation
- This paradigm affords an obvious potential advantage to user participation in design: The

developers and the eventual users are known when the project is initiated.

- Potential obstacles to success do exist. Projects for multiuser systems are more challenging
than single-user applications

- an internal development project must be accepted by a set group of users (Grudin, 1991)

Factors influencing interactive systems development

- The size of the development company or organization.
- The charter of the company or organization
- Organizational structures and procedures.
- The nature of the system user population
- Mediators: additional partners in the development project
- Commitments and agreements among the groups involved
- Societal conditions and change over time.

(Grudin, 1991)

Focusing on users: Opportunities, obstacles, and
mediators

- Contract development. User involvement faces the most formidable obstacles
in this context, especially with fixed-cost competitively bid contracts.

- Product development. This context provides a strong incentive to increase
usability, but user involvement is a challenge when the potential users are
numerous yet faceless.

- In-house development. This development context appears to offer good
prospects for collaboration among users and developers, but the challenges
are substantial. One challenge is that internal development is often modeled
on contract development, adopting methods that work against user
involvement.

(Grudin, 1991)

Software engineering beyond the
project – Sustaining software

ecosystems

Dittrich

Software engineering beyond the project – Sustaining
software ecosystems

Context: The main part of software engineering methods, tools and technologies
has developed around projects as the central organisational form of software
development. A project organisation depends on clear bounds regarding scope,
participants, development effort and lead-time. What happens when these
conditions are not given? The article claims that this is the case for software
product specific ecosystems. As software is increasingly developed, adopted and
deployed in the form of customisable and configurable products, software
engineering as a discipline needs to take on the challenge to support software
ecosystems

(Dittrich, 2014)

Introduction

This article takes addresses a different question: How do software development
processes change when developing software in and for a software ecosystem?

… it is apparent that many of the software engineering methods, tools and
techniques do not support the development and evolution of software products.
The analysis proposes that the problem might be due to the focus on the project
by software engineering methods and techniques.

The CMMI defines a project as ‘... a managed set of interrelated resources that
delivers one or more products to a customer or end user. It has a beginning and
an end and typically operates according to a plan’

(Dittrich, 2014)

Introduction

Software products

The delivered product is rather a half product that has to be configured and
customised to a specific context

There is no decided beginning of the evolution, and the goal is to keep the product
useful and attractive to its users over a long time, rather than delivering it once.

(Dittrich, 2014)

The four software product ecosystems

- UIQ – developing a user interface framework for high-end mobile phones
- Microsoft Dynamics – evolving an ERP system for small and medium sized

companies
- SIM – Water and Environment Simulation

- Not for-profit organisation

- UIB – software distribution for local area networks
- Applications + open source product

(Dittrich, 2014)

Analysis results

- Relating design across different constituencies
- Interlacing design constiuencies
- Keeping connected with the context of use

- Architectures maintained by communities of practice
- Architecturing as skill of a group of architects/core developers
- Interfaces separating and bridging the different design constituencies

- Cycles within cycles
- Combining different rhythms to juggle different needs
- Conflicting drivers of the evolution process
- Developting organisational structures to balance different qualities

(Dittrich, 2014)

Software development beyond the project

- Interwining practices of design and use
- Deferring design to 3rd party developers, organisational implementation and use
- Communication between developers, implementers and users
- Managing an overlay of different evolution cycles
- Informal knowledge management practices

(Dittrich, 2014)

Conclusions and future research

Although size, kind of software and business models differ, the commonalities are
striking:

 – The software products are developed in interaction with a product related ecosystem
where part of the design is deferred to other actors closer to the concrete use context.
However, real world ecosystems do not only consist of the product developer providing
a platform for 3rd party developers together with the product but includes several layers
of actors customising and configuring the software product. Often the product can be
regarded as part of one or several ecosystems itself.

 – Innovation takes place across the whole ecosystem. Contact with users and other
actors is therefore important to keep the innovative edge of the software product.

 – The technical design and architecture exists as practice of architects and core
developers rather than as explicit documentation. (Dittrich, 2014)

Conclusions and future research

Although size, kind of software and business models differ, the commonalities are
striking:

– The interfaces for configuration and customisation both separate and bridge the
different design constituencies. They are contested and need to be maintained
continuously.

 – To juggle different and sometimes conflicting development drivers – bug fixes, new
features, technical re-engineering – the development processes consist of an overlay of
different development cycles.

 – As the companies have to balance different qualities of their products, they struggle
with finding the right organisation of the development team. The organisation might
change depending on different emphasis in the development, which, in turn, depends
on the dynamics of the ecosystem. (Dittrich, 2014)

Generification as Ecology

Nielsen

Generification as Ecology

Making software packages generic and implementing them in organizations is a
key activity in systems development. This paper reports from a study of the
implementation of a web shop software package in a multinational Telecom
company. The aim of the paper is to improve our understanding and
conceptualization of such processes.

This paper is an argument to break up the restricted project focus in information
systems research and appreciate the non-lonely nature of organisational
implementation projects.

(Nielsen, 2016)

Introduction

The challenge of inflexible legacy systems, the cost and scarcity of internal IT
resource and the promise of significant cost-savings motivate organisations to use
software packages. Developed by software vendors, software packages are not
particularly tailored for one organisation, but sensibly designed to serve a range of
different organisations and contexts.

To achieve their generic nature, software packages must be based on a
future-oriented architecture and capture requirements from a wide audience of
organisations over time.

(Nielsen, 2016)

Introduction

The existing body of research on the implementation of software packages in
global organizations (standardisation) and the development of standardized
software packages (generification) has focused on the conflict between local and
global needs and strategies or incorporating local requirements into global
standards.

The main contribution of the paper lies in [...] by conceptualizing the
implementation of software packages as processes unfolding in parallel with other
implementation processes and generification as a process involving the
implementing organization beyond being a source of requirements

(Nielsen, 2016)

Generification as Ecology

In this paper, we argue for taking an ecological perspective on generification. The
concept of ecology is borrowed from biology and used by information systems
researchers to describe networks of diverse actors influencing each other’s and
being mutually dependent within a specific (eco)system.

Software platforms involve software development beyond making the platform. Not
only will platforms be maintained, but they also open up for continuous innovation
and customization to meet local needs

(Nielsen, 2016)

Case: Telco

The particular focus in this paper is an initiative by the Industrialisation Unit (IU) in
the corporate headquarters in Telco to renew the local, independent and not
standardised web shops in the various Telco operations. This initiative was
grounded on activities dating back to 2009, leading up to an attempt to implement
a standardised web shop software package during 2012. The initiative turned out
to be overly challenging and ultimately failed to reach its primary aims, at least in
terms of establishing a globally standardised web shop.

Telco has not previously coordinated and standardised their web shops globally.
This has led to there not only being 11 different web shops in terms of software,
but also 11 different web shop strategies and organisations along several
dimensions (Nielsen, 2016)

Local and global requirements

Through meetings and discussions with the operations, a broad range of
requirements was identified.

While swapping the software to a standardised one did not seem so challenging,
the third parties also provided functions in the value chain, such as stock
management, distribution and servicing of mobile phones. This setup is much
harder to change.

(Nielsen, 2016)

Relating to other initiatives: Heterogeneity and
complexity

The web shop project did not unfold in a vacuum, but in parallel with and in
interaction with a range of other local projects and initiatives by IU.

A large parallel initiative was run by the IU to identify ways to collocate server
parks as well as maintenance and operations staff globally in Telco.

The lack of an operative shared service centre not only introduced risk in the
business model of the web shop project, but also mandated the initiative to
request a software package that could be run locally in the short term, and equally
important in regionally or globally service centres in the longer term.

(Nielsen, 2016)

Relating to other initiatives: Heterogeneity and
complexity

The IT unit of the IU was also running a Telco technology architecture project.
Their plan was to introduce a standardised architecture and back-office stack
throughout Telco

Telco did not have a global IT architecture and the local architectures of its
operations were not optimal, typically struggling with legacy systems and
accumulating complexity

the architecture project did not have a fixed functional architecture to support the
web shop initiative, but only one in the making.

(Nielsen, 2016)

Relating to other initiatives: Heterogeneity and
complexity

Local projects

To summarise, numerous global and local initiatives influenced and partly
overlapped the web shop implementation projects as well as other initiatives.

(Nielsen, 2016)

Planning and running the web shop RFQ

- Software package + Telco layer
- Terminating the process
- Another important factor was the failure of parallel projects in delivering e.g. a

common architecture, an operative service centre and a web shop for digital
content. With these other components in place or in a more mature stage, the
web shop project may have ended differently

(Nielsen, 2016)

Discussion

What we have seen is that the generification space is an ecosystem composed of
multiple parallel implementation projects and multiple levels of generification
activities. These loosely interconnected initiatives and projects are not necessarily
well coordinated while at the same time being dependent on another for their
success.

This architecture initiative showed interest for the web shop project and offered
input to the architecture of the web shops and its relation to other software
components in Telco. In doing so, it delayed the web shop project slightly. More
important, when the architecture project was terminated, the web shop project was
left with uncoordinated architectures in the 11 operations.

(Nielsen, 2016)

Discussion

If the operation of a standardised web shop is not made right, it is likely to
fragment as a standard over time because the operations will develop their own
functionality at the cost of the “Telco layer” and the software package. The “Telco
layer” adds complexity to this, since it is not always trivial to decide where new
functionality should be implemented— locally, in the “Telco layer” or in the
software package.

Another level of complexity in this setting was the approach to centralisation in the
implementation (software) and the operation of the web shops (operational
model).

(Nielsen, 2016)

Plan for neste uke

Forelesning: Case: HISP

Gruppetime: Fremføringer

