
Slides from INF3331
- Python and course intro

Ola Skavhaug, Joakim Sundnes and Hans Petter Langtangen

Dept. of Informatics, Univ. of Oslo

&

Simula Research Laboratory

August 2011

Slides from INF3331- Python and course intro – p. 1/54

c© www.simula.no/˜hpl

About this course

About this course – p. 2/54

c© www.simula.no/˜hpl

Teachers

Joakim Sundnes

Glenn Lines

Guest lecturers TBD

We use Python to create efficient working (or problem solving)
environments

We also use Python to develop large-scale simulation software
(which solves partial differential equations)

We believe high-level languages such as Python constitute a
promising way of making flexible and user-friendly software!

Some of our research migrates into this course

There are lots of opportunities for master projects related to this
course

About this course – p. 3/54

c© www.simula.no/˜hpl

Contents

Scripting in general

Quick Python introduction (first two weeks)

Python problem solving

More advanced Python (class programming++)

Regular expressions

Combining Python with C, C++ and Fortran

The Python C API and the NumPy C API

Distributing Python modules (incl. extension modules)

Verifying/testing (Python) software

Documenting Python software

Optimizing Python code

Python coding standards and ’Pythonic’ programming

Basic Bash programming

About this course – p. 4/54

c© www.simula.no/˜hpl

What you will learn

Scripting in general, but with most examples taken from scientific
computing

Jump into useful scripts and dissect the code

Learning by doing

Find examples, look up man pages, Web docs and textbooks on
demand

Get the overview

Customize existing code

Have fun and work with useful things

About this course – p. 5/54

c© www.simula.no/˜hpl

Teaching material (1)

Slides from lectures
(by Skavhaug, Sundnes, Langtangen et al), download from
http://www.uio.no/studier/emner/matnat/ifi/INF3331/h11/inf3331.pdf

Associated book (for the Python material):
H. P. Langtangen: Python Scripting for Computational Science, 3rd
edition, Springer 2008

You must find the rest: manuals, textbooks, google

About this course – p. 6/54

c© www.simula.no/˜hpl

Teaching material (2)

Good Python litterature:
Harms and McDonald: The Quick Python Book (tutorial+advanced)
Beazley: Python Essential Reference
Grayson: Python and Tkinter Programming

About this course – p. 7/54

c© www.simula.no/˜hpl

Lectures and groups (1)

Lectures Tuesdays 10.15-12.00

Groups Thursday 14.15, Monday 10.15, (Friday 10.15)

Slides will be updated as we go. Printing the entire pdf file in August
is not recommended.

Topics for the lecture, updated slides and page numbers will be made
available one week before each lecture.

Groups and exercises are the core of the course; problem solving is
in focus.

About this course – p. 8/54

c© www.simula.no/˜hpl

Lectures and groups (2)

Tuesday 23rd:
“User survey”
Intro/motivation; scripting vs regular programming

Tuesday 30th:
First encounter with Python

About this course – p. 9/54

c© www.simula.no/˜hpl

What is a script?

Very high-level, often short, program
written in a high-level scripting language

Scripting languages: Unix shells, Tcl, Perl, Python, Ruby, Scheme,
Rexx, JavaScript, VisualBasic, ...

This course: Python
+ a taste of Bash (Unix shell)

About this course – p. 10/54

c© www.simula.no/˜hpl

Characteristics of a script

Glue other programs together

Extensive text processing

File and directory manipulation

Often special-purpose code

Many small interacting scripts may yield a big system

Perhaps a special-purpose GUI on top

Portable across Unix, Windows, Mac

Interpreted program (no compilation+linking)

About this course – p. 11/54

c© www.simula.no/˜hpl

Why not stick to Java or C/C++?

Features of scripting languages compared with Java, C/C++ and Fortran:

shorter, more high-level programs

much faster software development

more convenient programming

you feel more productive

Two main reasons:

no variable declarations,
but lots of consistency checks at run time

lots of standardized libraries and tools

About this course – p. 12/54

c© www.simula.no/˜hpl

Scripts yield short code

Consider reading real numbers from a file, where each line can
contain an arbitrary number of real numbers:

1.1 9 5.2
1.762543E-02
0 0.01 0.001

9 3 7

Python solution:

F = open(filename, ’r’)
n = F.read().split()

About this course – p. 13/54

c© www.simula.no/˜hpl

Using regular expressions (1)

Suppose we want to read complex numbers written as text

(-3, 1.4) or (-1.437625E-9, 7.11) or (4, 2)

Python solution:

m = re.search(r’\(\s*([^,]+)\s*,\s*([^,]+)\s*\)’,
’(-3,1.4)’)

re, im = [float(x) for x in m.groups()]

About this course – p. 14/54

c© www.simula.no/˜hpl

Using regular expressions (2)

Regular expressions like

\(\s*([^,]+)\s*,\s*([^,]+)\s*\)

constitute a powerful language for specifying text patterns

Doing the same thing, without regular expressions, in Fortran and C
requires quite some low-level code at the character array level

Remark: we could read pairs (-3, 1.4) without using regular
expressions,

s = ’(-3, 1.4)’
re, im = s[1:-1].split(’,’)

About this course – p. 15/54

c© www.simula.no/˜hpl

Script variables are not declared

Example of a Python function:

def debug(leading_text, variable):
if os.environ.get(’MYDEBUG’, ’0’) == ’1’:

print leading_text, variable

Dumps any printable variable
(number, list, hash, heterogeneous structure)

Printing can be turned on/off by setting the environment variable
MYDEBUG

About this course – p. 16/54

c© www.simula.no/˜hpl

The same function in C++

Templates can be used to mimic dynamically typed languages

Not as quick and convenient programming:

template <class T>
void debug(std::ostream& o,

const std::string& leading_text,
const T& variable)

{
char* c = getenv("MYDEBUG");
bool defined = false;
if (c != NULL) { // if MYDEBUG is defined ...

if (std::string(c) == "1") { // if MYDEBUG is true ...
defined = true;

}
}
if (defined) {

o << leading_text << " " << variable << std::endl;
}

}

About this course – p. 17/54

c© www.simula.no/˜hpl

The relation to OOP

Object-oriented programming can also be used to parameterize types

Introduce base class A and a range of subclasses, all with a (virtual)
print function

Let debug work with var as an A reference

Now debug works for all subclasses of A

Advantage: complete control of the legal variable types that debug
are allowed to print (may be important in big systems to ensure that a
function can allow make transactions with certain objects)

Disadvantage: much more work, much more code, less reuse of
debug in new occasions

About this course – p. 18/54

c© www.simula.no/˜hpl

Flexible function interfaces

User-friendly environments (Matlab, Maple, Mathematica, S-Plus, ...)
allow flexible function interfaces

Novice user:
f is some data
plot(f)

More control of the plot:

plot(f, label=’f’, xrange=[0,10])

More fine-tuning:

plot(f, label=’f’, xrange=[0,10], title=’f demo’,
linetype=’dashed’, linecolor=’red’)

About this course – p. 19/54

c© www.simula.no/˜hpl

Keyword arguments

Keyword arguments = function arguments with keywords and default
values, e.g.,

def plot(data, label=’’, xrange=None, title=’’,
linetype=’solid’, linecolor=’black’, ...)

The sequence and number of arguments in the call can be chosen by
the user

About this course – p. 20/54

c© www.simula.no/˜hpl

Classification of languages (1)

Many criteria can be used to classify computer languages

Dynamically vs statically typed languages
Python (dynamic):

c = 1 # c is an integer
c = [1,2,3] # c is a list

C (static):

double c; c = 5.2; # c can only hold doubles
c = "a string..." # compiler error

About this course – p. 21/54

c© www.simula.no/˜hpl

Classification of languages (2)

Weakly vs strongly typed languages
Perl (weak):

$b = ’1.2’
$c = 5*$b; # implicit type conversion: ’1.2’ -> 1.2

Python (strong):

b = ’1.2’
c = 5*b # illegal; no implicit type conversion

About this course – p. 22/54

c© www.simula.no/˜hpl

Classification of languages (3)

Interpreted vs compiled languages

Dynamically vs statically typed (or type-safe) languages

High-level vs low-level languages (Python-C)

Very high-level vs high-level languages (Python-C)

Scripting vs system languages

About this course – p. 23/54

c© www.simula.no/˜hpl

Turning files into code (1)

Code can be constructed and executed at run-time

Consider an input file with the syntax

a = 1.2
no of iterations = 100
solution strategy = ’implicit’
c1 = 0
c2 = 0.1
A = 4
c3 = StringFunction(’A*sin(x)’)

How can we read this file and define variables a,
no_of_iterations, solution_strategi, c1, c2, A with the
specified values?

And can we make c3 a function c3(x) as specified?

Yes!

About this course – p. 24/54

c© www.simula.no/˜hpl

Turning files into code (2)

The answer lies in this short and generic code:

file = open(’inputfile.dat’, ’r’)
for line in file:

first replace blanks on the left-hand side of = by _
variable, value = line.split(’=’).strip()
variable = re.sub(’ ’, ’_’, variable)
exec(variable + ’=’ + value) # magic...

This cannot be done in Fortran, C, C++ or Java!

About this course – p. 25/54

c© www.simula.no/˜hpl

Scripts can be slow

Perl and Python scripts are first compiled to byte-code

The byte-code is then interpreted

Text processing is usually as fast as in C

Loops over large data structures might be very slow

for i in range(len(A)):
A[i] = ...

Fortran, C and C++ compilers are good at optimizing such loops at
compile time and produce very efficient assembly code (e.g. 100
times faster)

Fortunately, long loops in scripts can easily be migrated to Fortran or
C

About this course – p. 26/54

c© www.simula.no/˜hpl

Scripts may be fast enough (1)

Read 100 000 (x,y) data from file and
write (x,f(y)) out again

Pure Python: 4s

Pure Perl: 3s

Pure Tcl: 11s

Pure C (fscanf/fprintf): 1s

Pure C++ (iostream): 3.6s

Pure C++ (buffered streams): 2.5s

Numerical Python modules: 2.2s (!)

Remark: in practice, 100 000 data points are written and read in
binary format, resulting in much smaller differences

About this course – p. 27/54

c© www.simula.no/˜hpl

Scripts may be fast enough (2)

Read a text in a human language and generate random nonsense text in
that language (from "The Practice of Programming" by B. W. Kernighan
and R. Pike, 1999):

Language CPU-time lines of code

C | 0.30 | 150
Java | 9.2 | 105
C++ (STL-deque) | 11.2 | 70
C++ (STL-list) | 1.5 | 70
Awk | 2.1 | 20
Perl | 1.0 | 18

Machine: Pentium II running Windows NT

About this course – p. 28/54

c© www.simula.no/˜hpl

When scripting is convenient (1)

The application’s main task is to connect together existing
components

The application includes a graphical user interface

The application performs extensive string/text manipulation

The design of the application code is expected to change significantly

CPU-time intensive parts can be migrated to C/C++ or Fortran

About this course – p. 29/54

c© www.simula.no/˜hpl

When scripting is convenient (2)

The application can be made short if it operates heavily on list or
hash structures

The application is supposed to communicate with Web servers

The application should run without modifications on Unix, Windows,
and Macintosh computers, also when a GUI is included

About this course – p. 30/54

c© www.simula.no/˜hpl

When to use C, C++, Java, Fortran

Does the application implement complicated algorithms and data
structures?

Does the application manipulate large datasets so that execution
speed is critical?

Are the application’s functions well-defined and changing slowly?

Will type-safe languages be an advantage, e.g., in large development
teams?

About this course – p. 31/54

c© www.simula.no/˜hpl

Some personal applications of scripting

Get the power of Unix also in non-Unix environments

Automate manual interaction with the computer

Customize your own working environment and become more efficient

Increase the reliability of your work
(what you did is documented in the script)

Have more fun!

About this course – p. 32/54

c© www.simula.no/˜hpl

Some business applications of scripting

Python and Perl are very popular in the open source movement and
Linux environments

Python, Perl and PHP are widely used for creating Web services
(Django, SOAP, Plone)

Python and Perl (and Tcl) replace ’home-made’ (application-specific)
scripting interfaces

Many companies want candidates with Python experience

About this course – p. 33/54

c© www.simula.no/˜hpl

What about mission-critical operations?

Scripting languages are free

What about companies that do mission-critical operations?

Can we use Python when sending a man to Mars?

Who is responsible for the quality of products?

About this course – p. 34/54

c© www.simula.no/˜hpl

The reliability of scripting tools

Scripting languages are developed as a world-wide collaboration of
volunteers (open source model)

The open source community as a whole is responsible for the quality

There is a single repository for the source codes (plus mirror sites)

This source is read, tested and controlled by a very large number of
people (and experts)

The reliability of large open source projects like Linux, Python, and
Perl appears to be very good - at least as good as commercial
software

About this course – p. 35/54

c© www.simula.no/˜hpl

Practical problem solving

Problem: you are not an expert (yet)

Where to find detailed info, and how to understand it?

The efficient programmer navigates quickly in the jungle of textbooks,
man pages, README files, source code examples, Web sites, news
groups, ... and has a gut feeling for what to look for

The aim of the course is to improve your practical problem-solving
abilities

You think you know when you learn, are more sure when you can
write, even more when you can teach, but certain when you can
program (Alan Perlis)

About this course – p. 36/54

c© www.simula.no/˜hpl

Basic Python Constructs

Basic Python Constructs – p. 37/54

c© www.simula.no/˜hpl

First encounter with Python

#!/usr/bin/env python

from math import sin
import sys

x = float(sys.argv[1])
print "Hello world, sin(%g) = %g." % (x, sin(x))

Basic Python Constructs – p. 38/54

c© www.simula.no/˜hpl

Running the Script

Code in file hw.py.
Run with command:

> python hw.py 0.5
Hello world, sin(0.5) = 0.479426.

Linux alternative if file is executable (chmod a+x hw.py):

> ./hw.py 0.5
Hello world, sin(0.5) = 0.479426.

Basic Python Constructs – p. 39/54

c© www.simula.no/˜hpl

Quick Run Through

On *nix; find out what kind of script language (interpreter) to use:

#!/usr/bin/env python

Access library functions:

from math import sin
import sys

Read command line argument and convert it to a floating point:

x = float(sys.argv[1])

Print out the result using a format string:

print "Hello world, sin(%g) = %g." % (x, sin(x))

Basic Python Constructs – p. 40/54

c© www.simula.no/˜hpl

Simple Assignments

a = 10 # a is a variable referencing an
integer object of value 10

b = True # b is a boolean variable

a = b # a is now a boolean as well
(referencing the same object as b)

b = increment(4) # b is the value returned by a function

is_equal = a == b # is_equal is True if a == b

Basic Python Constructs – p. 41/54

c© www.simula.no/˜hpl

Simple control structures

Loops:
while condition:

<block of statements>

Here, condition must be a boolean expression (or have a boolean
interpretation), for example: i < 10 or !found
for element in somelist:

<block of statements>

Note that element is a copy of the list items, not a reference into
the list!

Conditionals:
if condition:

<block of statements>
elif condition:

<block of statements>
else:

<block of statements>

Basic Python Constructs – p. 42/54

c© www.simula.no/˜hpl

Ranges and Loops

range(start, stop, increment) constructs a list. Typically,
it is used in for loops:
for i in range(10):

print i

xrange(start, stop, increment) is better for fat loops
since it constructs an iterator:
for i in xrange(10000000):

sum += sin(i*pi*x)

Looping over lists can be done in several ways:
names = ["Ola", "Per", "Kari"]
surnames = ["Olsen", "Pettersen", "Bremnes"]
for name, surname in zip(names, surnames):

print name, surname # join element by element

for i, name in enumerate(names):
print i, name # join list index and item

Basic Python Constructs – p. 43/54

c© www.simula.no/˜hpl

Lists and Tuples

mylist = [’a string’, 2.5, 6, ’another string’]
mytuple = (’a string’, 2.5, 6, ’another string’)
mylist[1] = -10
mylist.append(’a third string’)
mytuple[1] = -10 # illegal: cannot change a tuple

A tuple is a constant list (immutable)

Basic Python Constructs – p. 44/54

c© www.simula.no/˜hpl

List functionality

a = [] initialize an empty list

a = [1, 4.4, ’run.py’] initialize a list

a.append(elem) add elem object to the end

a + [1,3] add two lists

a[3] index a list element

a[-1] get last list element

a[1:3] slice: copy data to sublist (here: index 1, 2)

del a[3] delete an element (index 3)

a.remove(4.4) remove an element (with value 4.4)

a.index(’run.py’) find index corresponding to an element’s value

’run.py’ in a test if a value is contained in the list

Basic Python Constructs – p. 45/54

c© www.simula.no/˜hpl

More list functionality

a.count(v) count how many elements that have the value v

len(a) number of elements in list a

min(a) the smallest element in a

max(a) the largest element in a

min(["001", 100]) tricky!

sum(a) add all elements in a

a.sort() sort list a (changes a)

as = sorted(a) sort list a (return new list)

a.reverse() reverse list a (changes a)

b[3][0][2] nested list indexing

isinstance(a, list) is True if a is a list

Basic Python Constructs – p. 46/54

c© www.simula.no/˜hpl

Functions and arguments

User-defined functions:
def split(string, char):

position = string.find(char)
if position > 0:

return string[:position+1], string[position+1:]
else:

return string, ""

function call:
message = "Heisann"
print split(message, "i")

prints out (’Hei’, ’sann’).

Positional arguments must appear before keyword arguments:
def split(message, char="i"):

[...]

Basic Python Constructs – p. 47/54

c© www.simula.no/˜hpl

How to find more Python information

The book contains only fragments of the Python language
(intended for real beginners!)

These slides are even briefer

Therefore you will need to look up more Python information

Primary reference: The official Python documentation at
docs.python.org

Very useful: The Python Library Reference, especially the index

Example: what can I find in the math module? Go to the Python
Library Reference index, find "math", click on the link and you get to a
description of the module

Alternative: pydoc math in the terminal window (briefer)

Note: for a newbie it is difficult to read manuals (intended for experts)
– you will need a lot of training; just browse, don’t read everything, try
to dig out the key info

Basic Python Constructs – p. 48/54

http://docs.python.org/index.html
http://docs.python.org/lib/genindex.html

c© www.simula.no/˜hpl

eval and exec

Evaluating string expressions with eval:
>>> x = 20
>>> r = eval(’x + 1.1’)
>>> r
21.1
>>> type(r)
<type ’float’>

Executing strings with Python code, using exec:

exec("""
def f(x):

return %s
""" % sys.argv[1])

Basic Python Constructs – p. 49/54

c© www.simula.no/˜hpl

Exceptions

Handling exceptions:
try:

<statements>
except ExceptionType1:

<provide a remedy for ExceptionType1 errors>
except ExceptionType2, ExceptionType3, ExceptionType4:

<provide a remedy for three other types of errors>
except:

<provide a remedy for any other errors>
...

Raising exceptions:
if z < 0:

raise ValueError\
(’z=%s is negative - cannot do log(z)’ % z)

a = math.log(z)

Basic Python Constructs – p. 50/54

c© www.simula.no/˜hpl

File reading and writing

Reading a file:
infile = open(filename, ’r’)
for line in infile:

process line

lines = infile.readlines()
for line in lines:

process line

for i in xrange(len(lines)):
process lines[i] and perhaps next line lines[i+1]

fstr = infile.read()
process the while file as a string fstr

infile.close()

Writing a file:

outfile = open(filename, ’w’) # new file or overwrite
outfile = open(filename, ’a’) # append to existing file
outfile.write("""Some string
....
""")

Basic Python Constructs – p. 51/54

c© www.simula.no/˜hpl

Dictionary functionality

a = {} initialize an empty dictionary

a = {’point’:[2,7], ’value’:3} initialize a dictionary

a = dict(point=[2,7], value=3) initialize a dictionary

a[’hide’] = True add new key-value pair to a dictionary

a[’point’] get value corresponding to key point

’value’ in a True if value is a key in the dictionary

del a[’point’] delete a key-value pair from the dictionary

a.keys() list of keys

a.values() list of values

len(a) number of key-value pairs in dictionary a

for key in a: loop over keys in unknown order

for key in sorted(a.keys()): loop over keys in alphabetic order

isinstance(a, dict) is True if a is a dictionary

Basic Python Constructs – p. 52/54

c© www.simula.no/˜hpl

String operations

s = ’Berlin: 18.4 C at 4 pm’
s[8:17] # extract substring
s.find(’:’) # index where first ’:’ is found
s.split(’:’) # split into substrings
s.split() # split wrt whitespace
’Berlin’ in s # test if substring is in s
s.replace(’18.4’, ’20’)
s.lower() # lower case letters only
s.upper() # upper case letters only
s.split()[4].isdigit()
s.strip() # remove leading/trailing blanks
’, ’.join(list_of_words)

Basic Python Constructs – p. 53/54

c© www.simula.no/˜hpl

Modules

Import module as namespace:

import sys
x = float(sys.argv[1])

Import module member argv into current namespace:

from sys import argv
x = float(argv[1])

Import everything from sys into current namespace (evil)

from sys import *
x = float(argv[1])

Import argv into current namespace under an alias

from sys import argv as a
x = float(a[1])

Basic Python Constructs – p. 54/54

	Teachers
	Contents
	What you will learn
	Teaching material (1)
	Teaching material (2)
	Lectures and groups (1)
	Lectures and groups (2)
	What is a script?
	Characteristics of a script
	Why not stick to Java or C/C++?
	Scripts yield short code
	Using regular expressions (1)
	Using regular expressions (2)
	Script variables are not declared
	The same function in C++
	The relation to OOP
	Flexible function interfaces
	Keyword arguments
	Classification of languages (1)
	Classification of languages (2)
	Classification of languages (3)
	Turning files into code (1)
	Turning files into code (2)
	Scripts can be slow
	Scripts may be fast enough (1)
	Scripts may be fast enough (2)
	When scripting is convenient (1)
	When scripting is convenient (2)
	When to use C, C++, Java, Fortran
	Some personal applications of scripting
	Some business applications of scripting
	What about mission-critical operations?
	The reliability of scripting tools
	Practical problem solving
	First encounter with Python
	Running the Script
	Quick Run Through
	Simple Assignments
	Simple control structures
	Ranges and Loops
	Lists and Tuples
	List functionality
	More list functionality
	Functions and arguments
	How to find more Python information
	eval and exec
	Exceptions
	File reading and writing
	Dictionary functionality
	String operations
	Modules

