
Slides from INF3331
- Course intro

Ola Skavhaug, Joakim Sundnes and Hans Petter Langtangen

Dept. of Informatics, Univ. of Oslo

&

Simula Research Laboratory

August 2012

Slides from INF3331- Course intro – p. 1/38

c© www.simula.no/˜hpl

About this course

About this course – p. 2/38

c© www.simula.no/˜hpl

Teachers

Joakim Sundnes

Glenn Lines

Guest lecturers TBD

We use Python to create efficient working (or problem solving)
environments

We also use Python to develop large-scale simulation software
(which solves partial differential equations)

We believe high-level languages such as Python constitute a
promising way of making flexible and user-friendly software!

Some of our research migrates into this course

There are lots of opportunities for Master projects related to this
course

About this course – p. 3/38

c© www.simula.no/˜hpl

Contents

Scripting in general

Basic Bash programming

Quick Python introduction (two weeks)

Python problem solving

More advanced Python (class programming++)

Regular expressions

Combining Python with C, C++ and Fortran

The Python C API and the NumPy C API

Distributing Python modules (incl. extension modules)

Verifying/testing (Python) software

Documenting Python software

Optimizing Python code

Python coding standards and ’Pythonic’ programming

About this course – p. 4/38

c© www.simula.no/˜hpl

What you will learn

Scripting in general, but with most examples taken from scientific
computing

Jump into useful scripts and dissect the code

Learning by doing

Find examples, look up man pages, Web docs and textbooks on
demand

Get the overview

Customize existing code

Have fun and work with useful things

About this course – p. 5/38

c© www.simula.no/˜hpl

INF3331 vs INF1100

In 2011, about 50% of INF3331 students had INF1100

Wide range of backgrounds with respect Python and general
programming experience

Since INF3331 does not build on INF1100, some overlap is inevitable

Two weeks of basic Python intro not useful for those with INF1100
background

INF3331 has more focus on scripting and practical problem solving

We welcome any feedback on how we can make INF3331 interesting
and challenging for students with different backgrounds

About this course – p. 6/38

c© www.simula.no/˜hpl

Teaching material (1)

Slides from lectures
(by Skavhaug, Sundnes, Langtangen et al), download from
http://www.uio.no/studier/emner/matnat/ifi/INF3331/h12/inf3331.pdf

Associated book (for the Python material):
H. P. Langtangen: Python Scripting for Computational Science, 3rd
edition, Springer 2008

You must find the rest: manuals, textbooks, google

About this course – p. 7/38

c© www.simula.no/˜hpl

Teaching material (2)

Good Python litterature:
Harms and McDonald: The Quick Python Book (tutorial+advanced)
Beazley: Python Essential Reference
Grayson: Python and Tkinter Programming

About this course – p. 8/38

c© www.simula.no/˜hpl

Lectures and groups (1)

Lectures Mondays 12.15-14.00

Groups Tuesday 12.15, Wednesday 08.15, (Thursday 12.15)

Slides will be updated as we go. Printing the entire pdf file in August
is not recommended.

Topics for the lecture, updated slides and page numbers will be made
available approximately one week before each lecture.

Groups and exercises are the core of the course; problem solving is
in focus.

About this course – p. 9/38

c© www.simula.no/˜hpl

Lectures and groups (2)

August 20th:
“User survey”
Intro/motivation; scripting vs regular programming

August 27th:
Basic Bash scripting
September 3rd & 10th:

Python introduction (not needed if you have INF1100)

About this course – p. 10/38

c© www.simula.no/˜hpl

Lectures and groups (3)

Three alternative course paths:

1. 75% of weekly assignments approved

2. 37.5% of weekly assignments + small project (approximately 32 hrs)

3. No weely assignments, large project (64 hrs)

+ written exam for everyone.

About this course – p. 11/38

c© www.simula.no/˜hpl

What is a script?

Very high-level, often short, program
written in a high-level scripting language

Scripting languages: Unix shells, Tcl, Perl, Python, Ruby, Scheme,
Rexx, JavaScript, VisualBasic, ...

This course: Python
+ a taste of Bash (Unix shell)

About this course – p. 12/38

c© www.simula.no/˜hpl

Characteristics of a script

Glue other programs together

Extensive text processing

File and directory manipulation

Often special-purpose code

Many small interacting scripts may yield a big system

Perhaps a special-purpose GUI on top

Portable across Unix, Windows, Mac

Interpreted program (no compilation+linking)

About this course – p. 13/38

c© www.simula.no/˜hpl

Why not stick to Java or C/C++?

Features of scripting languages compared with Java, C/C++ and Fortran:

shorter, more high-level programs

much faster software development

more convenient programming

you feel more productive

Two main reasons:

no variable declarations,
but lots of consistency checks at run time

lots of standardized libraries and tools

About this course – p. 14/38

c© www.simula.no/˜hpl

Scripts yield short code

Consider reading real numbers from a file, where each line can
contain an arbitrary number of real numbers:

1.1 9 5.2
1.762543E-02
0 0.01 0.001

9 3 7

Python solution:

F = open(filename, ’r’)
n = F.read().split()

About this course – p. 15/38

c© www.simula.no/˜hpl

Using regular expressions (1)

Suppose we want to read complex numbers written as text

(-3, 1.4) or (-1.437625E-9, 7.11) or (4, 2)

Python solution:

m = re.search(r’\(\s*([^,]+)\s*,\s*([^,]+)\s*\)’,
’(-3,1.4)’)

re, im = [float(x) for x in m.groups()]

About this course – p. 16/38

c© www.simula.no/˜hpl

Using regular expressions (2)

Regular expressions like

\(\s*([^,]+)\s*,\s*([^,]+)\s*\)

constitute a powerful language for specifying text patterns

Doing the same thing, without regular expressions, in Fortran and C
requires quite some low-level code at the character array level

Remark: we could read pairs (-3, 1.4) without using regular
expressions,

s = ’(-3, 1.4)’
re, im = s[1:-1].split(’,’)

About this course – p. 17/38

c© www.simula.no/˜hpl

Script variables are not declared

Example of a Python function:

def debug(leading_text, variable):
if os.environ.get(’MYDEBUG’, ’0’) == ’1’:

print leading_text, variable

Dumps any printable variable
(number, list, hash, heterogeneous structure)

Printing can be turned on/off by setting the environment variable
MYDEBUG

About this course – p. 18/38

c© www.simula.no/˜hpl

The same function in C++

Templates can be used to mimic dynamically typed languages

Not as quick and convenient programming:

template <class T>
void debug(std::ostream& o,

const std::string& leading_text,
const T& variable)

{
char* c = getenv("MYDEBUG");
bool defined = false;
if (c != NULL) { // if MYDEBUG is defined ...

if (std::string(c) == "1") { // if MYDEBUG is true ...
defined = true;

}
}
if (defined) {

o << leading_text << " " << variable << std::endl;
}

}

About this course – p. 19/38

c© www.simula.no/˜hpl

The relation to OOP

Object-oriented programming can also be used to parameterize types

Introduce base class A and a range of subclasses, all with a (virtual)
print function

Let debug work with var as an A reference

Now debug works for all subclasses of A

Advantage: complete control of the legal variable types that debug
are allowed to print (may be important in big systems to ensure that a
function can only make transactions with certain objects)

Disadvantage: much more work, much more code, less reuse of
debug in new occasions

About this course – p. 20/38

c© www.simula.no/˜hpl

Flexible function interfaces (1)

User-friendly environments (Matlab, Maple, Mathematica, S-Plus, ...)
allow flexible function interfaces

Novice user:
f is some data
plot(f)

More control of the plot:

plot(f, label=’f’, xrange=[0,10])

More fine-tuning:

plot(f, label=’f’, xrange=[0,10], title=’f demo’,
linetype=’dashed’, linecolor=’red’)

About this course – p. 21/38

c© www.simula.no/˜hpl

Flexible function interfaces (2)

In C++, some flexibility is obtained using default argument values,
e.g.,
void plot(const double[]& data, const char[] label=’’,
const char[] title = ’’, const char[] linecolor=’black’)

Limited flexibility, since the order of arguments is significant.

Python uses keyword arguments = function arguments with keywords
and default values, e.g.,

def plot(data, label=’’, xrange=None, title=’’,
linetype=’solid’, linecolor=’black’, ...)

The sequence and number of arguments in the call can be chosen by
the user

About this course – p. 22/38

c© www.simula.no/˜hpl

Classification of languages (1)

Many criteria can be used to classify computer languages

Dynamically vs statically typed languages
Python (dynamic):

c = 1 # c is an integer
c = [1,2,3] # c is a list

C (static):

double c; c = 5.2; # c can only hold doubles
c = "a string..." # compiler error

About this course – p. 23/38

c© www.simula.no/˜hpl

Classification of languages (2)

Weakly vs strongly typed languages
Perl (weak):

$b = ’1.2’
$c = 5*$b; # implicit type conversion: ’1.2’ -> 1.2

Python (strong):

b = ’1.2’
c = 5*b # illegal; no implicit type conversion
c = 5*float(b) #legal

About this course – p. 24/38

c© www.simula.no/˜hpl

Classification of languages (3)

Interpreted vs compiled languages

Dynamically vs statically typed (or type-safe) languages

High-level vs low-level languages (Python-C)

Very high-level vs high-level languages (Python-C)

Scripting vs system languages

About this course – p. 25/38

c© www.simula.no/˜hpl

Turning files into code (1)

Code can be constructed and executed at run-time

Consider an input file with the syntax

a = 1.2
no of iterations = 100
solution strategy = ’implicit’
c1 = 0
c2 = 0.1
A = 4
c3 = StringFunction(’A*sin(x)’)

How can we read this file and define variables a,
no_of_iterations, solution_strategi, c1, c2, A with the
specified values?

And can we make c3 a function c3(x) as specified?

Yes!

About this course – p. 26/38

c© www.simula.no/˜hpl

Turning files into code (2)

The answer lies in this short and generic code:

file = open(’inputfile.dat’, ’r’)
for line in file:

first replace blanks on the left-hand side of = by _
variable, value = line.split(’=’).strip()
variable = re.sub(’ ’, ’_’, variable)
exec(variable + ’=’ + value) # magic...

This cannot be done in Fortran, C, C++ or Java!

About this course – p. 27/38

c© www.simula.no/˜hpl

Scripts can be slow

Perl and Python scripts are first compiled to byte-code

The byte-code is then interpreted

Text processing is usually as fast as in C

Loops over large data structures might be very slow

for i in range(len(A)):
A[i] = ...

Fortran, C and C++ compilers are good at optimizing such loops at
compile time and produce very efficient assembly code (e.g. 100
times faster)

Fortunately, long loops in scripts can easily be migrated to Fortran or
C

About this course – p. 28/38

c© www.simula.no/˜hpl

Scripts may be fast enough (1)

Read 100 000 (x,y) data from file and
write (x,f(y)) out again

Pure Python: 4s

Pure Perl: 3s

Pure Tcl: 11s

Pure C (fscanf/fprintf): 1s

Pure C++ (iostream): 3.6s

Pure C++ (buffered streams): 2.5s

Numerical Python modules: 2.2s (!)

Remark: in practice, 100 000 data points are written and read in
binary format, resulting in much smaller differences

About this course – p. 29/38

c© www.simula.no/˜hpl

Scripts may be fast enough (2)

Read a text in a human language and generate random nonsense text in
that language (from "The Practice of Programming" by B. W. Kernighan
and R. Pike, 1999):

Language CPU-time lines of code

C | 0.30 | 150
Java | 9.2 | 105
C++ (STL-deque) | 11.2 | 70
C++ (STL-list) | 1.5 | 70
Awk | 2.1 | 20
Perl | 1.0 | 18

Machine: Pentium II running Windows NT

About this course – p. 30/38

c© www.simula.no/˜hpl

When scripting is convenient (1)

The application’s main task is to connect together existing
components

The application includes a graphical user interface

The application performs extensive string/text manipulation

The design of the application code is expected to change significantly

CPU-time intensive parts can be migrated to C/C++ or Fortran

About this course – p. 31/38

c© www.simula.no/˜hpl

When scripting is convenient (2)

The application can be made short if it operates heavily on list or
hash structures

The application is supposed to communicate with Web servers

The application should run without modifications on Unix, Windows,
and Macintosh computers, also when a GUI is included

About this course – p. 32/38

c© www.simula.no/˜hpl

When to use C, C++, Java, Fortran

Does the application implement complicated algorithms and data
structures?

Does the application manipulate large datasets so that execution
speed is critical?

Are the application’s functions well-defined and changing slowly?

Will type-safe languages be an advantage, e.g., in large development
teams?

About this course – p. 33/38

c© www.simula.no/˜hpl

Some personal applications of scripting

Get the power of Unix also in non-Unix environments

Automate manual interaction with the computer

Customize your own working environment and become more efficient

Increase the reliability of your work
(what you did is documented in the script)

Have more fun!

About this course – p. 34/38

c© www.simula.no/˜hpl

Some business applications of scripting

Python and Perl are very popular in the open source movement and
Linux environments

Python, Perl and PHP are widely used for creating Web services
(Django, SOAP, Plone)

Python and Perl (and Tcl) replace ’home-made’ (application-specific)
scripting interfaces

Many companies want candidates with Python experience

About this course – p. 35/38

c© www.simula.no/˜hpl

What about mission-critical operations?

Scripting languages are free

What about companies that do mission-critical operations?

Can we use Python when sending a man to Mars?

Who is responsible for the quality of products?

About this course – p. 36/38

c© www.simula.no/˜hpl

The reliability of scripting tools

Scripting languages are developed as a world-wide collaboration of
volunteers (open source model)

The open source community as a whole is responsible for the quality

There is a single repository for the source codes (plus mirror sites)

This source is read, tested and controlled by a very large number of
people (and experts)

The reliability of large open source projects like Linux, Python, and
Perl appears to be very good - at least as good as commercial
software

About this course – p. 37/38

c© www.simula.no/˜hpl

Practical problem solving

Problem: you are not an expert (yet)

Where to find detailed info, and how to understand it?

The efficient programmer navigates quickly in the jungle of textbooks,
man pages, README files, source code examples, Web sites, news
groups, ... and has a gut feeling for what to look for

The aim of the course is to improve your practical problem-solving
abilities

You think you know when you learn, are more sure when you can
write, even more when you can teach, but certain when you can
program (Alan Perlis)

About this course – p. 38/38

	Teachers
	Contents
	What you will learn
	INF3331 vs INF1100
	Teaching material (1)
	Teaching material (2)
	Lectures and groups (1)
	Lectures and groups (2)
	Lectures and groups (3)
	What is a script?
	Characteristics of a script
	Why not stick to Java or C/C++?
	Scripts yield short code
	Using regular expressions (1)
	Using regular expressions (2)
	Script variables are not declared
	The same function in C++
	The relation to OOP
	Flexible function interfaces (1)
	Flexible function interfaces (2)
	Classification of languages (1)
	Classification of languages (2)
	Classification of languages (3)
	Turning files into code (1)
	Turning files into code (2)
	Scripts can be slow
	Scripts may be fast enough (1)
	Scripts may be fast enough (2)
	When scripting is convenient (1)
	When scripting is convenient (2)
	When to use C, C++, Java, Fortran
	Some personal applications of scripting
	Some business applications of scripting
	What about mission-critical operations?
	The reliability of scripting tools
	Practical problem solving

