
INF 3331: Software Engineering

Ola Skavhaug, Joakim Sundnes and Hans Petter Langtangen

Dept. of Informatics, Univ. of Oslo

&

Simula Research Laboratory

August 2011

INF 3331: Software Engineering – p. 1/34

c© www.simula.no/˜hpl

Software engineering

Software engineering – p. 2/34

c© www.simula.no/˜hpl

Version control systems

Why?

Can retrieve old versions of files

Can print history of incremental changes

Very useful for programming or writing teams

Contains an official repository

Programmers work on copies of repository files

Conflicting modifications by different team members are detected

Can serve as a backup tool as well

So simple to use that there are no arguments against using version
control systems!

Software engineering – p. 3/34

c© www.simula.no/˜hpl

Some git commands

git: a modern version control system, similar to mercurial, bazaar,
svn, cvs etc.

See http://git-scm.com, http://github.com

git clone URL: clone a (remote) repository

git init: create a (local) repository

git commit -a: check files into the repository

git rm: remove a file

git mv: move/rename a file

git pull: update file tree from (remote) repository

git push: push changes to central repository

And much more, see git help

Software engineering – p. 4/34

c© www.simula.no/˜hpl

git example 1

git clone git://github.com/git/hello-world.git

cd hello-world
(edit files)
git commit -a -m ’Explain what I changed’

git format-patch origin/master

(update from central repository:)

git pull

Software engineering – p. 5/34

c© www.simula.no/˜hpl

git example 2

cd src
git init

git add .

(edit files)
git commit -a -m ’Explain what I changed’

(accidentally remove/edit file.tmp)

git checkout file.tmp

Software engineering – p. 6/34

c© www.simula.no/˜hpl

Tests

How to verify that scripts work as expected

Regression tests

Regression tests with numerical data

doctest module for doc strings with tests/examples

Unit tests

Software engineering – p. 7/34

c© www.simula.no/˜hpl

More info

Appendix B.4 in the course book

doctest, unittest module documentation

Software engineering – p. 8/34

c© www.simula.no/˜hpl

Verifying scripts

How can you know that a script works?

Create some tests, save (what you think are) the correct results

Run the tests frequently, compare new results with the old ones

Evaluate discrepancies

If new and old results are equal, one believes that the script still
works

This approach is called regression testing

Software engineering – p. 9/34

c© www.simula.no/˜hpl

The limitation of tests

Program testing can be a very effective way to show the presence of bugs,

but is hopelessly inadequate for showing their absence. -Dijkstra, 1972

Software engineering – p. 10/34

c© www.simula.no/˜hpl

Three different types of tests

Regression testing:

test a complete application (“problem solving”)

Tests embedded in source code (doc string tests):

test user functionality of a function, class or module
(Python grabs out interactive tests from doc strings)

Unit testing:

test a single method/function or small pieces of code

(emphasized in Java and extreme programming (XP))

Info: App. B.4 in the course book
doctest and unittest module documentation (Py Lib.Ref.)

Software engineering – p. 11/34

c© www.simula.no/˜hpl

Regression testing

Create a number of tests

Each test is run as a script

Each such script writes some key results to a file

This file must be compared with a previously generated ’exact’

version of the file

Software engineering – p. 12/34

c© www.simula.no/˜hpl

A suggested set-up

Say the name of a script is myscript

Say the name of a test for myscript is test1

test1.verify: script for testing

test1.verify runs myscript and directs/copies important
results to test1.v

Reference (’exact’) output is in test1.r

Compare test1.v with test1.r

The first time test1.verify is run, copy test1.v to test1.r
(if the results seem to be correct)

Software engineering – p. 13/34

c© www.simula.no/˜hpl

Recursive run of all tests

Regression test scripts *.verify are distributed around in a
directory tree

Go through all files in the directory tree

If a file has suffix .verify, say test.verify, execute
test.verify

Compare test.v with test.r and report differences

Software engineering – p. 14/34

c© www.simula.no/˜hpl

File comparison

How can we determine if two (text) files are equal?

some_diff_program test1.v test1.r > test1.diff

Unix diff:
output is not very easy to read/interpret,
tied to Unix

Perl script diff.pl:
easy readable output, but very slow for large files

Tcl/Tk script tkdiff:
very readable graphical output

gvimdiff (part of the Vim editor):
highlights differences in parts of long lines

Other tools: emacs ediff, diff.py, windiff (Windows only)

Software engineering – p. 15/34

c© www.simula.no/˜hpl

tkdiff

tkdiff.tcl hw-GUI2.py hw-GUI3.py

Software engineering – p. 16/34

c© www.simula.no/˜hpl

Automating regression tests

We have made a Python module Regression for automating
regression testing

scitools regression is a script, using the Regression module,

for executing all *.verify test scripts in a directory tree, run a diff

on *.v and *.r files and report differences in HTML files

Example:

scitools regression verify .

runs all regression tests in the current working directory and all
subdirectories

Software engineering – p. 17/34

c© www.simula.no/˜hpl

Presentation of results of tests

Output from the scitools regression command are two files:

verify_log.htm: overview of tests and no of differing lines

between .r and .v files

verify_log_details.htm: detailed diff

If all results (verify_log.htm) are ok, update latest results (*.v)
to reference status (*.r) in a directory tree:

scitools regression update .

The update is important if just changes in the output format have

been performed (this may cause large, insignificant differences!)

Software engineering – p. 18/34

c© www.simula.no/˜hpl

Running a single test

One can also run scitools regression on a single test

(instead of traversing a directory tree):

scitools regression verify circle.verify

scitools regression update circle.verify

Software engineering – p. 19/34

c© www.simula.no/˜hpl

Tools for writing test files

Our Regression module also has a class TestRun for simplifying

the writing of robust *.verify scripts

Example: mytest.verify

import Regression

test = Regression.TestRun("mytest.v")

mytest.v is the output file

run script to be tested (myscript.py):

test.run("myscript.py", options="-g -p 1.0")

runs myscript.py -g -p 1.0

append file data.res to mytest.v

test.append("data.res")

Many different options are implemented, see the book

Software engineering – p. 20/34

c© www.simula.no/˜hpl

Numerical round-off errors

Consider circle.py, what about numerical round-off errors when
the regression test is run on different hardware?

-0.16275412 # Linux PC
-0.16275414 # Sun machine

The difference is not significant wrt testing whether circle.py works
correctly

Can easily get a difference between each output line in circle.v
and circle.r

How can we judge if circle.py is really working?

Answer: try to ignore round-off errors when comparing circle.v
and circle.r

Software engineering – p. 21/34

c© www.simula.no/˜hpl

Automatic doc string testing

The doctest module can grab out interactive sessions from doc
strings, run the sessions, and compare new output with the output

from the session text

Advantage: doc strings shows example on usage and these

examples can be automatically verified at any time

Software engineering – p. 22/34

c© www.simula.no/˜hpl

Example

class StringFunction:
"""
Make a string expression behave as a Python function

of one variable.
Examples on usage:

>>> from StringFunction import StringFunction

>>> f = StringFunction(’sin(3*x) + log(1+x)’)
>>> p = 2.0; v = f(p) # evaluate function
>>> p, v

(2.0, 0.81919679046918392)
>>> f = StringFunction(’1+t’, independent_variables=’t’)

>>> v = f(1.2) # evaluate function of t=1.2
>>> print "%.2f" % v

2.20
>>> f = StringFunction(’sin(t)’)

>>> v = f(1.2) # evaluate function of t=1.2
Traceback (most recent call last):

v = f(1.2)
NameError: name ’t’ is not defined
"""

Software engineering – p. 23/34

c© www.simula.no/˜hpl

The magic code enabling testing

def _test():
import doctest, StringFunction

return doctest.testmod(StringFunction)

if __name__ == ’__main__’:
_test()

Software engineering – p. 24/34

c© www.simula.no/˜hpl

Example on output (1)

Running StringFunction.StringFunction.__doc__

Trying: from StringFunction import StringFunction

Expecting: nothing
ok
Trying: f = StringFunction(’sin(3*x) + log(1+x)’)

Expecting: nothing

ok
Trying: p = 2.0; v = f(p) # evaluate function

Expecting: nothing

ok
Trying: p, v
Expecting: (2.0, 0.81919679046918392)

ok
Trying: f = StringFunction(’1+t’, independent_variables=’t’)

Expecting: nothing

ok
Trying: v = f(1.2) # evaluate function of t=1.2

Expecting: nothing
ok

Software engineering – p. 25/34

c© www.simula.no/˜hpl

Example on output (1)

Trying: v = f(1.2) # evaluate function of t=1.2

Expecting:

Traceback (most recent call last):
v = f(1.2)

NameError: name ’t’ is not defined
ok
0 of 9 examples failed in StringFunction.StringFunction.__doc__
...
Test passed.

Software engineering – p. 26/34

c© www.simula.no/˜hpl

Unit testing

Aim: test all (small) pieces of code
(each class method, for instance)

Cornerstone in extreme programming (XP)

The Unit test framework was first developed for Smalltalk and then
ported to Java (JUnit)

The Python module unittest implements a version of JUnit

While regression tests and doc string tests verify the overall

functionality of the software, unit tests verify all the small pieces

Unit tests are particularly useful when the code is restructured or
newcomers perform modifications

Write tests first, then code (!)

Software engineering – p. 27/34

c© www.simula.no/˜hpl

Using the unit test framework

Unit tests are implemented in classes derived from class TestCase
in the unittest module

Each test is a method, whose name is prefixed by test

Generated and correct results are compared using methods

assert* (old version failUnless*) inherited from class
TestCase

Example:

from scitools.StringFunction import StringFunction

import unittest

class TestStringFunction(unittest.TestCase):

def test_plain1(self):

f = StringFunction(’1+2*x’)

v = f(2)
self.assertEqual(v, 5, ’wrong value’)

Software engineering – p. 28/34

c© www.simula.no/˜hpl

Tests with round-off errors

Compare v with correct answer to 6 decimal places:

def test_plain2(self):
f = StringFunction(’sin(3*x) + log(1+x)’)

v = f(2.0)
self.assertAlmostEqual(v, 0.81919679046918392, 6,

’wrong value’)

Software engineering – p. 29/34

c© www.simula.no/˜hpl

More examples

def test_independent_variable_t(self):

f = StringFunction(’1+t’, independent_variables=’t’)

v = ’%.2f’ % f(1.2)

self.assertEqual(v, ’2.20’, ’wrong value’)

check that a particular exception is raised:

def test_independent_variable_z(self):

f = StringFunction(’1+z’)

self.assertRaises(NameError, f, 1.2)

def test_set_parameters(self):

f = StringFunction(’a+b*x’)

f.set_parameters(’a=1; b=4’)

v = f(2)

self.assertEqual(v, 9, ’wrong value’)

Software engineering – p. 30/34

c© www.simula.no/˜hpl

Initialization of unit tests

Sometimes a common initialization is needed before running unit
tests

This is done in a method setUp:

class SomeTestClass(unittest.TestCase):
...
def setUp(self):

<initializations for each test go here...>

Software engineering – p. 31/34

c© www.simula.no/˜hpl

Run the test

Unit tests are normally placed in a separate file

Enable the test:

if __name__ == ’__main__’:
unittest.main()

Example on output:

.....

Ran 5 tests in 0.002s

OK

Software engineering – p. 32/34

c© www.simula.no/˜hpl

If some tests fail...

This is how it looks like when unit tests fail:

==
FAIL: test_plain1 (__main__.TestStringFunction)
--
Traceback (most recent call last):
File "./test_StringFunction.py", line 16, in test_plain1

self.assertEqual(v, 5, ’wrong value’)
File "/some/where/unittest.py", line 292, in assertEqual

raise self.failureException, \

AssertionError: wrong value

Software engineering – p. 33/34

c© www.simula.no/˜hpl

More about unittest

The unittest module can do much more than shown here

Multiple tests can be collected in test suites

Look up the description of the unittest module in the Python Library
Reference!

There is an interesting scientific extension of unittest in the SciPy
package

Software engineering – p. 34/34

	Version control systems
	Some git commands
	git example 1
	git example 2
	Tests
	More info
	Verifying scripts
	The limitation of tests
	Three different types of tests
	Regression testing
	A suggested set-up
	Recursive run of all tests
	File comparison
	tkdiff
	Automating regression tests
	Presentation of results of tests
	Running a single test
	Tools for writing test files
	Numerical round-off errors
	Automatic doc string testing
	Example
	The magic code enabling testing
	Example on output (1)
	Example on output (1)
	Unit testing
	Using the unit test framework
	Tests with round-off errors
	More examples
	Initialization of unit tests
	Run the test
	If some tests fail...
	More about unittest

