
Page 1

UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in INF3331
Day of exam: 2012-12-05
Exam hours: 4

This examination paper consists of 15 pages including 11 pages of appendices.
Appendices: 2 (Regex syntax and csv documentation)
Permitted materials: None

Make sure that your copy of this examination paper is complete before answering.

It is possible to answer the exam in either Norwegian or English. For all the
exercises it is important to specify any assumptions you make, in particular in cases
where you feel the exercise text is unclear.

1: Vectorization (5 points)
Vectorization plays an important role in high-level languages like Python.
Explain why, and provide an example of a vectorized operation using NumPy
arrays. The example should be a complete Python script, including necessary
imports.
This is the exact same exercise as last year. As last year, I do not expect a long
and detailed answer. The explanation and the example should be scored as
follows:

- Up to two points for a valid explanation, which includes the main points
that loops in Python are slow and vectorization runs the loops in C or
similar.

- Up to three points for a working example. It can be simple, such as
array-array or array-scalar multiplication.

o Scripts with insignificant syntax errors (i.e. typos) should get full
score.

o Mostly correct, but missing import or similar can be given two
points

o Wrong syntax, but getting parts of the idea; one point

2. Regular expressions (5 points)
The following Python commands do not give the desired output, which is to
extract the two intervals specified in the string (one with real numbers and one
with integers). Explain why the regular expression fails. Suggest a regular
expression that works.

>>> import re
>>> l = re.search(r"\[(.*),(.*)\]", " [-3.2E+01,0.11] and [-4,8]").groups()
>>> l
('-3.2E+01,0.11] and [-4', '8')

There were a lot of questions about this one, since the question text is not
really clear. Many students wondered whether the regex should pick up the two
numbers of one interval, or pick up both intervals in a single go (i.e. four
numbers). Of course the structure of the suggested regex clearly points to the
first interpretation, but we should still show some flexibility here. Again, I
suggest to give a maximum of two points for the explanation and three for the
solution:

- Two points for any reasonable explanation that gets the point of greedy
vs non-greedy. One point for other explanations that are close but not

quite get the main point.
- Three points to any working (or very close) solution that picks up the

two numbers in a single interval, or the four numbers of the two
intervals. Two points for solutions that are look ok but are not quite
there. One point for solutions that don’t really work but catches some of
the idea, for instance a regex that only works for the integer intervals.

3. Monte Carlo simulation (10 points)
Write a Python script that applies Monte Carlo simulation to estimate the
probability of getting at least three 6’s when you throw 10 dice. (Monte Carlo
simulations are performed by letting the program ”throw dice” a large number
of times, and the count the outcomes of interest.) All the dice are regular 6-
sided with sides from 1-6. You can set directly how many experiments to run,
or let this be the choice of the user.

Remember that random.randint(n,m) returns an random integer in the range
from and including n, up to and including m. Include necessary imports.

This is a relatively simple script, and very close to some of the exercises given
through the fall. One possible solution is shown below. It does not matter if the
task is solved using NumPy vectorization or not. The script is relatively simple,
so scoring is a little strict

10 points: A working script with no bugs and no awkward programming, i.e. a
reasonably elegant and compact solution

8-9: Minor bugs such as missing imports, or slightly cumbersome
programming style such as redundant lines etc

6-7: Get the idea of the two loops and the bulk of the algorithm right, but quite
a few bugs and errors

4-5: Get the main idea of looping and counting outcomes to compute the
probability, but major flaws

1-3: Far from the right solution, but pieces of the code are on track

import	
 random	

N	
 =	
 1000	
 	

ndice	
 =	
 10	
 	

nsix	
 =	
 3	

M=0	

for	
 i	
 in	
 range(N):	
 	

sixes	
 =	
 0	

for	
 j	
 in	
 range(ndice):	

	
 r	
 =	
 random.randint(1,	
 6)	
 	

if	
 r	
 ==	
 6:	

three	
 +=	
 1	
 	

if	
 three	
 >=	
 nthree:	

M	
 +=	
 1	
 	

p	
 =	
 float(M)/N	

print	
 'probability:',	
 p	

4: Classes (5 points)
Write a class (class Planet) that includes methods returning area and
circumference of planet. Each instance of the class should be initialized with
the planet’s radius. Here are some useful geometric formulae for spheres:

Area = 4πr2 ���
Circumference = 2πr ���

Use of the class should look like this:

>>> jorda = Planet(6371) #radius of the earth (jorda) is 6371 km
>>> omkrets = jorda.circumference()
>>> areal = jorda.area()

This is a very simple class programming exercise, with three simple functions
__init__, circumference and area. A key point is getting the init function right.
A possible solution is listed below. Here’s a suggestion for scoring:

5 points: absolutely everything correct (except possibly a very minor typo).
Full score should be given regardless of using pi from math or simply 3.14

4 points: everything ok, minor typos and syntax errors

3 points: some errors, but the __init__ function needs to be there. For example,
forgetting “self” as an argument to the functions, with everything else correct,
should give three points

2 points: Major errors, incorrect init function etc

1 point: Completely missing init function, other major errors

from	
 math	
 import	
 pi	
 	

class	
 Planet:	

def	
 __init__(self,	
 R):	
 	

self.R	
 =	
 R	

def	
 area(self):	
 	

return	
 4*pi*(self.R)**2	

def	
 circumference(self):	
 	

return	
 2*pi*self.R	

5: List slicing (5 points)
A list a is created is created with the command
>>>
a=list([range(0,10),range(10,20),range(20,30),range(30,40),range(40,50)])

Write the result of the following commands:
>>> print a[0][:]
>>> print a[0][:3]
>>> print a[::2][:]
>>> print a[-1][-1]
>>> print a[:][-1]

There are two parts to this question. The first is figuring out what kind of
list the first command gives. The second is figuring out the slicing. Some
were unfamiliar with the first command, which is not so surprising since
there is in fact a redundant “list” command in it. However, it should not
be very difficult to figure out that the result is a list of lists. The actual
print commands also strongly indicate that this is the outcome. The
tricky part of the actual print commands is the major difference between
for instance a[0] and a[::2]. With a[0] you suddenly have a single list, so
a[0][0] is the first element. Using a[::2] you still have a two dimensional
list, so adding a second index will actually pick out lists. The solution is
listed below.

For scoring I suggest 1 point per correct answer, and 0.5 points per
answer that is very slightly off. For instance, if someone forgets that
range[0,10] will give a list that ends with 9 and not 10, and everything
else is correct, this will give 2.5 points in total.

>>>	

a=list([range(0,10),range(10,20),range(20,30),range(30,40),range(40,50)]
)	

>>>	
 print	
 a[0][:]	

[0,	
 1,	
 2,	
 3,	
 4,	
 5,	
 6,	
 7,	
 8,	
 9]	

>>>	
 print	
 a[0][:3]	

[0,	
 1,	
 2]	

>>>	
 print	
 a[::2][:]	

[[0,	
 1,	
 2,	
 3,	
 4,	
 5,	
 6,	
 7,	
 8,	
 9],	
 [20,	
 21,	
 22,	
 23,	
 24,	
 25,	
 26,	
 27,	
 28,	
 29],	
 [40,	
 41,	

42,	
 43,	
 44,	
 45,	
 46,	
 47,	
 48,	
 49]]	

>>>	
 print	
 a[-­‐1][-­‐1]	

49	

>>>	
 print	
 a[:][-­‐1]	

[40,	
 41,	
 42,	
 43,	
 44,	
 45,	
 46,	
 47,	
 48,	
 49]	

6. CSV file processing (10 points)
You were recently employed in Foomatic inc., and have been asked to correct
an error in the company’s large collaction of spreadsheets. The same error
occurs in hundreds of spreadsheets, and correcting it manually will be too time
consuming. Fortunately, Python has a package (csv) for for reading and writing
files in the spreadsheet format CSV. Before you can start correcting errors you
need to make a couple of functions to handle the files. Use the modules of the
csv-package to make the following two functions.

• The first function takes the name of a csv-file as input, checks the
format (dialect) of the file, reads the data and stores it as a list of
dictionaries. The first row in the spreadsheet contains the column names.
These will be the keys of the dictionaries. The remaining rows contain
data that is to be stored; one row fills one dictionary.
Use case example: We have a csv file “input_file.csv” containing the
following data:

Name, Profession, Phone
Johnson, carpenter, 12345678
Anderson, plumber, 87654321

Use of the function should now result in the following output:
>>> namelist = readcsv(”input_file.csv”)
>>> namelist
[{’Name’: ’Johnson’,’Profession’: ’carpenter’, ’Phone’: ’12345678’},
{’Name’:’Anderson’, ’Profession’: ’plumber’: ’Phone’: ’87654321’}]

• The second function takes a list of dictionaries and a file name as input,
and writes the contents of each dictionary as a line in the file, in csv-
format. Applied to the example above, calling
>>> writecsv(namelist,”output.csv”)

should write the contents of namelist to the file ”output.csv”, in the
same format and order as in ”input_file.csv”.

Most of the solution here is fairly simple, since the enclosed documentation has
a few examples that are very close to what we want. However, some details are
a little tricky. The read function must use the class csv.Sniffer to figure out the
dialect, and then the class csv.DictReader to read the contents into a dictionary.
The write function must then use the class csv.DictWriter. The most (only)
challenging part is the write function, which comes with a couple of challenges.
The first is to get the column headers right. The second is the result of a
slightly ambiguous question text, stating that the format of output should be
equal to the format of input. I honestly did not think much of the dialect here,
but many students made this assumption. This makes the entire question
slightly more difficult, since the read function must store the dialect so it can be
used in the write. We should be flexible on this part, and accept solutions that
try to get the right dialect and also those that skip this part. A partly
functioning solution is listed below. The dialect part does not function correctly
for this input file, therefore the read function does not work, but solutions close
to this suggestion should get full score.
Here’s a suggested scoring scheme:
5 points for each function
readcsv: 2 points for identifying the right classes (sniffer and dictreader), 3
points for using them in more or less the right way, 4 points for solutions with
very minor errors (for instance forgetting to reset the file object after sniffing
the sample), 5 points for fully correct solutions or just minor typos.
Writecsv: 1 point for getting the class right, 2 points for initializing it correctly
with the fieldnames, 3 points for getting both the functions writeheader,
writerow, 4 points for using them more or less correctly, and 5 points for any
solution that is close to working.

import	
 csv	

import	
 sys	

	

def	
 readcsv(filename):	

	
 	
 	
 	
 f	
 =	
 open(filename,	
 'rt')	

	
 	
 	
 	
 dialect	
 =	
 csv.Sniffer().sniff(f.readline())	

	
 	
 	
 	
 f.seek(0)	

	
 	
 	
 	
 entries	
 =	
 []	

	
 	
 	
 	
 reader	
 =	
 csv.DictReader(f,dialect)	

	
 	
 	
 	
 for	
 row	
 in	
 reader:	

	
 	
 	
 	
 	
 	
 	
 entries.append(row)	

	
 	
 	
 	
 f.close()	

	
 	
 	
 	
 return	
 entries	

	

	

def	
 writecsv(dictlist,filename):	

	
 	
 	
 	
 f	
 =	
 open(filename,	
 'wt')	

	
 	
 	
 	
 writer	
 =	
 csv.DictWriter(f,	
 dictlist[0].keys())	

	
 	
 	
 	
 writer.writeheader()	

	
 	
 	
 	
 for	
 row	
 in	
 dictlist:	

	
 	
 	
 	
 	
 	
 	
 	
 writer.writerow(row)	

	
 	
 	
 	
 f.close()	

