
Slides from INF3331 lectures

- Python functions and classes revisited

Joakim Sundnes, Ola Skavhaug and Hans Petter Langtangen

Dept. of Informatics, Univ. of Oslo

&

Simula Research Laboratory

October 2013

c© www.simula.no/˜hpl

Contents

Function programming, focusing on the “special features” of

Python functions;

Functions are regular objects; passed as arguments, returned

from functions, modified inside functions etc...

Classes and object oriented programming in Python vs other

OOP languages;

Classes are also objects

No declaration of variables; attributes can be added on the fly,
self used to distinguish between local and instance
variables, ...

Slides from INF3331 lectures- Python functions and classes revisited – p.1/32

c© www.simula.no/˜hpl

Python functions revisited

Python functions revisited – p.2/32

c© www.simula.no/˜hpl

Contents

Python functions and OOP

Passing functions as arguments

Scopes and namespaces

Closure

Nested functions

Decorators

Built-in decorators

Python functions revisited – p.3/32

c© www.simula.no/˜hpl

More info

Chapter 6 in Python; essential reference, by David M Beazley

Python language reference

(docs.python.org/2/reference)

Online tutorials and examples...

Python functions revisited – p.4/32

c© www.simula.no/˜hpl

Python functions are objects

Instances of class function;
In [1]: def f():

pass
...:

In [2]: f.__class__
Out[2]: function
In [3]: issubclass(f.__class__,object)

Out[3]: True

Pyton functions have attributes

Python functions revisited – p.5/32

c© www.simula.no/˜hpl

Functions as arguments

Like all objects, functions can be arguments to functions

In [4]: def add(x,y):
...: return x+y
...:

In [5]: def sub(x,y):
...: return x-y
...:

In [6]: def apply(func,x,y):

...: return func(x,y)

...:
In [7]: apply(add,2,2)

Out[7]: 4
In [8]: apply(sub,7,3)

Out[8]: 4

Python functions revisited – p.6/32

c© www.simula.no/˜hpl

Functions inside functions (1)

Like many other languages (but unlike standard C/C++) Python

allows nested function definitions

In [30]: def f(x,y):

....: def cube(x):

....: return x*x*x

....: return y*cube(x)

In [31]: f(4,6)
Out[31]: 384

Python functions revisited – p.7/32

c© www.simula.no/˜hpl

Functions inside functions (2)

A function can also return a function;
In [33]: def f():

....: def inner_f():

....: print "Inside inner_f"

....: return inner_f
In [34]: foo = f()

In [35]: foo
Out[35]: <function __main__.inner_f>
In [36]: foo()
Inside inner_f

This shows the close relation of Python functions to standard
classes and OOP;

foo is a standard object

foo() invokes the object’s call operator

Try dir(foo) on any function foo to see its methods and
attributes.

Python functions revisited – p.8/32

c© www.simula.no/˜hpl

Closure

Consider the previous example, slightly tweaked:

In [44]: def f():
....: x = 3
....: def inner():
....: print "x = ", x

....: return inner
In [45]: foo = f()
In [46]: x = 10
In [47]: foo()
x = 3

When a function is returned, it remembers the variables declared
in the namespace surrounding its definition. This is called the

function’s closure.

The closure of a function is an attribute:
In [54]: foo.func_closure
Out[54]: (<cell at 0x101ca72f0: int object at 0x100313788>,)

In [55]: [cell.cell_contents for cell in foo.func_closure]
Out[55]: [3]

Python functions revisited – p.9/32

c© www.simula.no/˜hpl

An old example revisited

Suppose we need a function of x and y with three additional
parameters a, b, and c:

def f(x, y, a, b, c):

return a + b*x + c*y*y

Suppose we need to send this function to another function

def gridvalues(func, xcoor, ycoor, file):
for i in range(len(xcoor)):

for j in range(len(ycoor)):

f = func(xcoor[i], ycoor[j])

file.write(’%g %g %g\n’ % (xcoor[i], ycoor[j], f)

func is expected to be a function of x and y only (many libraries
need to make such assumptions!)

How can we send our f function to gridvalues?

Python functions revisited – p.10/32

c© www.simula.no/˜hpl

Solution 1: class with call operator

Make a class with function behavior instead of a pure function

The parameters are class attributes

Class instances can be called as ordinary functions, now with x
and y as the only formal arguments

class F:
def __init__(self, a=1, b=1, c=1):

self.a = a; self.b = b; self.c = c

def __call__(self, x, y): # special method!

return self.a + self.b*x + self.c*y*y

f = F(a=0.5, c=0.01)
can now call f as
v = f(0.1, 2)
...
gridvalues(f, xcoor, ycoor, somefile)

Python functions revisited – p.11/32

c© www.simula.no/˜hpl

Solution 2: closure

Make a function that locks the namespace and returns the
function we need;
In [57]: def F(a=1,b=1,c=1):

....: def inner(x,y):

....: return a+b*x+c*y*y

....: return inner

....:
In [58]: f = F(a=0.5,c=0.01)

We can now call this function with two arguments; v =

f(0.1,2)

Class or closure is approximately equivalent for this simple case;
closure slightly more efficient, class more flexible.

Python functions revisited – p.12/32

c© www.simula.no/˜hpl

More functions returning functions; decorators

A toy example;

In [61]: def foo():
....: return 1

In [62]: def outer(func):
....: def inner():
....: print "before calling func"

....: return func()

....: return inner
In [63]: decorated = outer(foo)
In [64]: decorated()
before calling func

Out[64]: 1

The function decorated is a decorated version of function foo;
it is foo plus something more

To simplify, we could just write

In [65]: foo = outer(foo)

to replace foo with its decorated version each time it is called

Python functions revisited – p.13/32

c© www.simula.no/˜hpl

A (slightly) more useful decorator

Suppose we want to limit the range of values sent to a

mathematical formula:
In [74]: def f(x):

....: return x**3 - 2
In [75]: def checkrange(func):

def inner(x):
if x <0:

print "out of range"
else:

return func(x)
return inner

In [77]: f(5)
Out[77]: 123
In [78]: f(-1)
Out[78]: -3
In [79]: f = checkrange(f)

In [80]: f(5)
Out[80]: 123
In [81]: f(-1)
out of range

Python functions revisited – p.14/32

c© www.simula.no/˜hpl

The @decorator syntax

Python provides a short notation for decorating a function with

another function:
In [82]: @checkrange

....: def g(x):

....: return x**3-2
In [83]: g(2)

Out[83]: 6
In [84]: g(-2)

out of range

This is exactly the same as writing g=checkrange(g).

A decorator is simply a function taking another function as input

and returning another function. The syntax @decorator is a

short-cut for the more explicit f=decorator(f)

Python functions revisited – p.15/32

c© www.simula.no/˜hpl

Python classes revisited

Python classes revisited – p.16/32

c© www.simula.no/˜hpl

Contents

Short recap of Python classes and OOP

Use of self in instance methods

Instance attributes vs class attributes

Instance methods, class methods, static methods

Special attributes and special methods

Python classes revisited – p.17/32

c© www.simula.no/˜hpl

More info

Ch. 8.6 in Python scripting for computational science

Ch. 2 in Illustrating Python via bioinformatics examples

Chapter 7 in Python essential reference by D. M. Beazley

Python Reference Manual (special methods in 3.3)

Python classes revisited – p.18/32

c© www.simula.no/˜hpl

Python classes (1)

Similar class concept as in Java and C++

All functions are virtual

No private/protected variables
(the effect can be "simulated")

Single and multiple inheritance

Remember; everything in Python is an object (even a class)

Python classes revisited – p.19/32

c© www.simula.no/˜hpl

Python classes (2)

Classes work as usual, containing methods and attributes;

class MyBase:

def __init__(self,i,j): # constructor

self.i = i; self.j = j

def write(self): # member function
print ’MyBase: i=’,self.i,’j=’,self.j

self is a reference to the instance

Instance attributes are prefixed by self:
self.i, self.j

All methods take self as first argument in the declaration, but
not in the call

inst1 = MyBase(6,9); inst1.write()

Python classes revisited – p.20/32

c© www.simula.no/˜hpl

Subclasses work as we are used to

Class MySub is a subclass of MyBase:

class MySub(MyBase):

def __init__(self,i,j,k): # constructor

MyBase.__init__(self,i,j)

self.k = k;

def write(self):
print ’MySub: i=’,self.i,’j=’,self.j,’k=’,self.k

Example:

this function works with any object that has a write func:

def write(v): v.write()

make a MySub instance

i = MySub(7,8,9)

write(i) # will call MySub’s write

Python classes revisited – p.21/32

c© www.simula.no/˜hpl

The magical self

The explicit self argument in instance methods is one of the

most debated details of the Python language

Why is it there?

Distinguish between local (method) variables and instance
variables

The definition matches how instance methods are actually
called, with the instance passed as the first argument

For an instance obj of class class, these calls are equivalent:

obj.someMethod()

class.someMethod(obj)

Python classes revisited – p.22/32

c© www.simula.no/˜hpl

New-style vs classic classes

The class concept was rewritten in Python 2.2, but the old style
was retained for backward compatibility.

New-style classes are sub-classes of object:

class Bar(object): pass #defines a new-style class

class Bar: pass #defines a classic class

The difference is small, but new-style classes are recommended

From Python 3.0, all classes are new-style, no need for the explicit
object base class

Python classes revisited – p.23/32

c© www.simula.no/˜hpl

Instance attributes

Instance attributes are prefixed with self, and normally added in
the constructor;
>>> class Point(object):

def __init__(self,x,y):

self.x = x
self.y = y

Can also be added to a specific instance;

>>> origo = point(0.0,0.0)
>>> origo.z = 0.0

Python classes revisited – p.24/32

c© www.simula.no/˜hpl

Class attributes (1)

Class variables are common to the class;
>>>class Point(object):

counter = 0
def __init__(self,x,y):

self.x = x
self.y = y

Point.counter +=1
>>> p0 = Point(0.0,0.0)
>>> p1 = Point(1.0,1.0)

>>> Point.counter
2
>>> p0.counter
2

Python classes revisited – p.25/32

c© www.simula.no/˜hpl

Class attributes (2)

Warning; class attributes can be accessed through the instance

(as above), but assigning or modifying creates an instance
variable with the same name;

>>> p0 = Point(0,0)

>>> p0.counter

1
>>> p0.__dict__

{’y’: 0, ’x’: 0}

>>> p0.__class__.__dict__

{’__module__’: ’__main__’, ’counter’: 1, ’__doc__’: None, ’__init__’:
>>> p0.counter +=1

>>> p0.__dict__
{’y’: 0, ’x’: 0, ’counter’: 2}

>>> p0.__class__.__dict__

{’__module__’: ’__main__’, ’counter’: 1, ’__doc__’: None, ’__init__’:

Python classes revisited – p.26/32

c© www.simula.no/˜hpl

Static methods and class methods (1)

New-style classes support static methods and class methods

Both can be called without having an instance of the class

Static method;

No knowledge of the class it belongs to

Declared as a regular function, without self or other class or
instance related arguments

No implicit passing of instance or class when called

Defined using the decorator @staticmethod
class A(object):

@staticmethod
def method1():

pass
#or old style; method1 = staticmethod(method1)

Not widely used in Python

Python classes revisited – p.27/32

c© www.simula.no/˜hpl

Static methods and class methods (2)

Class method;

The first argument is the class, by convention named cls

When calling, the class is passed implicitly (just as with self

for instance methods

Defined using decorator @classmethod;
class A(object):

instances = {}

@classmethod
def method1(cls):

print cls.instances

Commonly used as alternative constructors, to enable
alternative ways of constructing an instance of the class

Python classes revisited – p.28/32

c© www.simula.no/˜hpl

Special attributes

i1 is MyBase, i2 is MySub

Dictionary of user-defined attributes:

>>> i1.__dict__ # dictionary of user-defined attributes

{’i’: 5, ’j’: 7}

>>> i2.__dict__
{’i’: 7, ’k’: 9, ’j’: 8}

Name of class, name of method:

>>> i2.__class__.__name__ # name of class
’MySub’

>>> i2.write.__name__ # name of method
’write’

List names of all methods and attributes:

>>> dir(i2)
[’__doc__’, ’__init__’, ’__module__’, ’i’, ’j’, ’k’, ’write’]

Python classes revisited – p.29/32

c© www.simula.no/˜hpl

Special methods

Special methods have leading and trailing double underscores

(e.g. __str__)

Here are some operations defined by special methods:

len(a) # a.__len__()
print a #calls a.__str__()

repr(a) #a.__repr__()

c = a*b # c = a.__mul__(b)
a = a+b # a = a.__add__(b)
d = a[3] # d = a.__getitem__(3)

a[3] = 0 # a.__setitem__(3, 0)
f = a(1.2, True) # f = a.__call__(1.2, True)
if a: # if a.__len__()>0: or if a.__nonzero__():

Python classes revisited – p.30/32

c© www.simula.no/˜hpl

Python functions summary

Most of the “unusal” features relate to functions being objects

Closure;

A function remembers the surrounding namespace from when

it was defined

Becomes a function object with some additional attributes

Definition and use very similar to OOP

Decorators;

A function that takes a function as argument and returns a

modified function

@decorator syntax simply a short cut for the standard
function call f = decorator(f)

Most common decorators; @classmethod,
@staticmethod

Python classes revisited – p.31/32

c© www.simula.no/˜hpl

Python classes summary

Classes and objects work similar to other languages

A class is also an object

Lack of declared variables leads to some unfamilar behavior;

Instance attributes are added in functions (normally init
function) instead of in the class

self,cls used to distinguish instance and class variables

from local and global variables

Special methods implement common operations on instances;

Examples are
__init__, __call__, __getitem__, __setitem__, __str__, __repr__

Complete list at
http://docs.python.org/2/reference/datamodel.html

Python classes revisited – p.32/32

	Contents
	Contents
	More info
	Python functions are objects
	Functions as arguments
	Functions inside functions (1)
	Functions inside functions (2)
	Closure
	An old example revisited
	Solution 1: class with call operator
	Solution 2: closure
	More functions returning functions; emph {decorators}
	A (slightly)
more useful decorator
	The emp {@decorator} syntax
	Contents
	More info
	Python classes (1)
	Python classes (2)
	Subclasses work as we are used to
	The magical emp {self}
	New-style vs classic classes
	Instance attributes
	Class attributes (1)
	Class attributes (2)
	Static methods and class methods (1)
	Static methods and class methods (2)
	Special attributes
	Special methods
	Python functions summary
	Python classes summary

