
Side 1

UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in INF3331
Day of exam: 2013-12-05
Exam hours: 4

This examination paper consists of 12 pages including 7 pages of appendices.
Appendices: 2 (Regex syntax and HTMLparser documentation)
Permitted materials: None

Make sure that your copy of this examination paper is complete before answering.

It is possible to answer the exam in either Norwegian or English. For all the
questions it is important to specify any assumptions you make, in particular in cases
where you feel the question text is unclear.

Page 2

1: Python-syntax (7 points)
Find errors in the following Python code. Write a suggestion with correct Python
syntax for each case. For instance, a = 4b should be corrected to a = 4*b.

A) if __name__ = ’__main__’:
B) mylist = range(0:100:10)
C) def f(x)

return 2+x**2
D) for i in range[10]:

 sum += 5i
E) if a == 1,

 b = a:
F) import np as numpy

a = np:arange(10)
G) plt.title(nice figure)

2: Vectorization (5 points)
The following Python script uses Monte-Carlo simulation to estimate the
probability of getting at least three 6-es when you throw 10 dice.
import random
N = 1000
ndice = 10
nsix = 3
M=0
for i in range(N):

sixes = 0
for j in range(ndice):

  r = random.randint(1, 6)
if r == 6:

sixes += 1
if sixes >= nsix:

M += 1
p = float(M)/N
print 'probability:', p

Write a vectorized version of the script using NumPy. The answer should be a
complete Python-script, including all import-statements.

Hint: numpy.random.random_integers(n,size=(k,j)) generates an
array with dimensions k, j, where each element is a random number between 1
and n (including the limits).

Page 3

3: Vectorization (3 points)
The following function computes the weighted sum of two vectors and returns
the answer as a list. The arguments x,y may be lists, NumPy arrays or similar
Python objects.
def vector_sum(x,y,a=1,b=1):
 sum = []
 for xi,yi in zip(x,y):
 sum.append(a*xi+b*yi)
 return sum

Write a function that performs the same operation, as efficient as possible. The
arguments x,y should now be NumPy arrays, and the function sould return a
NumPy array. Include necessary import statements.

4. Regular expressions (5 points)
A Django based web site has the following content in the file urls.py:

from django.conf.urls.defaults import *
urlpatterns = patterns('',
 (r'^articles/2003/$', 'news.views.special_case_2003'),
 (r'^articles/(\d{4})/$', 'news.views.year_archive'),
 (r'^articles/(\d{4})/(\d{2})/$', 'news.views.month_archive'),
 (r'^articles/(\d{4})/(\d{2})/(\d+)/$', 'news.views.article_detail'),
)
Recall that each URL-pattern in Django is a tuple with two elements. The first
element is a regular expression, and the second element is the name of a view
function that is called if the regular expression matches. The view-function is
called with an HTTPrequest as first argument, and any groups in the regular
expression as additional arguments.

We want two changes to the functionality:

1. Only proper dates should match; this means years between 1900 and
2099, months between 1 and 12, and days between 1 and 31.

2. The extpressions should accept dates on the form yyyy/mm/dd and
yyyy-mm-dd. It should be optional to write the day and month using one
or two digits. For instance, 2013/12/4 and 2013/12/04 should be
equivalent.

Change or extend the list of URL-patterns to incorporate these changes.

Hint: Regex-syntax for “or” is | (”pipe”). For instance, the regular expression
(a[bc]|x[yz]) matches either a followed by b or c, or x followed by y or z. See
also the enclosed regex documentation.

Page 4

5: Classes (5 points)
Explain what happens in the following Python code:

>>> class g:
 ... cnt = 0
 ... def __init__(self):
 ... g.cnt +=1
 ...

>>> g0 = g()
>>> g1 = g()
>>> g0.cnt
2
>>> g1.cnt
2
>>> g0.__dict__
{}
>>> g1.cnt +=1
>>> g0.cnt
2
>>> g1.__dict__
{’cnt’: 3}

6: Classes (10 points)

Implement a class for vectors in 3D. The class should support the following
operations:

>>> from Vec3D import Vec3D
>>> u = Vec3D(1, 0, 0) # (1,0,0) vector
>>> v = Vec3D(0, 1, 0)
>>> str(u) # pretty print
'(1, 0, 0)'
>>> repr(u) # u = eval(repr(u))
'Vec3D(1, 0, 0)'
>>> len(u) # Eucledian norm
1.0
>>> u[1] # subscripting
0.0
>>> v[2]=2.5 #subscripting with assignment

You do not need to consider the numerical efficiency of the operations. Remark
that the len-operator returns the norm (length) of the vector. For a vector
u=(x,y,z) the norm e(u) is defined as e(u) = (x2+y2+z2)1/2.

Page 5

7: HTML parser (10 points)

As a new employee in Foomatic Inc. you took over an assignment from a
previous employee. You are to complete a script that collects image files from
a website, and stores them locally. The script you got looks as follows;

import HTMLParser
import urllib
import sys

urlString = "http://www.python.org"

def getImage(addr):
 u = urllib.urlopen(addr)
 data = u.read()

 splitPath = addr.split('/')
 fName = splitPath.pop()
 print fName

 f = open(fName, 'wb')
 f.write(data)
 f.close()

class parseImages(HTMLParser.HTMLParser):
 #find image tags and call getImage

lParser = parseImages()

u = urllib.urlopen(urlString)
print u.info()

lParser.feed(u.read())
lParser.close()

Write the contents of the class parseImages so that the script works as
intended. Documentation for HTMLParser is attached.

Appendix 1: Regular expression syntax

Special characters

. # any single character except a newline

^ # the beginning of the line or string

$ # the end of the line or string

* # zero or more of the last character

+ # one or more of the last character

? # zero or one of the last character

Brackets, sequences and examples

[A-Z] # matches all upper case letters

[abc] # matches either a or b or c

[^b] # does not match b

[^a-z] # does not match lower case letters

.* # any sequence of characters (except newline)

[.*] # the characters . and *

^no # the string ’no’ at the beginning of a line

[^no] # neither n nor o

A-Z # the 3-character string ’A-Z’ (A, minus, Z)

[A-Z] # one of the chars A, B, C, ..., X, Y, or Z

More special characters

\n # a newline

\t # a tab

\w # any alphanumeric (word) character

the same as [a-zA-Z0-9_]

\W # any non-word character

the same as [^a-zA-Z0-9_]

\d # any digit, same as [0-9]

\D # any non-digit, same as [^0-9]

\s # any whitespace character: space,

tab, newline, etc

\S # any non-whitespace character

\b # a word boundary, outside [] only

\B # no word boundary

\. # a dot

\| # vertical bar

\[# an open square bracket

\) # a closing parenthesis

* # an asterisk

\^ # a hat

\/ # a slash

\\ # a backslash

\{ # a curly brace

\? # a question mark

1

19.1. HTMLParser — Simple HTML and XHTML
parser

Note: The HTMLParser module has been renamed to html.parser in Python 3. The 2to3
tool will automatically adapt imports when converting your sources to Python 3.

New in version 2.2.

Source code: Lib/HTMLParser.py

This module defines a class HTMLParser which serves as the basis for parsing text files
formatted in HTML (HyperText Mark-up Language) and XHTML. Unlike the parser in htmllib,
this parser is not based on the SGML parser in sgmllib.

class HTMLParser.HTMLParser
An HTMLParser instance is fed HTML data and calls handler methods when start tags,
end tags, text, comments, and other markup elements are encountered. The user should
subclass HTMLParser and override its methods to implement the desired behavior.

The HTMLParser class is instantiated without arguments.

Unlike the parser in htmllib, this parser does not check that end tags match start tags or
call the end-tag handler for elements which are closed implicitly by closing an outer
element.

An exception is defined as well:

exception HTMLParser.HTMLParseError
HTMLParser is able to handle broken markup, but in some cases it might raise this
exception when it encounters an error while parsing. This exception provides three
attributes: msg is a brief message explaining the error, lineno is the number of the line on
which the broken construct was detected, and offset is the number of characters into
the line at which the construct starts.

19.1.1. Example HTML Parser Application

As a basic example, below is a simple HTML parser that uses the HTMLParser class to print
out start tags, end tags and data as they are encountered:

from HTMLParser import HTMLParser

create a subclass and override the handler methods
class MyHTMLParser(HTMLParser):
 def handle_starttag(self, tag, attrs):
 print "Encountered a start tag:", tag
 def handle_endtag(self, tag):
 print "Encountered an end tag :", tag
 def handle_data(self, data):

The output will then be:

Encountered a start tag: html
Encountered a start tag: head
Encountered a start tag: title
Encountered some data : Test
Encountered an end tag : title
Encountered an end tag : head
Encountered a start tag: body
Encountered a start tag: h1
Encountered some data : Parse me!
Encountered an end tag : h1
Encountered an end tag : body
Encountered an end tag : html

19.1.2. HTMLParser Methods

HTMLParser instances have the following methods:

HTMLParser.feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete elements;
incomplete data is buffered until more data is fed or close() is called. data can be either
unicode or str, but passing unicode is advised.

HTMLParser.close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This
method may be redefined by a derived class to define additional processing at the end of
the input, but the redefined version should always call the HTMLParser base class method
close().

HTMLParser.reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation
time.

HTMLParser.getpos()
Return current line number and offset.

HTMLParser.get_starttag_text()
Return the text of the most recently opened start tag. This should not normally be
needed for structured processing, but may be useful in dealing with HTML “as deployed”
or for re-generating input with minimal changes (whitespace between attributes can be
preserved, etc.).

The following methods are called when data or markup elements are encountered and they

 print "Encountered some data :", data

instantiate the parser and fed it some HTML
parser = MyHTMLParser()
parser.feed('<html><head><title>Test</title></head>'
 '<body><h1>Parse me!</h1></body></html>')

are meant to be overridden in a subclass. The base class implementations do nothing
(except for handle_startendtag()):

HTMLParser.handle_starttag(tag, attrs)
This method is called to handle the start of a tag (e.g. <div id="main">).

The tag argument is the name of the tag converted to lower case. The attrs argument is
a list of (name, value) pairs containing the attributes found inside the tag’s <> brackets.
The name will be translated to lower case, and quotes in the value have been removed,
and character and entity references have been replaced.

For instance, for the tag , this method would be called as
handle_starttag('a', [('href', 'http://www.cwi.nl/')]).

Changed in version 2.6: All entity references from htmlentitydefs are now replaced in
the attribute values.

HTMLParser.handle_endtag(tag)
This method is called to handle the end tag of an element (e.g. </div>).

The tag argument is the name of the tag converted to lower case.

HTMLParser.handle_startendtag(tag, attrs)
Similar to handle_starttag(), but called when the parser encounters an XHTML-style
empty tag (). This method may be overridden by subclasses which require
this particular lexical information; the default implementation simply calls
handle_starttag() and handle_endtag().

HTMLParser.handle_data(data)
This method is called to process arbitrary data (e.g. text nodes and the content of
<script>...</script> and <style>...</style>).

HTMLParser.handle_entityref(name)
This method is called to process a named character reference of the form &name; (e.g.
>), where name is a general entity reference (e.g. 'gt').

HTMLParser.handle_charref(name)
This method is called to process decimal and hexadecimal numeric character references
of the form &#NNN; and &#xNNN;. For example, the decimal equivalent for > is >,
whereas the hexadecimal is >; in this case the method will receive '62' or 'x3E'.

HTMLParser.handle_comment(data)
This method is called when a comment is encountered (e.g. <!--comment-->).

For example, the comment <!-- comment --> will cause this method to be called with the
argument ' comment '.

The content of Internet Explorer conditional comments (condcoms) will also be sent to

this method, so, for <!--[if IE 9]>IE9-specific content<![endif]-->, this method will
receive '[if IE 9]>IE-specific content<![endif]'.

HTMLParser.handle_decl(decl)
This method is called to handle an HTML doctype declaration (e.g. <!DOCTYPE html>).

The decl parameter will be the entire contents of the declaration inside the <!...>
markup (e.g. 'DOCTYPE html').

HTMLParser.handle_pi(data)
This method is called when a processing instruction is encountered. The data parameter
will contain the entire processing instruction. For example, for the processing instruction
<?proc color='red'>, this method would be called as handle_pi("proc color='red'").

Note: The HTMLParser class uses the SGML syntactic rules for processing
instructions. An XHTML processing instruction using the trailing '?' will cause the '?'
to be included in data.

HTMLParser.unknown_decl(data)
This method is called when an unrecognized declaration is read by the parser.

The data parameter will be the entire contents of the declaration inside the <![...]>
markup. It is sometimes useful to be overridden by a derived class.

19.1.3. Examples

The following class implements a parser that will be used to illustrate more examples:

from HTMLParser import HTMLParser
from htmlentitydefs import name2codepoint

class MyHTMLParser(HTMLParser):
 def handle_starttag(self, tag, attrs):
 print "Start tag:", tag
 for attr in attrs:
 print " attr:", attr
 def handle_endtag(self, tag):
 print "End tag :", tag
 def handle_data(self, data):
 print "Data :", data
 def handle_comment(self, data):
 print "Comment :", data
 def handle_entityref(self, name):
 c = unichr(name2codepoint[name])
 print "Named ent:", c
 def handle_charref(self, name):
 if name.startswith('x'):
 c = unichr(int(name[1:], 16))
 else:
 c = unichr(int(name))
 print "Num ent :", c
 def handle_decl(self, data):
 print "Decl :", data

Parsing a doctype:

Parsing an element with a few attributes and a title:

The content of script and style elements is returned as is, without further parsing:

Parsing comments:

Parsing named and numeric character references and converting them to the correct char
(note: these 3 references are all equivalent to '>'):

Feeding incomplete chunks to feed() works, but handle_data() might be called more than
once:

parser = MyHTMLParser()

>>> parser.feed('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" '
... '"http://www.w3.org/TR/html4/strict.dtd">')
Decl : DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"

>>>

>>> parser.feed('')
Start tag: img
 attr: ('src', 'python-logo.png')
 attr: ('alt', 'The Python logo')
>>>
>>> parser.feed('<h1>Python</h1>')
Start tag: h1
Data : Python
End tag : h1

>>>

>>> parser.feed('<style type="text/css">#python { color: green }</style>')
Start tag: style
 attr: ('type', 'text/css')
Data : #python { color: green }
End tag : style
>>>
>>> parser.feed('<script type="text/javascript">'
... 'alert("hello!");</script>')
Start tag: script
 attr: ('type', 'text/javascript')
Data : alert("hello!");
End tag : script

>>>

>>> parser.feed('<!-- a comment -->'
... '<!--[if IE 9]>IE-specific content<![endif]-->')
Comment : a comment
Comment : [if IE 9]>IE-specific content<![endif]

>>>

>>> parser.feed('>>>')
Named ent: >
Num ent : >
Num ent : >

>>>

>>> for chunk in ['<sp', 'an>buff', 'ered ', 'text</s', 'pan>']:
... parser.feed(chunk)

>>>

Parsing invalid HTML (e.g. unquoted attributes) also works:

...
Start tag: span
Data : buff
Data : ered
Data : text
End tag : span

>>> parser.feed('<p>tag soup</p >')
Start tag: p
Start tag: a
 attr: ('class', 'link')
 attr: ('href', '#main')
Data : tag soup
End tag : p
End tag : a

>>>

