
From Models to Algorithms

dy
dt

→
yn+1 − yn

∆t

f (x) = 0 → xn+1 = xn −
f (xn)

f ′(xn)
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Functions on the Computer

f (x) = sin(x) x ∈ [0, π]

Problem:
Infinite number of values of x .
How to store f (x) ?
Computers are finite.

Solutions:
1 Compute sin(x) when you need the value for

a specific x .
2 Store f (x) in a number of points and then

interpolate in other points.
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The Sine Function

Suppose we want to generate a plot of the sine function for
values of x between 0 and π. To this end, we define a set of
x-values and an associated set of values of the sine function.
More precisely, we define n + 1 points by

xi = ih for i = 0, 1, . . . , n

where h = π/n and n > 1 is an integer. The associated function
values are defined as

si = sin(xi) for i = 0, 1, . . . , n.
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The Sine Function

from scitools.std import *

n = int(sys.argv[1])

x = linspace(0, pi, n+1)
s = sin(x)
plot(x, s, legend=’sin(x), n=%d’ % n, hardcopy=’tmp.eps’)
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The Sine Function
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Interpolation

-
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Interpolation

How do we compute values of a straight line between two given
points?
Given (x1, y1) and (x2, y2):

y(x) = y1 +
y2 − y1

x2 − x1
(x − x1)
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How do we generalize this?

y(x) = y0 +
y1 − y0

x1 − x0
(x − x0)

z(x) = y1 +
y2 − y1

x2 − x1
(x − x1)
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Interpolation

Assume that we know that a given x∗ lies in the interval from
x = xk to xk+1, where the integer k is given. In the interval
xk 6 x < xk+1, we define the linear function that passes
through (xk , sk ) and (xk+1, sk+1):

Sk (x) = sk +
sk+1 − sk

xk+1 − xk
(x − xk ).

That is, Sk (x) coincides with sin(x) at xk and xk+1, and
between these nodes, Sk (x) is linear. We say that Sk (x)
interpolates the discrete function (xi , si)

n
i=0 on the interval

[xk , xk+1].
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Interpolation
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Interpolation

from numpy import *
import sys

xp = eval(sys.argv[1])
n = int(sys.argv[2])

def S_k(k):
return s[k] + \

((s[k+1] - s[k])/(x[k+1] - x[k]))*(xp - x[k])
h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
k = int(xp/h)

print ’Approximation of sin(%s): ’ % xp, S_k(k)
print ’Exact value of sin(%s): ’ % xp, sin(xp)
print ’Eror in approximation: ’, sin(xp) - S_k(k)
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Interpolation

To study the approximation, we put x =
√

2 and use the
program eval_sine.py for n = 5, 10 and 20.

Terminal

eval_sine.py ’sqrt(2)’ 5
Approximation of sin(1.41421356237): 0.951056516295
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0367094296976

Terminal

eval_sine.py ’sqrt(2)’ 10
Approximation of sin(1.41421356237): 0.975605666221
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0121602797718
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Interpolation

Terminal

eval_sine.py ’sqrt(2)’ 20
Approximation of sin(1.41421356237): 0.987727284363
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 3.86616296923e-05

Note that the error is reduced as the n increases.
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Differentiation Becomes Finite Differences

You have heard about derivatives. Probably, the following
formulas are well known to you:

d
dx

sin(x) = cos(x)

d
dx

ln(x) =
1
x

d
dx

xm = mxm−1
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Differentiation Becomes Finite Differences

Why is differentiation so important? The reason is quite simple:
The derivative is a mathematical expression of change. And
change is, of course, essential in modeling various phenomena.
If we know the state of a system, and we know the laws of
change, then we can, in principle, compute the future of that
system.
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Differentiation Becomes Finite Differences

The mathematical definition of differentiation reads

f ′(x) = lim
ε→0

f (x + ε) − f (x)

ε
.

Approximation:

f ′(x) ≈
f (x + h) − f (x)

h
for small h > 0.
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Differentiating the Sine Function

Consider f (x) = sin(x) and the associated derivative
f ′(x) = cos(x). If we put x = 1,we have

f ′(1) = cos(1) ≈ 0.540 ,

and by putting h = 1/100 in (16) we get

f ′(1) ≈
f (1 + 1/100) − f (1)

1/100
=

sin(1.01) − sin(1)

0.01
≈ 0.536 .
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Differentiating the Sine Function
def diff(f, x, h):

return (f(x+h) - f(x))/float(h)

from math import *
import sys

x = eval(sys.argv[1])
h = eval(sys.argv[2])

approx_deriv = diff(sin, x, h)
exact = cos(x)
print ’The approximated value is: ’, approx_deriv
print ’The correct value is: ’, exact
print ’The error is: ’, exact - approx_deriv

Running the program for x = 1 and h = 1/1000 gives

Terminal

forward_diff.py 1 0.001
The approximated value is: 0.53988148036
The correct value is: 0.540302305868
The error is: 0.000420825507813
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Differences on a Mesh

Frequently, we will need finite difference approximations to a
discrete function defined on a mesh. Suppose we have a
discrete representation of the sine function: (xi , si)

n
i=0. We want

to compute approximations to the derivative of the sine function
at the nodes in the mesh. Since we only have function values at
the nodes, the h must be the difference between nodes, i.e.,
h = xi+1 − xi . At node xi we then have the following
approximation of the derivative:

zi =
si+1 − si

h
,

for i = 0, 1, . . . , n − 1.
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Differences on a Mesh

from scitools.std import *

n = int(sys.argv[1])

h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
z = zeros(len(s))
for i in xrange(len(z)-1):

z[i] = (s[i+1] - s[i])/h
# special formula for end point_
z[-1] = (s[-1] - s[-2])/h
plot(x, z)

xfine = linspace(0, pi, 1001) # for more accurate plot
exact = cos(xfine)
hold()
plot(xfine, exact)
legend(’Approximate function’, ’Correct function’)
title(’Approximate and discrete functions, n=%d’ % n)
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Differences on a Mesh

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5

Approximate and correct discrete functions, n=5

Approximate function
Correct function

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5

Approximate and correct discrete functions, n=10

Approximate function
Correct function

n = 5 n = 10

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5

Approximate and correct discrete functions, n=20

Approximate function
Correct function

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5

Approximate and correct discrete functions, n=100

Approximate function
Correct function

n = 20 n = 100
Plots for exact and approximate derivatives of sin(x) with
varying values of the resolution n.

University of Oslo January 2010, Tveito [ simula . research laboratory ]



Taylor Series

f (x0 + h) ≈ f (x0)

f (x0 + h) ≈ f (x0) + hf ′(x0)

f (x0 + h) ≈ f (x0) + hf ′(x0) +
h2

2
f ′′(x0)

f (x0 + h) ≈ f (x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0)

f (x0 + h) ≈ f (x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0) +

h4

24
f ′′′′(x0)

f (x0 + h) ≈
n
∑

k=0

hk

k !
f (k)(x0)
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Derivatives Revisited

We observed aboved that

f ′(x) ≈
f (x + h) − f (x)

h
.

By using the Taylor series, we can obtain this approximation
directly, and also get an indication of the error of the
approximation.

f (x + h) = f (x) + hf ′(x) + O(h2),

and thus

f ′(x) =
f (x + h) − f (x)

h
+ O(h), (1)

University of Oslo January 2010, Tveito [ simula . research laboratory ]



More Accurate Difference Approximations

We can also use the Taylor series to derive more accurate
approximations of the derivatives.

f (x + h) ≈ f (x) + hf ′(x) +
h2

2
f ′′(x) + O(h3). (2)

By using −h instead of h, we get

f (x − h) ≈ f (x) − hf ′(x) +
h2

2
f ′′(x) + O(h3). (3)

By subtracting (3) from (2), we have

f (x + h) − f (x − h) = 2hf ′(x) + O(h3),

and consequently

f ′(x) =
f (x + h) − f (x − h)

2h
+ O(h2). (4)
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More Accurate Difference Approximations

Note that the error is now O(h2) whereas the error term of (1)
is O(h). In order to see if the error is actually reduced, let us
compare the following two approximations

f ′(x) ≈
f (x + h) − f (x)

h
and f ′(x) ≈

f (x + h) − f (x − h)

2h

by applying them to the discrete version of sin(x) on the interval
(0, π).
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More Accurate Difference Approximations
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Differential Equations

Suppose we want to compute a numerical approximation of the
solution of

u′(t) = u(t) (5)

equipped with the intial condition

u(0) = 1. (6)

We want to compute approximations from time t = 0 to time
t = 1. Let n > 1 be a given integer, and define

∆t = 1/n . (7)

Furthermore, let uk denote an approximation of u(tk ) where

tk = k∆t (8)

for k = 0, 1, . . . , n.
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Differential Equations

The key step in developing a numerical method for this
differential equation is to invoke the Taylor series as applied to
the exact solution,

u(tk+1) = u(tk ) + ∆tu′(tk ) + O(∆t2), (9)

which implies that

u′(tk ) ≈
u(tk+1) − u(tk )

∆t
. (10)

By using (5) , we get

u(tk+1) − u(tk )

∆t
≈ u(tk ). (11)
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Differential Equations

Recall now that u(tk ) is the exact solution at time tk , and that uk

is the approximate solution at the same point in time. We now
want to determine uk for all k > 0. Obviously, we start by
defining

u0 = u(0) = 1.

Since we want uk ≈ u(tk ), we require that uk satisfy the
following equality

uk+1 − uk

∆t
= uk (12)

motivated by (11) . It follows that

uk+1 = (1 + ∆t)uk . (13)

Since u0 is known, we can compute u1, u2 and so on by using
the formula above.
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Differential Equations

def compute_u(u0, T, n):
"""Solve u’(t)=u(t), u(0)=u0 for t in [0,T] with n steps."""
t = linspace(0, T, n+1)
t[0] = 0
u = zeros(n+1)
u[0] = u0
dt = T/float(n)
for k in range(0, n, 1):

u[k+1] = (1+dt)*u[k]
t[k+1] = t[k] + dt

return u, t

from scitools.std import *
n = int(sys.argv[1])

# special test case: u’(t)=u, u(0)=1, t in [0,1]
T = 1; u0 = 1
u, t = compute_u(u0, T, n)
plot(t, u)
tfine = linspace(0, T, 1001) # for accurate plot
v = exp(tfine) # correct solution
plot(tfine, v)
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Differential Equations
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A Model for the Spread of a Disease

I = Infectives — Have the disease and are able to transmit it.
S = Susceptibles — May catch the disease.

A system of differential equations modelling the evolution of S
and I is given by

S′ = −rSI,

I′ = rSI − aI.

Here r and a are given constants reflecting the characteristics
of the epidemic. The initial conditions are given by

S(0) = S0,

I(0) = I0,

where the initial state (S0, I0) is assumed to be known.
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A Model for the Spread of a Disease

Suppose we want to compute numerical solutions of this
system from time t = 0 to t = T . We introduce the time step

∆t = T/n

and the approximations (Sk , Ik ) of the solution (S(tk ), I(tk )). An
explicit Forward Euler method for the system takes the following
form,

Sk+1 − Sk

∆t
= −rSk Ik ,

Ik+1 − Ik
∆t

= rSk Ik − aIk ,

which can be rewritten on computational form

Sk+1 = Sk − ∆trSk Ik ,

Ik+1 = Ik + ∆t (rSk Ik − aIk ) .
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A Model for the Spread of a Disease

We want to apply the program to a specific case where an
influenza epidemic hit a British boarding school with a total of
763 boys. The epidemic lasted from 21st January to 4th
February in 1978. We let t = 0 denote 21st of January and we
define T = 14 days. We put S0 = 762 and I0 = 1 which means
that one person was ill at t = 0. In the figure we see the
numerical results using r = 2.18 × 10−3, a = 0.44, n = 1000.
Also, we have plotted actual the measurements, and we note
that the simulations fit the real data quite well.
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A Model for the Spread of a Disease
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An Explicit Finite Difference Scheme

The heat equation
ut = uxx , (14)

defined on the interval x ∈ (0, 1), and for t > 0, with boundary
conditions

u(0, t) = u(1, t) = 0 (15)

can be solved analytically for virtually any initial condition

u(x , 0) = f (x), (16)

where f (x) is a given function defined on the interval (0, 1).
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An Explicit Finite Difference Scheme

Let us start by introducing a computational mesh. Suppose
M > 0 is a given integer, and define

xi = i/(M + 1)

for i = 0, . . . , M + 1. We note that x0 = 0, and that xM+1 = 1.
These two points define the spatial boundary of the
computational mesh, and we know that the solution is zero in
these points for all time. Next, we assume that we want to
compute the solution for t ranging from t = 0 to t = T , where
T > 0 is given. Let N > 0 be a given integer, and define a set of
discrete points in time:

tn =
n
N

T , n = 0, . . . , N .

Here we note that t0 = 0, and tN = T .
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An Explicit Finite Difference Scheme

Our task is to compute an approximation of the exact solution of
the heat equation given by the function u = u(x , t). We seek
such an approximation in the discrete points given by (xi , tn) for
i = 0, . . . , M + 1 and n = 0, . . . , N. Let un

i denote an
approximation of u(xi , tn). Then we easily see from the
boundary conditions that

un
0 = un

M+1 = 0

for n = 0, . . . , N. Thus, at the boundary, we just evaluate the
exact boundary conditions so there is no approximation
involved. Similarly, at time t = 0, we have the initial conditions,
and therefore we set

u0
i = f (xi)

for i = 1, . . . M.
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An Explicit Finite Difference Scheme

In order to use the Taylor series in space and time, we need the
space-step which is given by

∆x = xi+1 − xi =
1

M + 1
,

and the time-step given by

∆t = tn+1 − tn =
T
N

.

The Taylor series in time applied to the analytical solution
implies that

ut(xi , tn) =
u(xi , tn+1) − u(xi , tn)

∆t
+ O(∆t),

Similarly, we have

uxx(xi , tn) =
u(xi−1, tn) − 2u(xi , tn) + u(xi+1, tn)

∆x2 + O(∆x2).
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An Explicit Finite Difference Scheme

From the governing partial differential equation it follows that in
each computational point we have

ut(xi , tn) = uxx(xi , tn), (17)

and thus

u(xi , tn+1) − u(xi , tn)
∆t

+O(∆t) =
u(xi−1, tn) − 2u(xi , tn) + u(xi+1, tn)

∆x2 +O(∆x2)

Since this holds for the analytical equations, we define our
numerical scheme by requiring that the following identity holds
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An Explicit Finite Difference Scheme

un+1
i − un

i

∆t
=

un
i−1 − 2un

i + un
i+1

∆x2

We can condense the expressions by defining a mesh
parameter

ρ =
∆t

∆x2 .

Solving for un+1
i yields

un+1
i = un

i + ρ
(

un
i−1 − 2un

i + un
i+1

)

,

which can be written even more compactly as

un+1
i = ρ

(

un
i−1 + un

i+1

)

+ (1 − 2ρ)un
i . (18)

Note that if the numerical solution is known, for all values of i , at
time t = tn, then we can compute the solution at time t = tn+1

by using this scheme.
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An Explicit Finite Difference Scheme
def heat(T, N, M, f):

# define variables:
x = linspace(0, 1, M+2)
t = 0
dx = 1/float(M+1)
dt = T/float(N)
rho = dt/dx**2
u = zeros(M+2) # holds u(x_i, t_n)
um = zeros(M+2) # holds u(x_i, t_n-1)

# set initial condition:
for i in range(len(um)):

um[i] = f(x[i])
t += dt
umax = max(um)

while t <= T:
# set boundary conditions:
u[0] = 0; u[-1] = 0
# use scheme for inner points:
for i in iseq(1, M):

u[i] = rho*(um[i-1] + um[i+1]) + (1 - 2*rho)*um[i]

# plot solution:
plot(x, u, legend=’u(x, t=%g)’ % t,

axis=[0, 1, 0, umax])
time.sleep(0.5) # pause, so we can watch the plot
# prepare for next time step:
um = u.copy()
t += dt
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An Explicit Finite Difference Scheme
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Plots of the solution u(x , t) of a heat equation for different
meshes.
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Reaction Diffusion Equations

Equations of the form

ut = uxx + g(u)

appear in numerous applications and are called reaction
diffusion equations. From a computational point of view, they
are more interesting than the heat equation, since, in general,
there are no closed form analyitcal solutions available. Even
though an analytical solution is impossible, we will see that the
equation is surprisingly simple to solve numerically. Suppose,
as usual, that we consider this equation on the unit interval with
the initial condition given by

u(x , 0) = f (x),

and that we have standard boundary conditions given by

u(0, t) = u(1, t) = 0.
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Reaction Diffusion Equations

The time step is defined by

∆t =
T
N

,

and the space-step is

∆x =
1

M + 1
.

The mesh is now defined by

xi = i∆x for i = 0, . . . , M + 1,

and
tn = n∆t for n = 0, . . . , N.
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Reaction Diffusion Equations

As above we let un
i denote an approximation of u(xi , tn). Recall

that

ut(xi , tn) =
u(xi , tn+1) − u(xi , tn)

∆t
+ O(∆t),

uxx(xi , tn) =
u(xi−1, tn) − 2u(xi , tn) + u(xi+1, tn)

∆x2 + O(∆x2),

and that
ut(xi , tn) = uxx(xi , tn) + g(u(xi , tn)) (19)

for i = 0, . . . , M + 1, n = 0, . . . , N. Consequently, we have

u(xi , tn+1) − u(xi , tn)
∆t

+ O(∆t) =
u(xi−1, tn) − 2u(xi , tn) + u(xi+1, tn)

∆x2

+ g(u(xi , tn)) + O(∆x2).
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Reaction Diffusion Equations

As above, we define the numerical scheme by requiring that

un+1
i − un

i

∆t
=

un
i−1 − 2un

i + un
i+1

∆x2 + g(un
i ).

By recalling that

ρ =
∆t

∆x2 ,

we can rewrite the scheme on a computational form,

un+1
i = ρ

(

un
i−1 + un

i+1

)

+ (1 − 2ρ)un
i + ∆tg(un

i ). (20)

We note again that if the solution is known in all spatial points
at time t = tn, we can use the formula above to compute the
numerical solution at time t = tn+1.
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Reaction Diffusion Equations
from numpy import *
from scitools.StringFunction import StringFunction
from scitools.numpytools import iseq
import sys

f = sys.argv[1]
g = sys.argv[2]
M = int(sys.argv[3])
N = int(sys.argv[4])
T = eval(sys.argv[5])

f = StringFunction(f)
g = StringFunction(g, independent_variables=’u’)
x = linspace(0, 1, M + 2)
t = 0
dx = 1/float(M + 1)
dt = T/float(N)
rho = dt/dx**2
print rho
u = zeros(M + 2) #u(x_i, t_n)
um = zeros(M + 2) #u(x_i, t_n-1)
for i in range(len(um)):

um[i] = f(x[i])
t += dt

while t <= T:
u[0] = 0; u[-1] = 0
for i in range(1, M):

u[i] = rho*(um[i-1] + um[i+1]) + (1-2*rho)*um[i] + dt*g(um[i])
um = u.copy()
t += dt
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Reaction Diffusion Equations

In the figure you see plots for four numerical solutions of the
reaction diffusion equation

ut = uxx + eu

with initial condition

u(x , 0) = x(1 − x),

and standard boundary conditions given by

u(0, t) = u(1, t) = 0.

The plots show the solutions at time T = 1 using four different
meshes. As usual we observe that the solutions seems to
converge to a common limiting function as the mesh is refined.
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Reaction Diffusion Equations
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Chaotic Electrical Waves in the Heart

The following model was introduced by Aliev and Panfilov,

et = δ∆e − ke(e − a)(e − 1) − er ,

rt = −

[

ǫ +
µ1r

µ2 + e

]

[r + ke(e − b − 1)] ,

where δ, a, ǫ, µ1,µ2 and b are given parameters. The variable e
models a scaled version of the so called transmembrane
potential, whereas r is an auxiliary variable.
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Chaotic Electrical Waves in the Heart

We want to solve the system on the unit square, and we start
by considering the system equipped with the standard
boundary conditions, i.e. we assume that

e(x , y , t) = r(x , y , t) = 0

for all (x , y) ∈ ∂Ω. Furthermore, we assume that the inital
condition is given by

e(x , y , 0) = e0(x , y),

r(x , y , 0) = r0(x , y),
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Chaotic Electrical Waves in the Heart

en+1
i,j − en

i,j

∆t
= δ

en
i+1,j − 2en

i,j + en
i−1,j

h2 + δ
en

i,j+1 − 2en
i,j + en

i,j−1

h2

− ken
i,j(e

n
i,j − a)(en

i,j − 1) − en
i,j r

n
i,j

rn+1
i,j − rn

i,j

∆t
= −

(

ǫ +
µ1rn

i,j

µ2 + en
i,j

)

(

rn
i,j + ken

i,j(e
n
i,j − b − 1)

)
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Chaotic Electrical Waves in the Heart

In order to write this scheme on a computational form, we
introduce

ρ = δ
∆t
h2 ,

and observe that

en+1
i,j = ρ

(

en
i+1,j + en

i−1,j + en
i,j+1 + en

i,j−1

)

+ (1 − 4ρ)en
i,j

− ∆t
[

ken
i,j(e

n
i,j − a)(en

i,j − 1) + en
i,j r

n
i,j

]

,

rn+1
i,j = rn

i,j − ∆t

(

ǫ +
µ1rn

i,j

µ2 + en
i,j

)

(

rn
i,j + ken

i,j(e
n
i,j − b − 1)

)

.
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Chaotic Electrical Waves in the Heart

t = 300 t = 400

t = 500 t = 600
Chaotic electrical waves in the heart for different t .
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