
Exercises - Lecture 6

March 11, 2011

1. Ping pong
Write a simple MPI program to measure the cost of point-to-point communication, that is, using

MPI Send and MPI Recv. (Hint, you can involve two MPI processes, between which a message is repeatedly
sent forward-and-backward a number of times.)

Use timing call MPI Wtime() to measure the average time taken for one round of communication, i.e.
sending and receiving. Investigate how the time taken varies with the size of the message.

2. MPI overhead
From the above exercise you’ll notice that point-to-point communication has a constant start-up over-

head, independent of the size of the transferred message. This should mean that sending a certain number
of small messages is much more expensive than sending one accumulated large message. Write a simple
MPI program to verify this.

3. MPI derived datatypes
Write a simple MPI program that divides a 2D grid into P vertical slices. Each “thin” 2D slice is

assumed to be extended with one layer of ghost points on the both left and right sides. We also assume
that the underlying data structure on each process is a contiguous 1D array. Each process is supposed to
exchange two boundaries with its left and right neighbors. The whole exchanging procedure is shown in
Figure 1. Use MPI derived datatype to define the vertical boundaries for MPI communication.

4. Wave equation
On page 26 of this week’s lecture slides, you will find details about how to solve 1D wave equation

in parallel. Make a MPI implementation that should be able to deal with arbitrary number of points
correctly. Computing kernel is as follows, where you can set dt = dx.

t = dt;

while (t<T){

t += dt;

for (i=1; i<=M; i++)

up[i] = 2*u[i]-um[i]+((dt*dt)/(dx*dx))*(u[i-1]-2*u[i]+u[i+1]);

up[0] = value_of_left_BC(t); // enforcing left BC

up[M+1] = value_of_right_BC(t); // enforcing right BC

/* preparation for next time step: shuffle the three arrays */

tmp = um; um = u; u = up; up = tmp;

}

1



Ghost	  grid	  point	  

	  	  Process	  0	   	  	  Process	  1	   	  	  Process	  2	  

(2)	  Divided	  by	  3	  processes	  (1)	  2D	  grid	  before	  dividing	  

Ghost	  grid	  point	  

	  	  Process	  0	   	  	  Process	  1	   	  	  Process	  2	  

(3)	  A<er	  exchanging	  	  boundaries	  

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2
0 1 2
0 1 2
0 1 2
0 1 2
0 1 2
0 1 2
0 1 2
0 1 2

3 4 5
3 4 5
3 4 5
3 4 5
3 4 5
3 4 5
3 4 5
3 4 5
3 4 5

6 7 8
6 7 8
6 7 8
6 7 8
6 7 8
6 7 8
6 7 8
6 7 8
6 7 8

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

2 3 4 5 6
2 3 4 5 6
2 3 4 5 6
2 3 4 5 6
2 3 4 5 6
2 3 4 5 6
2 3 4 5 6
2 3 4 5 6
2 3 4 5 6

5 6 7 8
5 6 7 8
5 6 7 8
5 6 7 8
5 6 7 8
5 6 7 8
5 6 7 8
5 6 7 8
5 6 7 8

Figure 1: Illustration of exchanging boundaries among three processes.

2


