Exercises - Lecture 2

February 2, 2011

1. Interpolation

- (a) Create a program that compares the exact value and an interpolation of the function $sin(x^2)$ from 0 to 3.
- (b) Find the error for $x_1 = \sqrt{3} 1$ and $x_2 = \sqrt{3} + 1$, for n = 15, n = 30 and n = 60.

2. Differentiation

- (a) Modify the program from the foil "Differences on a Mesh" to calculate $\frac{d^4}{dx^4}sin(x)$. (Add more for loops.)
- **(b)** Plot sin(x) and the numerical approximation of $\frac{d^4}{dx^4}sin(x)$ for n=20 and n=40.

3. Differential Equations

Consider the initial value problem

$$u'(t) = 1 + 4u(t), \tag{1}$$

$$u(0) = 0. (2)$$

(a) Verify that the analytical solution is

$$u(t) = \frac{e^{4t} - 1}{4} \tag{3}$$

- **(b)** Write a program that finds an approximate solution for $u(t_k)$ for a time t_k . (Try to implement it in C and save data in a file.)
- (c) Plot the approximate and the analytical solution for u(t), $t \in [0, 1]$, with n time steps. Use n = 5, n = 10, n = 20 and n = 100.

4. Finite Difference Scheme

(a) Adjust the function heat so that it also takes the boundary values as inputs and run the following program:

```
from scitools.std import *
import time
f = 1 if x < 0.3 else 3
f = StringFunction(f)
M = 20
N = 200
T = 0.1
b0 = 1
b1 = 3
heat(T, N, M, f, b0, b1)</pre>
```

Plot the result for t = 0.01 and t = 0.10.

(b) Adjust heat so that it can also handle diffusion reaction equation $u_t = u_{xx} - 5u^3$ with initial value f(x) = 5x(x-1) and boundary conditions u(0,t) = u(1,t) = 0. Find the maximum value of the function u at time t = 0.1 (You may use M = 100, N = 5000).

Please make both Python and C implementations and compare run speed. For the C code, please implement main function and heat function in different files and use the 2-step compiling approach mentioned in the previous lecture. Try different optimization flags (-O, -O1, ..., -O3) of gcc and observe how it affects the code performance.