
Mixed MPI-OpenMP programming

Mixed MPI-OpenMP programming – p. 1

Overview

Motivations for mixed MPI-OpenMP programming

Advantages and disadvantages

The example of the Jacobi method

Chapter 18 in Michael J. Quinn, Parallel Programming in C with MPI and
OpenMP

Mixed MPI-OpenMP programming – p. 2

Motivation from hardware architecture

There exist distributed shared-memory parallel computers
High-end clusters of SMP machines
Low-end clusters of multicore-based compute nodes

MPI is the de-facto standard for communication between the
SMPs/nodes

Within each SMP/node
MPI can be used for intra-node communication, but may not be
aware of the shared memory
Thread-based programming directly utilizes the shared memory
OpenMP is the easiest choice of thread-based programming

Mixed MPI-OpenMP programming – p. 3

Multicore-based cluster

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node
In

te
rc

on
ne

ct
 N

et
w

or
k

Mixed MPI-OpenMP programming – p. 4

Motivation from communication overhead

Assume a cluster that has m nodes, each node has k CPUs

If MPI is used over the entire cluster, we have mk MPI processes
Suppose each MPI process on average sends and receives 4
messages
Total number of messages: 4mk

If MPI is used only for inter-node parallelism, while OpenMP threads
control intra-node parallelism

Number of MPI processes: m

Total number of messages: 4m

Therefore, fewer MPI messages in the mixed MPI-OpenMP approach
Less probability for network contention
But the messages are larger
Total message-passing overhead is smaller

Mixed MPI-OpenMP programming – p. 5

Motivation from amount of parallelism

Assume a sequential code: 5% purely serial work, 90% perfectly
parallelizable work, and 5% work difficult to parallelize

Suppose we have a 8-node cluster, each node has two CPUs

If MPI is used over the entire cluster, i.e., 16 MPI processes
Speedup:

1

0.05 + 0.90/16 + 0.05
= 6.4

Note that the 5% non-easily parallelizable work is duplicated on
all the 16 MPI processes

If mixed MPI-OpenMP programming is used
Speedup:

1

0.05 + 0.90/16 + 0.05/2
= 7.6

Note that the 5% non-easily parallelizable work is duplicated on
the 8 MPI processes, but within each MPI process it is
parallelized by the two OpenMP threads

Mixed MPI-OpenMP programming – p. 6

Motivation from granularity and load balance

Larger grain size (more computation) for fewer MPI processes
Better computation/communication ratio

In general, better load balance for fewer MPI processes
In the pure MPI approach, due to the large number of MPI
processes, there is a higher probability for some of the MPI
processes being idle
In the mixed MPI-OpenMP approach, the MPI processes have a
lower probability of being idle

Mixed MPI-OpenMP programming – p. 7

Advantages

Mixed MPI-OpenMP programming

can avoid intra-node MPI communicaiton overheads

can reduce the possibility of network contention

can reduce the need for replicated data
data is guaranteed to be shared inside each node

may improve a poorly scaling MPI code
load balance can be difficult for a large number of MPI processes
for example, 1D decomposiiton by the MPI processes may
replace 2D decomposition

may adopt dynamic load balancing within one node

Mixed MPI-OpenMP programming – p. 8

Disadvantages

Mixed MPI-OpenMP programming

may introduce additional overhead not present in the MPI code
thread creation, false sharing, sequential sections

may adopt more expensive OpenMP barriers than implicit
point-to-point MPI synchronizations

may be difficult to overlap inter-node communication with
computation

may have more cache misses during point-to-point MPI
communication

the messages are larger
cache is not shared among all threads inside one node

may not be able to use all the network bandwidth by one MPI process
per node

Mixed MPI-OpenMP programming – p. 9

Inter-node communication

There are 4 different styles of handling inter-node communication

“Single”
all MPI communicaiton is done by the OpenMP master thread,
outside the parallel regions

“Funnelled”
all MPI communicaiton is done by the master thread inside a
parallel region
other threads may be doing computations

“Serialized”
More than one thread per node carry out MPI communicaitons
but one thread at a time

“Multiple”
More than one thread per node carry out MPI communicaitons
can happen simultaneously

Mixed MPI-OpenMP programming – p. 10

Simple example of hello-world

#include <mpi.h>
#include <omp.h>
#include <stdio.h>

int main (int nargs, char** args)
{

int rank, nprocs, thread_id, nthreads;

MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

#pragma omp parallel private(thread_id, nthreads)
{

thread_id = omp_get_thread_num ();
nthreads = omp_get_num_threads ();
printf("I’m thread nr.%d (out of %d) on MPI process nr.%d (out of %d)\n",

thread_id, nthreads, rank, nprocs);
}

MPI_Finalize ();

return 0;
}

Mixed MPI-OpenMP programming – p. 11

Example of the Jacobi method (1)

We want to solve a 2D Laplace equation:

∂2u

∂x2
+

∂2u

∂y2
= 0,

where u is known on the boundary.

Assume the solution domain is the unit square, and we use finite
differences on a uniform mesh ∆x = ∆y = h = 1

N−1
:

ui−1,j + ui,j−1 − 4ui,j + ui,j+1 + ui+1,j

h2
= 0

for i = 1, 2, . . . , N − 2 and j = 1, 2, . . . , N − 2

Mixed MPI-OpenMP programming – p. 12

Example of the Jacobi method (2)

Let us use the Jacobi method to find ui,j.

The Jacobi method is an iterative process, which starts with an initial
guess u0

i,j , and generates u1
i,j, u2

i,j ,

We stop the iterations when uk
i,j − uk−1

i,j is small enough for all i, j.

Mixed MPI-OpenMP programming – p. 13

Example of the Jacobi method (3)

Formula for calculating uk
i,j from uk−1 on all the interior points:

uk
i,j =

1

4

(

uk−1

i−1,j + uk−1

i,j−1
+ uk−1

i,j+1
+ uk−1

i+1,j

)

Mixed MPI-OpenMP programming – p. 14

Example of the Jacobi method (4)

A serial C code uses 2D arrays w and u

w contains uk, while u contains uk−1

for (;;) {
tdiff = 0.0;

for (i=1; i<N-1; i++)
for (j=1; j<N-1; j++) {

w[i][j] = (u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1])/4.0;
if (fabs(w[i][j] - u[i][j]) > tdiff)
tdiff = fabs(w[i][j] - u[i][j]);

}

if (tdiff <= EPSILON) break;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

u[i][j] = w[i][j];
}

Mixed MPI-OpenMP programming – p. 15

Example of the Jacobi method (5)

The MPI code divides the i rows into blocks

Each subdomain needs one ghost layer on top and one ghost layer
on bottom

MPI process id needs to exchage with processes id-1 and id+1 by
using MPI Send and MPI Recv

In addition, MPI Allreduce is needed to find the maximum tdiff
among all MPI processes

Mixed MPI-OpenMP programming – p. 16

Example of the Jacobi method (6)

Mixed MPI-OpenMP implementation introduces a parallel region
int find_steady_state (int p, int id, int my_rows,

double **u, double **w)
{

double diff; /* Maximum difference on this process */
double global_diff; /* Globally maximum difference */
int i, j;
int its; /* Iteration count */
MPI_Status status; /* Result of receive */
double tdiff; /* Maximum difference on this thread */

its = 0;
for (;;) {

/* Exchange rows for ghost buffers */
if (id > 0)

MPI_Send (u[1], N, MPI_DOUBLE, id-1, 0, MPI_COMM_WORLD);
if (id < p-1) {

MPI_Send (u[my_rows-2], N, MPI_DOUBLE, id+1, 0, MPI_COMM_WORLD);
MPI_Recv (u[my_rows-1], N, MPI_DOUBLE, id+1, 0, MPI_COMM_WORLD,

&status);
}
if (id > 0)

MPI_Recv (u[0], N, MPI_DOUBLE, id-1, 0, MPI_COMM_WORLD, &status);

Mixed MPI-OpenMP programming – p. 17

Example of the Jacobi method (7)

/* Update the new approximation */

diff = 0.0;
#pragma omp parallel private (i, j, tdiff)
{

tdiff = 0.0;
#pragma omp for

for (i = 1; i < my_rows-1; i++)
for (j = 1; j < N-1; j++) {

w[i][j] = (u[i-1][j] + u[i+1][j] +
u[i][j-1] + u[i][j+1])/4.0;

if (fabs(w[i][j] - u[i][j]) > tdiff)
tdiff = fabs(w[i][j] - u[i][j]);

}

Mixed MPI-OpenMP programming – p. 18

Example of the Jacobi method (8)

#pragma omp for nowait
for (i = 1; i < my_rows-1; i++)

for (j = 0; j < N; j++)
u[i][j] = w[i][j];

#pragma omp critical
if (tdiff > diff) diff = tdiff;

} /* end of parallel region */

MPI_Allreduce (&diff, &global_diff, 1, MPI_DOUBLE, MPI_MAX,
MPI_COMM_WORLD);

/* Terminate if the solution has converged */
if (global_diff <= EPSILON) break;

its++;
}
return its;

}

Mixed MPI-OpenMP programming – p. 19

When to use mixed MPI-OpenMP programming?

Rule-of-the-thumb: pure OpenMP must scale better than pure MPI
within one node, otherwise no hope for mixed programming

Whether mixed MPI-OpenMP programming is in fact more
advantagenous is problem dependent

Mixed MPI-OpenMP programming – p. 20

	Overview
	Motivation from hardware architecture
	Multicore-based cluster
	Motivation from communication overhead
	Motivation from amount of parallelism
	Motivation from granularity and load balance
	Advantages
	Disadvantages
	Inter-node communication
	Simple example of hello-world
	Example of the Jacobi method (1)
	Example of the Jacobi method (2)
	Example of the Jacobi method (3)
	Example of the Jacobi method (4)
	Example of the Jacobi method (5)
	Example of the Jacobi method (6)
	Example of the Jacobi method (7)
	Example of the Jacobi method (8)
	When to use mixed MPI-OpenMP programming?

