
Parallel implementations of matrix
multiplication

This is the second mandatory assignment of INF3380. Each student
should work independently and submit her/his parallel programs to the group
teacher before the deadline.

Matrix multiplication

As described in Chapter 11.2 of the textbook, Michael J. Quinn, Parallel
Programming in C with MPI and OpenMP, the product between ma-
trix A (of dimension l × m) and matrix B (of dimension m × n) will be a
matrix C (of dimension l × n), whose elements are defined by

Ci,j =
m−1∑

k=0

ai,kbk,j, for 0 ≤ i ≤ l − 1, 0 ≤ j ≤ n− 1.

Remark. Students who have trouble understanding the above mathemati-
cal formula should familiarize with simple examples of matrix multiplications,
for example, given on the following webpage:

http://www.intmath.com/matrices-determinants/4-multiplying-matrices.php

Task 1: MPI implementation

The student can choose either the rowwise block-striped parallel algorithm
described in Chapter 11.3, or the checkerboard Cannon’s algorithm described
in Chapter 11.4. An MPI program should be implemented such that it can

• accept two file names at run-time,

1

• let process 0 read from file the A and B matrices,
• let process 0 distribute the pieces of A and B to all the other processes,
• involve all the processes to carry out the the chosen parallel algorithm

for matrix multiplication C = A ∗B,
• let process 0 gather, from all the other processes, the different pieces

of C,
• let process 0 write out the entire C matrix to a file.

Task 2: OpenMP-MPI implementation

The student should extend her/his MPI program from Task 1, so that OpenMP
is used within each MPI process for the computation-intensive parts.

Input of matrix

For the sake of I/O efficiency, it is assumed that the A and B matrices are
stored in binary formatted data files. More specifically, the following function
can be used to read in a matrix stored in a binary file:

void read_matrix_binaryformat (char* filename, double*** matrix,

int* num_rows, int* num_cols)

{

int i;

FILE* fp = fopen (filename,"rb");

fread (num_rows, sizeof(int), 1, fp);

fread (num_cols, sizeof(int), 1, fp);

/* storage allocation of the matrix */

*matrix = (double**)malloc((*num_rows)*sizeof(double*));

(*matrix)[0] = (double*)malloc((*num_rows)*(*num_cols)*sizeof(double));

for (i=1; i<(*num_rows); i++)

(*matrix)[i] = (*matrix)[i-1]+(*num_cols);

/* read in the entire matrix */

fread ((*matrix)[0], sizeof(double), (*num_rows)*(*num_cols), fp);

fclose (fp);

}

2

For example, suppose the following three variables are declared:

double **matrix;

int num_rows;

int num_cols;

Then, a matrix stored in file mat.bin can be read in by calling read matrix binaryformat

as follows:

read_matrix_binaryformat ("mat.bin’’, &matrix, &num_rows, &num_cols);

Output of matrix

Similarly, the multiplication result matrix C should be written to file in
binary format by using the following function:

void write_matrix_binaryformat (char* filename, double** matrix,

int num_rows, int num_cols)

{

FILE *fp = fopen (filename,"wb");

fwrite (&num_rows, sizeof(int), 1, fp);

fwrite (&num_cols, sizeof(int), 1, fp);

fwrite (matrix[0], sizeof(double), num_rows*num_cols, fp);

fclose (fp);

}

Examples of A and B matrices

From the website of INF3380, the following matrices (in binary format) can
be downloaded for code debugging and testing:

small matrix A.bin of dimension 100× 50
small matrix B.bin of dimension 50× 100
large matrix A.bin of dimension 1000× 500
large matrix B.bin of dimension 500× 1000

3

