
Parallel quicksort algorithms
with isoefficiency analysis

Parallel quicksort algorithmswith isoefficiency analysis – p. 1



Overview

Sequential quicksort algorithm

Three parallel quicksort algorithms

Isoefficiency analysis

Chapter 14 and Chapter 7.6 in Michael J. Quinn, Parallel Programming
in C with MPI and OpenMP

Parallel quicksort algorithmswith isoefficiency analysis – p. 2



Quicksort

Given a list of numbers, we want to sort the numbers in an increasing
order

The same as finding a suitable permutation

Sequential quicksort algorithm: a recursive procedure
Select one of the numbers as pivot
Divide the list into two sublists: a “low list” containing numbers
smaller than the pivot, and a “high list” containing numbers larger
than the pivot
The low list and high list recursively repeat the procedure to sort
themselves
The final sorted result is the concatenation of the sorted low list,
the pivot, and the sorted high list

Parallel quicksort algorithmswith isoefficiency analysis – p. 3



Example of quicksort

Given a list of numbers: {79, 17, 14, 65, 89, 4, 95, 22, 63, 11}

The first number, 79, is chosen as pivot
Low list contains {17, 14, 65, 4, 22, 63, 11}

High list contains {89, 95}

For sublist {17, 14, 65, 4, 22, 63, 11}, choose 17 as pivot

Low list contains {14, 4, 11}

High list contains {64, 22, 63}

. . .

{4, 11, 14, 17, 22, 63, 65} is the sorted result of sublist
{17, 14, 65, 4, 22, 63, 11}

For sublist {89, 95} choose 89 as pivot
Low list is empty (no need for further recursions)
High list contains {95} (no need for further recursions)

{89, 95} is the sorted result of sublist {89, 95}

Final sorted result: {4, 11, 14, 17, 22, 63, 65, 79, 89, 95}
Parallel quicksort algorithmswith isoefficiency analysis – p. 4



Illustration of quicksort

Figure 14.1 from Parallel Programming in C with MPI and OpenMP

Parallel quicksort algorithmswith isoefficiency analysis – p. 5



Two observartions

Quicksort is generally recognized, in the average case, as the fastest
sorting algorithm

Quicksort has some natural concurrency
The low list and high list can sort themselves concurrently

Parallel quicksort algorithmswith isoefficiency analysis – p. 6



Parallelizing quicksort

We consider the case of distributed memory

In the beginning, each process holds a segment of the unsorted list
The unsorted list is evenly distributed among the processes

When a parallel quicksort algorithm is finishied, we want
Each process holds a segment of the list (length may vary from
process to process)
The list segment stored on each process is sorted
The last element on process i’s list is smaller than the first
element on process i+ 1’s list

Parallel quicksort algorithmswith isoefficiency analysis – p. 7



Parallel quicksort algorithm 1

We randomly choose a pivot from one of the processes and
broadcast it to every process

Each process divides its unsorted list into two lists: those smaller
than (or equal) the pivot, those greater than the pivot

Each process in the upper half of the process list sends its “low list”
to a partner process in the lower half of the process list and receives
a “high list” in return

Now, the upper-half processes have only values greater than the
pivot, and the lower-half processes have only values smaller than the
pivot.

Thereafter, the processes divide themselves into two groups and the
algorithm recurses.

After logP recursions, every process has an unsorted list of values
completely disjoint from the values held by the other processes.

The largest value on process i will be smaller than the smallest
value held by process i+ 1.
Each process finally sorts its list using sequential quicksortParallel quicksort algorithmswith isoefficiency analysis – p. 8



Illustration of parallel quicksort 1

Figure 14.2 from Parallel Programming in C with MPI and OpenMP

Parallel quicksort algorithmswith isoefficiency analysis – p. 9



Analysis of parallel quicksort 1

This parallel quicksort algorithm is likely to do a poor job of load
balancing

If the pivot value is not the median value, we will not divide the list
into two equal sublists
Finding the median value is prohibitively expensive on a parallel
computer

The remedy is to choose the pivot value close to the true median!

Parallel quicksort algorithmswith isoefficiency analysis – p. 10



Hyperquicksort – parallel quicksort 2

Each process starts with a sequential quicksort on its local list

Now we have a better chance to choose a pivot that is close to the
true median

The process that is responsible for choosing the pivot can pick
the median of its local list

The following three next steps of hyperquicksort are the same as in
parallel quicksort 1

broadcast
division of “low list” and high list”
swap between partner processes

The 4th step is different from parallel quicksort 1
One each process, the remaining half of local list and the
received half-list are merged into a sorted local list

Recursion within upper-half processes and lower-half processes . . .

Parallel quicksort algorithmswith isoefficiency analysis – p. 11



Example of using hyperquicksort

Figure 14.3 from Parallel Programming in C with MPI and OpenMP

Parallel quicksort algorithmswith isoefficiency analysis – p. 12



Some observations about hyperquicksort

logP steps are needed in the recursion
The average number of times a value is passed from one process
to another is log P

2 , therefore quite some communication
overhead!

The median value chosen from a local segment may still be quite
different from the true median of the entire list

Load imbalance may still arise, although better than parallel
quicksort algorithm 1
How good exactly is hyperquicksort?
We can make use of the so-called isoefficiency relation

Parallel quicksort algorithmswith isoefficiency analysis – p. 13



Isoefficiency relation

Purpose: To find the scalability of a parallel program

Definition of scalability: The ability to maintain efficiency when the
number of processes is increased

Recall that due to the inherently sequential work and communication
overhead, parallel efficiency of a fixed-sized problem will decrease
when more processes (p) are used

To maintain the same level of efficiency, the problem size must
increase together with p

Chapter 7.6 of the textbook

Parallel quicksort algorithmswith isoefficiency analysis – p. 14



Isoefficiency relation (2)

Recall the definition of speedup

ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p+ κ(n, p)

=
p (σ(n) + ϕ(n))

pσ(n) + ϕ(n) + pκ(n, p)

=
p (σ(n) + ϕ(n))

σ(n) + ϕ(n) + (p− 1)σ(n) + pκ(n, p)

Parallel quicksort algorithmswith isoefficiency analysis – p. 15



Isoefficiency relation (3)

We denote To(n, p) to be the total time spent by all processes doing
work that is above σ(n) + ϕ(n)

That is

To(n, p) = p T (n, p) − (σ(n) + ϕ(n)) = (p− 1)σ(n) + pκ(n, p)

Therefore

ψ(n, p) ≤
p (σ(n) + ϕ(n))

σ(n) + ϕ(n) + To(n, p)

Parallel quicksort algorithmswith isoefficiency analysis – p. 16



Isoefficiency relation (4)

Recall efficiency ε(n, p) is ψ(n, p) divided by p

Therefore

ε(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n) + To(n, p)

=
1

1 + To(n,p)
σ(n)+ϕ(n)

Parallel quicksort algorithmswith isoefficiency analysis – p. 17



Isoefficiency relation (5)

Recall the sequential execution time: T (n, 1) = σ(n) + ϕ(n)

That is,

ε(n, p) ≤
1

1 + To(n,p)
T (n,1)

Therefore, we can derive

To(n, p)

T (n, 1)
≤

1 − ε(n, p)

ε(n, p)

Consequently,

T (n, 1) ≥
ε(n, p)

1 − ε(n, p)
To(n, p)

In other words, if we want ε(n, p) to remain constant (when both p and

n increase), we must have T (n, 1) ≥ C To(n, p), where C = ε(n,p)
1−ε(n,p)

Parallel quicksort algorithmswith isoefficiency analysis – p. 18



What has isoefficiency relation told us?

Suppose we know the formulas for T (n, 1) and T (n, p)

Then, To(n, p) = p T (n, p) − T (n, 1)

So we can find out whether T (n, 1) ≥ C To(n, p) is satisfied

Parallel quicksort algorithmswith isoefficiency analysis – p. 19



Consideration of memory usage

Memory usage M(n) (as function of n) can be a limiting factor

Suppose the isoefficiency relation says n ≥ f(p)

This in fact says that
n ≥M(f(p))

Hence M(f(p))/p indicates how the memory usage per processor
must increase as a function of p, in order to maintain the same level
of efficiency

We call M(f(p))/p the scalability function

For example, M(f(p))/p = O(1) means perfect scalability

However, if M(f(p))/p = O(p), the parallel efficiency can not be
maintained forever

Parallel quicksort algorithmswith isoefficiency analysis – p. 20



Applying isoefficiency analysis to hyperquicksort

Assume there are n values to be sorted, using p processes, and that
n≫ p.

In the beginning, each process has ⌈n/p⌉ values

Cost of initial sequential quicksort per process: O((n/p) log(n/p))

In every split-and-merge step, each process keeps on average n/2p
values and transmits n/2p values

Cost of communication per process: O(n/p)

There are log p iterations, so total communication cost per process:
κ(n, p) = O(n log p/p) (cost of broadcast is neglected because n≫ p)

In addition, we have σ(n) = 0 (no inherently sequential work)

Therefore,

To(n, p) = (p− 1)σ(n) + pκ(n, p) = O(n log p)

Parallel quicksort algorithmswith isoefficiency analysis – p. 21



More analysis of hyperquicksort

Isoefficiency relation requires T (n, 1) ≥ CTo(n, p)

We have now T (n, 1) = O(n logn) and To(n, p) = O(n log p)

Therefore, the following condition must satisfy:

n logn ≥ Cn log p ⇒ logn ≥ C log p ⇒ n ≥ pC

Memory requirement is simple: M(n) = n

Therefore the scalability function M(pC)/p = pC

p
= pC−1

If C > 2, scalability is low

Parallel quicksort algorithmswith isoefficiency analysis – p. 22



Algorithm 3 – parallel sorting by regular sampling

Parallel sorting by regular sampling (PSRS) has four phases
1. Each process uses sequential quicksort on its local segment, and

then selects data items at local indices
0, n/P 2, 2n/P 2, . . . , (P − 1)(n/P 2) as a regular sample of its
locally sorted block

2. One process gathers and sorts the local regular samples. The
process then selects P − 1 pivot values from the sorted list of
regular smaples. The P − 1 pivot values are broadcast. Each
process then partitions its sorted sublist into P disjoint pieces
accordingly.

3. Each process i keeps its ith partition and sends the jth partition
to process j, for all j 6= i

4. Each process merges its P partitions into a single list

Parallel quicksort algorithmswith isoefficiency analysis – p. 23



Example of using PSRS

Figure 14.5 from Parallel Programming in C with MPI and OpenMP

Parallel quicksort algorithmswith isoefficiency analysis – p. 24



Three advantages of PSRS

1. Better load balance (although perfect load balance can not be
guaranteed)

2. Repeated communications of a same value are avoided

3. The number of processes does not have to be power of 2, which is
required by parallel quicksort algorithm 1 and hyperquicksort

Additional comment: The isoefficiency analysis of PSRS is similar to
hyperquicksort

Parallel quicksort algorithmswith isoefficiency analysis – p. 25


	Overview
	Quicksort
	Example of quicksort
	Illustration of quicksort
	Two observartions
	Parallelizing quicksort
	Parallel quicksort algorithm 1
	Illustration of parallel quicksort 1
	Analysis of parallel quicksort 1
	Hyperquicksort -- parallel quicksort 2
	Example of using hyperquicksort
	Some observations about hyperquicksort
	Isoefficiency relation
	Isoefficiency relation (2)
	Isoefficiency relation (3)
	Isoefficiency relation (4)
	Isoefficiency relation (5)
	What has isoefficiency relation told us?
	Consideration of memory usage
	Applying isoefficiency analysis to hyperquicksort
	More analysis of hyperquicksort
	Algorithm 3 -- parallel sorting by regular sampling
	Example of using PSRS
	Three advantages of PSRS

