Summary of INF3380

Content

- General topics on parallelization and parallel programming
- MPI programming
- OpenMP programming
- Performance analysis
- Applications

About the exam

- 4-hour written exam
- One A4-sheet with notes and a calculator are allowed to take to the exam
- Syllabus: Chapters 3,4,5,6,7,11,13,14,17,18 from the textbook, plus all the lecture slides

Chapters 1 & 2 provide important background info

Parallel computing and programming in general

- Parallel computing a form of parallel processing by utilizing multiple computing units concurrently for one computational problem
 - shortening computing time
 - solving larger problems
- Manual parallel programming is needed because
 - Modern multicore-based computers are good at multi-tasking, but not good at automatically computing one problem in parallel
 - Automatic parallelization compilers have had little success
 - Special parallel programming languages have had little success
- Parallel programming = serial programming + finding parallelism + enforcing work division and collaboration

Foster's design methodology

Figure 3.2 Foster's parallel algorithm design methodology.

A four-step process for designing parallel algorithms I. Foster, **Designing and Building Parallel Programs**, Addison-Wesley, 1995

Speed of parallel computations

- Parallel computations = each processor simultaneously does its assigned computations + collaboration between the processors
- Speed of the computations on each processor mostly depends on effective use of memory and cache data locality is very important
- Speed of a parallel program depends on
 - as much work as possible can be divided among processors
 - the work load division is even among the processors
 - each processor finishes its computations quickly
 - Iow overhead of parallelization-specific computations
 - Iow overhead of "collaboration cost" between the processors
 - synchronization
 - communication

Message passing programming

- Assumption: each processor's own memory is not directly accessible by other processors
- Collaboration between the processors is through sending and receiving messages between the processors
 - a message is an array of predefined data types
 - point-to-point communication
 - collective communication
- The global data structure is normally divided among the processors (not duplicated)
- MPI is the de-facto standard of message passing programming

MPI basics

- The working units are called MPI processes
- An MPI communicator is group of processes
- Each process within a communicator has a unique rank, between 0 and #procs-1
- Carelessly programmed MPI communications may deadlock
- Non-deterministic features of an MPI program
 - Between communications, the different processes may proceed at different paces
 - If a process is expecting two messages from two senders, the order of arrival is normally not known beforehand
- Synchronization
 - explicit MPI_Barrier
 - Implicit collective commands or matching MPI_Send and MPI_Recv

Overlap communication with computation

- Performance may be improved on many systems by overlapping communication with computation
- Use of non-blocking and completion routines
- For example, initiate the communication with MPI_Isend and MPI_Irecv, continue with computation, finish with MPI_Wait

Thread programming for shared memory

Thread programming is a natural model for shared memory

- Execution unit: thread
- Many threads have access to shared variables
- Information exchange is (implicitly) through the shared variables
- OpenMP is the most user-friendly thread programming standard

The programming model of OpenMP

- Multiple cooperating threads are allowed to run simultaneously
- The threads are created and destroyed dynamically in a fork-join pattern
 - An OpenMP program consists of a number of parallel regions
 - Between two parallel regions there is only one master thread
 - In the beginning of a parallel region, a team of new threads is spawned
 - The new threads work simultaneously with the master thread
 - At the end of a parallel region, the new threads are destroyed

The memory model of OpenMP

- Most variables are shared between the threads
- Each thread has the possibility of having some private variables
 - Avoid race conditions
 - Passing values between the sequential part and the parallel region

OpenMP basics

#pragma omp parallel starts a parallel region

- all the threads execute the same code (if nothing else is said)
- #pragma omp for divides the work of for-loop between the threads
 - each thread does a subset of the iterations
 - the actual division of the iterations depends on the scheduler
- #pragma omp sections can used for task parallelism

Non-parallel execution among threads

- #pragma omp single { ... }
- **)** #pragma omp master $\{ \ldots \}$
- #pragma omp critical { block of codes }
- #pragma omp atomic { only one statement }
- #pragma omp barrier

Overhead in OpenMP programs

- Creation and termination of threads
- Scheduling of threads in connection with #pragma omp for
- (Invisible) synchronization
- (Invisible) copy cost between shared and private variables
- Serialized execution in parallel regions

Things to remember

First step: identify parallelism in a sequential algorithm

- find out the operations that can be done simultaneously
- Good work division is important
 - even distribution of the work load among processors
 - keep the overhead of resulting communication low
- On distributed memory, data should be divided as well
- Be aware of needed synchronizations (both MPI and OpenMP)
- Be aware of possible deadlocks (both MPI and OpenMP)
- Be aware of possible racing conditions (OpenMP)

Performance analysis

Basic questions:

- How to roughly predict computing time as function of the number of processors?
- How to analyze parallel execution times?
- When does it pay off to use more processors?

Important notation and definitions

 $\begin{array}{ll} n & \mbox{problem size} \\ p & \mbox{number of processors} \\ \sigma(n) & \mbox{inherently sequential computation} \\ \varphi(n) & \mbox{parallelizable computation} \\ \kappa(n,p) & \mbox{parallelization overhead} \\ & \mbox{Speedup } \Psi(n,p) = \frac{\mbox{Sequential execution time}}{\mbox{Parallel execution time}} \\ & \mbox{Efficiency } \varepsilon(n,p) = \frac{\mbox{Sequential execution time}}{\mbox{Processors used} \times \mbox{Parallel execution time}} \end{array}$

Observations

- Sequential execution time = $\sigma(n) + \varphi(n)$
- Parallel execution time ≥ $\sigma(n) + \varphi(n)/p + \kappa(n,p)$

Speedup
$$\Psi(n, p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n, p)}$$

Efficiency $\varepsilon(n, p) \leq \frac{\sigma(n) + \varphi(n)}{p\sigma(n) + \varphi(n) + p\kappa(n, p)}$

Amdahl's Law

Suppose we neglect the parallel overhead $\kappa(n, p)$, and if we know the inherently sequential portion of the computation,

$$f = \frac{\sigma(n)}{\sigma(n) + \varphi(n)}$$

then, the best achievable speedup can be estimated as

$$\Psi \leq \frac{1}{f+(1-f)/p}$$

Upper limit (when p goes to infinity): $\Psi \leq \frac{1}{f+(1-f)/p} < \frac{1}{f}$

Gustafson–Barsis's Law

We may not know the computing time needed by a single processor, because the problem size is too big for one processor

However, suppose we know the fraction (s) of time spent by a parallel program (using p processors) on performing inherently sequential operations

$$s = \frac{\sigma(n)}{\sigma(n) + \varphi(n)/p}$$

$$\Psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p}$$

=
$$\frac{(s + (1-s)p)(\sigma(n) + \varphi(n)/p)}{\sigma(n) + \varphi(n)/p}$$

=
$$p + (1-p)s$$

Karp–Flatt Metric

Both Amdahl's Law and Gustafson–Barsis's Law ignore the parallelization overhead $\kappa(n,p)$

If we consider the parallelization overhead as another kind of "inherently sequential work", then we can use Amdahl's law to experimentally determine a "combined" serial fraction e, which is defined as

$$e(n,p) = \frac{\sigma(n) + \kappa(n,p)}{\sigma(n) + \varphi(n)}$$

The experimentally determined serial fraction e(n,p) can be computed based on knowing $\Psi(n,p)$

$$e = \frac{1/\Psi - 1/p}{1 - 1/p}$$

Isoefficiency relation

- Purpose: to study scalability—the ability to maintain parallel efficiency $\varepsilon(n, p)$ when p is increased
- Problem size n must also increase with p, but how fast?
- Suppose we know the explicit formulas for T(n,1) and T(n,p)
- We denote $T_o(n,p)$ as

$$T_o(n,p) = p T(n,p) - T(n,1) = (p-1)\sigma(n) + p\kappa(n,p)$$

If we want to maintain $\varepsilon(n, p)$ when both p and n increase, we must have so big n such that

$$T(n,1) \ge \frac{\varepsilon}{1-\varepsilon} T_o(n,p)$$

The sieve of Eratosthenes

- Finding prime numbers
- Pseudocode:
 - 1. Create a list of natural numbers $2, 3, 4, \ldots, n$, none is marked.
 - 2. Set k to 2, the first unmarked number on the list
 - 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) Find the smallest number greater than k that is unmarked. Set k to this new value.

Until $k^2 > n$

- 4. The unmarked numbers are primes.
- Source of parallelism: Step (a) can be done concurrently by many processes, each responsible for a "segment" of the list

Floyd's algorithm

Starting point: n vertices and adjacency matrix a[i, j]

```
Algorithm:
for k \leftarrow 0 to n-1
for i \leftarrow 0 to n-1
for j \leftarrow 0 to n-1
a[i,j] \leftarrow \min(a[i,j], a[i,k] + a[k,j])
endfor
endfor
endfor
```

 \checkmark Parallelism lies within each k iteration

Matrix multiplication

```
for (i=0; i<1; i++)
for (j=0; j<n; j++) {
    C[i][j] = 0.;
    for (k=0; k<m; k++)
        C[i][j] += A[i][k]*B[k][j];
}</pre>
```

- Parallelism: each entry of matrix C can be computed independently
- On a distributed-memory system, matrix A and matrix B can be either partitioned rowwise block-striped or checkerboard block decomposed

Parallel finite differences

Algorithm example:

$$u_{i}^{\ell+1} = u_{i}^{\ell} + \kappa \frac{\Delta t}{\Delta x^{2}} \left(u_{i-1}^{\ell} - 2u_{i}^{\ell} + u_{i+1}^{\ell} \right) + \Delta t f(x_{i}, t_{\ell})$$

- Computations of $u_i^{\ell+1}$ and $u_i^{\ell+1}$ are independent of each other
- We can divide the work of computing $u^{\ell+1}$ among MPI processes or OpenMP threads
- Blockwise work division in MPI
- Need for MPI communication to obtain values for ghost points

Quicksort

- Sequential quicksort:
 - Select one of the numbers as pivot
 - Divide the list into two sublists: a "low list" containing numbers smaller than the pivot, and a "high list" containing numbers larger than the pivot
 - The low list and high list recursively repeat the procedure to sort themselves
 - The final sorted result is the concatenation of the sorted low list, the pivot, and the sorted high list

Parallel quicksort algorithms

- Observation: the low list and high list can sort themselves concurrently
- Starting point for parallel quicksort on distributed memory:
 - The unsorted list is evenly distributed among the processes
- Desired result of a parallel quicksort algorithm:
 - The list segment stored on each process is sorted
 - The last element on process *i*'s list is smaller than the first element on process i + 1's list
- Three parallel algorithms (see Chapter 14)