
Summary of INF3380

Summary of INF3380 – p. 1



Content

General topics on parallelization and parallel programming

MPI programming

OpenMP programming

Performance analysis

Applications

Summary of INF3380 – p. 2



About the exam

4-hour written exam

One A4-sheet with notes and a calculator are allowed to take to the
exam

Syllabus: Chapters 3,4,5,6,7,11,13,14,17,18 from the textbook, plus
all the lecture slides

Chapters 1 & 2 provide important background info

Summary of INF3380 – p. 3



Parallel computing and programming in general

Parallel computing – a form of parallel processing by utilizing multiple
computing units concurrently for one computational problem

shortening computing time
solving larger problems

Manual parallel programming is needed because
Modern multicore-based computers are good at multi-tasking, but
not good at automatically computing one problem in parallel
Automatic parallelization compilers have had little success
Special parallel programming languages have had little success

Parallel programming = serial programming + finding parallelism +
enforcing work division and collaboration

Summary of INF3380 – p. 4



Foster’s design methodology

A four-step process for designing parallel algorithms
I. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995

Summary of INF3380 – p. 5



Speed of parallel computations

Parallel computations = each processor simultaneously does its
assigned computations + collaboration between the processors

Speed of the computations on each processor mostly depends on
effective use of memory and cache — data locality is very important

Speed of a parallel program depends on
as much work as possible can be divided among processors
the work load division is even among the processors
each processor finishes its computations quickly
low overhead of parallelization-specific computations
low overhead of “collaboration cost” between the processors

synchronization
communication

Summary of INF3380 – p. 6



Message passing programming

Assumption: each processor’s own memory is not directly accessible
by other processors

Collaboration between the processors is through sending and
receiving messages between the processors

a message is an array of predefined data types
point-to-point communication
collective communication

The global data structure is normally divided among the processors
(not duplicated)

MPI is the de-facto standard of message passing programming

Summary of INF3380 – p. 7



MPI basics

The working units are called MPI processes

An MPI communicator is group of processes

Each process within a communicator has a unique rank, between 0
and #procs-1

Carelessly programmed MPI communications may deadlock

Non-deterministic features of an MPI program
Between communications, the different processes may proceed
at different paces
If a process is expecting two messages from two senders, the
order of arrival is normally not known beforehand

Synchronization
explicit – MPI Barrier

implicit – collective commands or matching MPI Send and
MPI Recv

Summary of INF3380 – p. 8



Overlap communication with computation

Performance may be improved on many systems by overlapping
communication with computation

Use of non-blocking and completion routines

For example, initiate the communication with MPI Isend and
MPI Irecv, continue with computation, finish with MPI Wait

Summary of INF3380 – p. 9



Thread programming for shared memory

Thread programming is a natural model for shared memory
Execution unit: thread
Many threads have access to shared variables
Information exchange is (implicitly) through the shared variables

OpenMP is the most user-friendly thread programming standard

Summary of INF3380 – p. 10



The programming model of OpenMP

Multiple cooperating threads are allowed to run simultaneously

The threads are created and destroyed dynamically in a fork-join
pattern

An OpenMP program consists of a number of parallel regions
Between two parallel regions there is only one master thread
In the beginning of a parallel region, a team of new threads is
spawned
The new threads work simultaneously with the master thread
At the end of a parallel region, the new threads are destroyed

Summary of INF3380 – p. 11



The memory model of OpenMP

Most variables are shared between the threads

Each thread has the possibility of having some private variables
Avoid race conditions
Passing values between the sequential part and the parallel
region

Summary of INF3380 – p. 12



OpenMP basics

#pragma omp parallel starts a parallel region
all the threads execute the same code (if nothing else is said)

#pragma omp for divides the work of for-loop between the
threads

each thread does a subset of the iterations
the actual division of the iterations depends on the scheduler

#pragma omp sections can used for task parallelism

Summary of INF3380 – p. 13



Non-parallel execution among threads

#pragma omp single { ... }

#pragma omp master { ... }

#pragma omp critical { block of codes }

#pragma omp atomic { only one statement }

#pragma omp barrier

Summary of INF3380 – p. 14



Overhead in OpenMP programs

Creation and termination of threads

Scheduling of threads in connection with #pragma omp for

(Invisible) synchronization

(Invisible) copy cost between shared and private variables

Serialized execution in parallel regions

Summary of INF3380 – p. 15



Things to remember

First step: identify parallelism in a sequential algorithm
find out the operations that can be done simultaneously

Good work division is important
even distribution of the work load among processors
keep the overhead of resulting communication low

On distributed memory, data should be divided as well

Be aware of needed synchronizations (both MPI and OpenMP)

Be aware of possible deadlocks (both MPI and OpenMP)

Be aware of possible racing conditions (OpenMP)

Summary of INF3380 – p. 16



Performance analysis

Basic questions:

How to roughly predict computing time as function of the number of
processors?

How to analyze parallel execution times?

When does it pay off to use more processors?

Summary of INF3380 – p. 17



Important notation and definitions

n problem size
p number of processors
σ(n) inherently sequential computation
ϕ(n) parallelizable computation
κ(n, p) parallelization overhead

Speedup Ψ(n, p) =
Sequential execution time

Parallel execution time

Efficiency ε(n, p) =
Sequential execution time

Processors used× Parallel execution time

Summary of INF3380 – p. 18



Observations

Sequential execution time = σ(n) + ϕ(n)

Parallel execution time ≥ σ(n) + ϕ(n)/p + κ(n, p)

Speedup Ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

Efficiency ε(n, p) ≤
σ(n) + ϕ(n)

pσ(n) + ϕ(n) + pκ(n, p)

Summary of INF3380 – p. 19



Amdahl’s Law

Suppose we neglect the parallel overhead κ(n, p), and if we know the
inherently sequential portion of the computation,

f =
σ(n)

σ(n) + ϕ(n)

then, the best achievable speedup can be estimated as

Ψ ≤
1

f + (1− f)/p

Upper limit (when p goes to infinity): Ψ ≤ 1
f+(1−f)/p < 1

f

Summary of INF3380 – p. 20



Gustafson–Barsis’s Law

We may not know the computing time needed by a single processor,
because the problem size is too big for one processor

However, suppose we know the fraction (s) of time spent by a parallel
program (using p processors) on performing inherently sequential
operations

s =
σ(n)

σ(n) + ϕ(n)/p

Ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

=
(s + (1− s)p)(σ(n) + ϕ(n)/p)

σ(n) + ϕ(n)/p

= p + (1− p)s

Summary of INF3380 – p. 21



Karp–Flatt Metric

Both Amdahl’s Law and Gustafson–Barsis’s Law ignore the parallelization
overhead κ(n, p)

If we consider the parallelization overhead as another kind of “inherently
sequential work”, then we can use Amdahl’s law to experimentally
determine a “combined” serial fraction e, which is defined as

e(n, p) =
σ(n) + κ(n, p)

σ(n) + ϕ(n)

The experimentally determined serial fraction e(n, p) can be computed
based on knowing Ψ(n, p)

e =
1/Ψ− 1/p

1− 1/p

Summary of INF3380 – p. 22



Isoefficiency relation

Purpose: to study scalability—the ability to maintain parallel
efficiency ε(n, p) when p is increased

Problem size n must also increase with p, but how fast?

Suppose we know the explicit formulas for T (n, 1) and T (n, p)

We denote To(n, p) as

To(n, p) = p T (n, p)− T (n, 1) = (p− 1)σ(n) + pκ(n, p)

If we want to maintain ε(n, p) when both p and n increase, we must
have so big n such that

T (n, 1) ≥
ε

1− ε
To(n, p)

Summary of INF3380 – p. 23



The sieve of Eratosthenes

Finding prime numbers

Pseudocode:
1. Create a list of natural numbers 2, 3, 4, . . . , n, none is marked.
2. Set k to 2, the first unmarked number on the list
3. Repeat

(a) Mark all multiples of k between k2 and n
(b) Find the smallest number greater than k that is

unmarked. Set k to this new value.
Until k2 > n

4. The unmarked numbers are primes.

Source of parallelism: Step (a) can be done concurrently by many
processes, each responsible for a “segment” of the list

Summary of INF3380 – p. 24



Floyd’s algorithm

Starting point: n vertices and adjacency matrix a[i, j]

Algorithm:
for k ← 0 to n− 1

for i← 0 to n− 1
for j ← 0 to n− 1

a[i, j]← min(a[i, j], a[i, k] + a[k, j])
endfor

endfor
endfor

Parallelism lies within each k iteration

Summary of INF3380 – p. 25



Matrix multiplication

for (i=0; i<l; i++)
for (j=0; j<n; j++) {

C[i][j] = 0.;
for (k=0; k<m; k++)

C[i][j] += A[i][k]*B[k][j];
}

Parallelism: each entry of matrix C can be computed independently

On a distributed-memory system, matrix A and matrix B can be either
partitioned rowwise block-striped or checkerboard block decomposed

Summary of INF3380 – p. 26



Parallel finite differences

Algorithm example:

uℓ+1
i = uℓ

i + κ
∆t

∆x2

(

uℓ
i−1 − 2uℓ

i + uℓ
i+1

)

+ ∆tf(xi, tℓ)

Computations of uℓ+1
i and uℓ+1

j are independent of each other

We can divide the work of computing uℓ+1 among MPI processes or
OpenMP threads

Blockwise work division in MPI

Need for MPI communication to obtain values for ghost points

Summary of INF3380 – p. 27



Quicksort

Sequential quicksort:
Select one of the numbers as pivot
Divide the list into two sublists: a “low list” containing numbers
smaller than the pivot, and a “high list” containing numbers larger
than the pivot
The low list and high list recursively repeat the procedure to sort
themselves
The final sorted result is the concatenation of the sorted low list,
the pivot, and the sorted high list

Summary of INF3380 – p. 28



Parallel quicksort algorithms

Observation: the low list and high list can sort themselves
concurrently

Starting point for parallel quicksort on distributed memory:
The unsorted list is evenly distributed among the processes

Desired result of a parallel quicksort algorithm:
The list segment stored on each process is sorted
The last element on process i’s list is smaller than the first
element on process i + 1’s list

Three parallel algorithms (see Chapter 14)

Summary of INF3380 – p. 29


	Content
	About the exam
	Parallel computing and programming in general
	Foster's design methodology
	Speed of parallel computations
	Message passing programming
	MPI basics
	Overlap communication with computation
	Thread programming for shared memory
	The programming model of OpenMP
	The memory model of OpenMP
	OpenMP basics
	Non-parallel execution among threads
	Overhead in OpenMP programs
	Things to remember
	Performance analysis
	Important notation and definitions
	Observations
	Amdahl's Law
	Gustafson--Barsis's Law
	Karp--Flatt Metric
	Isoefficiency relation
	The sieve of Eratosthenes
	Floyd's algorithm
	Matrix multiplication
	Parallel finite differences
	Quicksort
	Parallel quicksort algorithms

