
Lecture 3: Performance of serial programs

Lecture 3: Performance of serial programs – p. 1



Motivations

In essence, parallel computations consist of serial computations
(executed on multiple computing units) and the needed collaboration
in between

The overall performance of a parallel program depends on the
performance of the serial parts and the collaboration cost

Effective serial computing on a single processor (core) is fundamental

In this lecture, we will take a look at several performance-affecting
factors and their implications for typical scientific computations

Lecture 3: Performance of serial programs – p. 2



FLOPS

FLOPS — floating-point operations per second

A commonly used metric for processor performance

megaflops: 106 flops

gigaflops: 109 flops

teraflops: 1012 flops

petaflops: 1015 flops

exaflops: 1018 flops

As of November 2009, world’s fastest computer—a Cray XT5 system
named Jaguar—has 2.3 petaflops theoretical peak performance,
making use of 224,162 AMD’s Opteron 2.6 GHz processor cores

each core has 10.4 gigaflops peak performance

Achieving peak performance is often impossible, relying on full
memory performance and full utilization of instruction-level
parallelism

Lecture 3: Performance of serial programs – p. 3



Memory is the bottleneck for performance

http://www.streambench.org/

Time to run a code = cycles spent on performing instructions + cycles
spent on waiting for data from memory

Scientific computations are oftem memory intensive

Memory speed (i.e. bandwidth and latency) is lagging behind the
CPU clock frequency

Memory size is another limiting factor

Lecture 3: Performance of serial programs – p. 4



Example of memory bandwith requirement

Suppose we want to sum up an array of double values

double sum = 0.;
for (i=0; i<LENGTH; i++)

sum += a[i];

Each iteration reads 8 bytes (one double value) from memory

For example, a memory read bandwidth of 2.9 GB/s (measured on
Intel Xeon L5420 2.5GHz processor) only gives 2.9/8 = 0.37
GFLOPS for the above example.
http://browse.geekbench.ca/geekbench2/view/81731

Realistic situations will be even worse
more memory reads and writes per operation
memory writes are usually slower than memory reads

Lecture 3: Performance of serial programs – p. 5



Cache – a remedy for memory latency

Memory latency is another limiting factor
Read/write a value from/to main memory typically takes 10 ∼ 100
clock cycles

Cache is a small but fast buffer that duplicates a subset of the main
memory

located on-chip
typically of SRAM
small capacity
usually several levels of cache (L1, L2 and possibly L3)

When CPU needs a value from main memory, the lowest-level cache
is checked first, if not the next-level cache is checked, and so

Lecture 3: Performance of serial programs – p. 6



More about cache (1)

Storage of data in a cache is organized as cache lines

Each cache line is typically 32 bytes ∼ 128 bytes

One entire cache line is read/written from/to memory

Cache miss happens when CPU requests data that is not available in
cache, the opposite is called cache hit

Lecture 3: Performance of serial programs – p. 7



More about cache (2)

On which cache line should a data block from main memory be
placed?

fully associative
m-way associative
direct map

Cache line replacement strategy for associative caches
least recently used (LRU)
FIFO
random

How are data written back to main memory?
write-through (each store results in a memory write)
write-back (memory is updated only when the an entire cache
line is to be evicted)

Lecture 3: Performance of serial programs – p. 8



More about cache (3)

The key to efficiency – reuse the data in cache as much as possible

Spatial locality – neighboring data items in the main memory are
used together in computations

one cache line can hold several consecutive data items
physically close data items are more likely to be in cache at the
same time

Temporal locality – data items used in the current operation are to be
used in immediately upcoming operations

Lecture 3: Performance of serial programs – p. 9



Storage hierarchy

Processor

L1 cache

L2 cache

Main memory

Disk

Lecture 3: Performance of serial programs – p. 10



How to secure single-core performance?

Effective use of cache
smart design of data structures (don’t waste memory)
correct traversal of arrays
the aim is good temporal and spatial locality

Effective use of instruction-level parallelism
capable hardware
powerful compiler
good programming style may also be helpful

Optimization
manual
compiler-enabled

Multithreading – some processors have hardware support to
efficiently execute multiple threads on one core

Lecture 3: Performance of serial programs – p. 11



Instruction-level parallelism

Several operations simultaneously carried out on a single processor
(core) – “parallel computing on a single core”

Pipelining – execution of multiple instructions partially overlapped

Superscalar execution – using multiple execution units

Data prefetching

Out-of-order execution – making use of independent operations

Speculative execution
branch prediction is very important

Lecture 3: Performance of serial programs – p. 12



Simple rules of efficiency (1)

A good code should take advantage of temporal and spatial locality,
i.e., good data re-use in cache

Spatial locality – if location X in memory is currently being accessed,
it is likely that a location near X will be accessed next

Temporal locality – if location X in memory is currently be accessed, it
is likely that location X will soon be accessed again

Lecture 3: Performance of serial programs – p. 13



Simple rules of efficiency (2)

Loop fusion
for (i=0; i<ARRAY_SIZE; i++)

x = x * a[i] + b[i];
for (i=0; i<ARRAY_SIZE; i++)

y = y * a[i] + c[i];

for (i=0; i<ARRAY_SIZE; i++) {
x = x * a[i] + b[i];
y = y * a[i] + c[i];

}

Loop overhead is reduced, better chance for instruction overlap

Lecture 3: Performance of serial programs – p. 14



Simple rules of efficiency (3)

Loop interchange
for (k=0; k<10000; k++)

for (j=0; j<400; j++)
for (i=0; i<10; i++)

a[k][j][i] = a[k][j][i] * 1.01 + 0.01;

for (k=0; k<10; k++)
for (j=0; j<400; j++)

for (i=0; i<10000; i++)
a[k][j][i] = a[k][j][i] * 1.01 + 0.01;

Assume that the data layout of array a has changed accordingly

Lecture 3: Performance of serial programs – p. 15



Simple rules of efficiency (4)

Loop collapsing
for (i=0; i<500; i++)

for (j=0; j<80; j++)
for (k=0; k<4; k++)

a[i][j][k] = a[i][j][k] + b[i][j][k]*c[i][j][k];

for (i=0; i<(500*80*4); i++)
a[0][0][i] = a[0][0][i] + b[0][0][i]*c[0][0][i];

Assume that the 3D arrays a, b and c have contiguous underlying memory

Lecture 3: Performance of serial programs – p. 16



Simple rules of efficiency (5)

Loop unrolling
t = 0.0;
for (i=0; i<ARRAY_SIZE; i++)

t = t + a[i]*a[i];

t1 = t2 = t3 = t4 = 0.0;
for (i=0; i<ARRAY_SIZE-3; i+=4) {

t1 = t1 + a[i+0]*a[i+0];
t2 = t2 + a[i+1]*a[i+1];
t3 = t3 + a[i+2]*a[i+2];
t4 = t4 + a[i+3]*a[i+3];

}
t = t1+t2+t3+t4;

Purpose: eliminate/reduce data dependency and improve pipelining

Lecture 3: Performance of serial programs – p. 17



Simple rules of efficiency (6)

Improving ratio of F/M
for (i=0; i<m; i++) {

t = 0.;
for (j=0; j<n; j++)

t = t + a[i][j]*x[j]; /* 2 floating-point operations & 2 loads */
y[i] = t;

}

for (i=0; i<m-3; i+=4) {
t1 = t2 = t3 = t4 = 0.;
for (j=0; j<n-3; j+=4) { /* 32 floating-point operations & 20 loads */

t1=t1+a[i+0][j]*x[j]+a[i+0][j+1]*x[j+1]+a[i+0][j+2]*x[j+2]+a[i+0][j+3]*x[j+
t2=t2+a[i+1][j]*x[j]+a[i+1][j+1]*x[j+1]+a[i+1][j+2]*x[j+2]+a[i+1][j+3]*x[j+
t3=t3+a[i+2][j]*x[j]+a[i+2][j+1]*x[j+1]+a[i+2][j+2]*x[j+2]+a[i+2][j+3]*x[j+
t4=t4+a[i+3][j]*x[j]+a[i+3][j+1]*x[j+1]+a[i+3][j+2]*x[j+2]+a[i+3][j+3]*x[j+

}
y[i+0] = t1;
y[i+1] = t2;
y[i+2] = t3;
y[i+3] = t4;

}

Lecture 3: Performance of serial programs – p. 18



Simple rules of efficiency (7)

Loop factoring
for (i=0; i<ARRAY_SIZE; i++) {

a[i] = 0.;
for (j=0; j<ARRAY_SIZE; j++)

a[i] = a[i] + b[j]*d[j]*c[i];
}

for (i=0; i<ARRAY_SIZE; i++) {
a[i] = 0.;
for (j=0; j<ARRAY_SIZE; j++)

a[i] = a[i] + b[j]*d[j];
a[i] = a[i]*c[i];

}

Lecture 3: Performance of serial programs – p. 19



Simple rules of efficiency (8)

Further improvement of the previous example
t = 0.;
for (j=0; j<ARRAY_SIZE; j++)

t = t + b[j]*d[j];

for (i=0; i<ARRAY_SIZE; i++)
a[i] = t*c[i];

Lecture 3: Performance of serial programs – p. 20



Simple rules of efficiency (9)

Loop peeling
for (i=0; i<n; i++) {

if (i==0)
a[i] = b[i+1]-b[i];

else if (i==n-1)
a[i] = b[i]-b[i-1];

else
a[i] = b[i+1]-b[i-1];

}

a[0] = b[1]-b[0];
for (i=1; i<n-1; i++)

a[i] = b[i+1]-b[i-1];
a[n-1] = b[n-1]-b[n-2];

Lecture 3: Performance of serial programs – p. 21



Simple rules of efficiency (10)

The smaller the loop stepping stride the better

Avoid using if inside loops

for (i=0; i<n; i++)
if (j>0)

x[i] = x[i] + 1;
else

x[i] = 0;

if (j>0)
for (i=0; i<n; i++)

x[i] = x[i] + 1;
else

for (i=0; i<n; i++)
x[i] = 0;

Lecture 3: Performance of serial programs – p. 22



Simple rules of efficiency (11)

Blocking: A strategy for obtaining spatial locality in loops where it’s
impossible to have small strides for all arrays
for (i=0; i<n; i++)

for (j=0; j<n; j++)
a[i][j] = b[j][i];

for (ii=0; ii<n; ii+=lot) /* square blocking */
for (jj=0; jj<n; jj+=lot)

for (i=ii; i<min(n,ii+(lot-1)); i++)
for (j=jj; j<min(n,jj+(lot-1)); j++)
a[i][j] = b[j][i];

Lecture 3: Performance of serial programs – p. 23



Simple rules of efficiency (12)

Factorization
xx = xx + x*a[i] + x*b[i] + x*c[i] + x*d[i];

xx = xx + x*(a[i] + b[i] + c[i] + d[i]);

Lecture 3: Performance of serial programs – p. 24



Simple rules of efficiency (13)

Common expression elimination
s1 = a + c + b;
s2 = a + b - c;

s1 = (a+b) + c;
s2 = (a+b) - c;

Make it recognizable by compiler optimization

Lecture 3: Performance of serial programs – p. 25



Simple rules of efficiency (14)

Strength reduction

Replace floating-point division with inverse multiplication (if possible)

Replace low-order exponential functions with repeated multiplications

y=pow(x,3);

y=x*x*x;

Use of Horner’s rule of polynomial evaluation

y=a*pow(x,4)+b*pow(x,3)+c*pow(x,2)+d*pow(x,1)+e;

y=(((a*x+b)*x+c)*x+d)*x+e;

Lecture 3: Performance of serial programs – p. 26



Efficiency in the large

What is efficiency?

Human efficiency is most important for programmers

Computational efficiency is most important for program users

Lecture 3: Performance of serial programs – p. 27



Premature optimization

“Premature optimization is the root of all evil”
(Donald Knuth)

F77 programmers tend to dive into implementation and think about
efficiency in every statement

“80-20” rule: “80” percent of the CPU time is spent in “20” percent of
the code

Common: only some small loops are responsible for the vast portion
of the CPU time

C++ and F90 force us to focus more on design

Don’t think too much about efficiency before you have a thoroughly
debugged and verified program!

Lecture 3: Performance of serial programs – p. 28



Example of solving 1D heat equation

∂u

∂t
=

∂2u

∂x2

Solution domain: 0 < x < 1

Initial condition: u(x, 0) = I(x)

boundary condition: u(0, t) = u(1, t) = 0

An explicit finite difference scheme

M + 2 uniformly spaced spatial points: x0 = 0, xM+1 = 1, xi = i
M+1

uℓ
i ≈ u(xi, ℓ∆t)

Discretization:
uℓ+1

i − uℓ
i

∆t
=

uℓ
i−1 − 2uℓ

i + uℓ
i+1

∆x2

Lecture 3: Performance of serial programs – p. 29



Implementing 1D explicit heat equation solver

Computation during one time step:
uℓ+1

i = ρ(uℓ
i−1 + uℓ

i+1) + (1 − 2ρ)uℓ
i for i = 1, 2, . . . , M , ρ = ∆t/∆x2

We need two 1D arrays in a computer program: u refers to the uℓ+1

vector, u prev refers to the uℓ vector
Implement the initial condition
x = dx;
for (i=1; i<=M; i++) {

u_prev[i] = I(x);
x += dx;

}

Implement the main computation
t = 0;
while (t<T) {

t += dt;
for (i=1; i<=M; i++)

u[i] = rho*(u_prev[i-1]+u_prev[i+1])+(1.0-2.0*rho)*u_prev[i];
u[0] = u[M+1] = 0.;
/* data copy before next time step */
for (i=0; i<=M+1; i++)

u_prev[i] = u[i];
}

Lecture 3: Performance of serial programs – p. 30



Optimizations

We can avoid repeated computations of 1 − 2ρ
double c_1_2rho = 1.0-2.0*rho;
/* ... */

for (i=1; i<=M; i++)
u[i] = rho*(u_prev[i-1]+u_prev[i+1])+c_1_2rho*u_prev[i];

We can avoid the copy between u prev and u by simply switching
the two pointers
double *tmp_pointer;
/* ... */

tmp_pointer = u_prev;
u_prev = u;
u = tmp_pointer;

Lecture 3: Performance of serial programs – p. 31



Solving 2D heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2

Solution domain: (x, y) ∈ (0, 1) × (0, 1)

Uniform mesh: xi = i
M+1

, yj = j
N+1

uℓ
i,j ≈ u(xi, yj , ℓ∆t)

Explicit finite difference discretization

uℓ+1

i,j − uℓ
i,j

∆t
=

uℓ
i−1,j − 2uℓ

i,j + uℓ
i+1,j

∆x2
+

uℓ
i,j−1 − 2uℓ

i,j + uℓ
i,j+1

∆y2

uℓ+1

i,j = ρ(uℓ
i−1,j + uℓ

i+1,j) + γ(uℓ
i,j−1 + uℓ

i,j+1) + νuℓ
i,j

for i = 1, 2, . . . , M and j = 1, 2, . . . , N , ρ = ∆t/∆x2, γ = ∆t/∆y2,
ν = 1 − 2ρ − 2γ

Lecture 3: Performance of serial programs – p. 32



Implementing 2D explicit heat equation solver

Use two 1D arrays
u = (double*)malloc((M+2)*(N+2)*sizeof(double));
u_prev = (double*)malloc((M+2)*(N+2)*sizeof(double));

A two-layer for-loop for the main computation per time step
for (j=1; j<=N; j++)

for (i=1; i<=M; i++) {
index = j*(M+2)+i;
u[index] = rho*(u_prev[index-1]+u_prev[index+1])

+gamma*(u_prev[index-M-2]+u_prev[index+M+2])
+nu*u_prev[index];

}

Lecture 3: Performance of serial programs – p. 33



Minor improvements

int offset = M+2;
/* ... */
index = offset;
for (j=1; j<=N; j++) {

for (i=1; i<=M; i++) {
++index;
u[index] = rho*(u_prev[index-1]+u_prev[index+1])

+gamma*(u_prev[index-offset]+u_prev[index+offset])
+nu*u_prev[index];

}
index += 2;

}

Lecture 3: Performance of serial programs – p. 34



Savingu to file

Binary format
FILE *fp = fopen("u.bin","wb");
fwrite(u, sizeof(double), (M+2)*(N+2), fp);
fclose(fp);

File size: 8(M + 2)(N + 2) bytes

ASCII format
FILE *fp = fopen("u.txt","w");
index = 0;
for (j=0; j<=N+1; j++)

for (i=0; i<=M+1; i++) {
fprintf(fp, "u_{%d,%d}=%g\n",i,j,u[index]);
index++;

}
fclose(fp);

The binary data file is both smaller in size and much faster to write
and read!

Lecture 3: Performance of serial programs – p. 35



Exercises

Write a simple C program that can be used to measure the size of the
highest-level cache (typically L2) and the length of each cache line.

Write a simple C program that illustrates the speed advantages of
reading and writing binary data files, compared with ASCII data files.

Write a simple C that compares between the handcoded copy
operation between two arrays (for (i=0; i<n; i++) b[i]=a[i]) and
using the standard memcpy function.

Implement the explicit solver of the 3D heat equation
∂u
∂t

= κ
(

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)

in the unit cube, where κ is a constant.

You should use two 3D arrays u[i][j][k] and u prev[i][j][k]
which both have an underlying contiguous storage layout.

Modify the above code by simply allocating u and u prev as two very
long 1D arrays. Do you notice any changes in the performance?

Lecture 3: Performance of serial programs – p. 36



Exercises

Make a theoretical estimate of the number of floating-point operations
needed by the explicit 3D heat equation solver. What is the actual
FLOPS rate achieved by your implementation?

If κ is not constant, but a function κ(x, y, z) = 1 + (x + y + z)/3, what
will the number of floating-point operations be then?

Enforce a so-called “block” data structure for your explicit 3D heat
equation solver. That is, instead of letting the values of u refer to the
mesh points in a standard cyclic order, let u be a cyclically ordered
sequence of small 3D blocks. In each block the respective u values
are ordered cyclically.

Find out a mapping from the actual physical coordinates
(xi, yj , zk) tou[index]. We suppose nx, ny, nz denote the
number of mesh points in each spatial direction, and that
mx × my × mz is the size of each block.

Modify your implemention to use the above block data structure.
Do you see any changes in the performance?

Lecture 3: Performance of serial programs – p. 37


	Motivations
	FLOPS
	Memory is the bottleneck for performance
	Example of memory bandwith requirement
	Cache -- a remedy for memory latency
	More about cache (1)
	More about cache (2)
	More about cache (3)
	Storage hierarchy
	How to secure single-core performance?
	Instruction-level parallelism
	Simple rules of efficiency (1)
	Simple rules of efficiency (2)
	Simple rules of efficiency (3)
	Simple rules of efficiency (4)
	Simple rules of efficiency (5)
	Simple rules of efficiency (6)
	Simple rules of efficiency (7)
	Simple rules of efficiency (8)
	Simple rules of efficiency (9)
	Simple rules of efficiency (10)
	Simple rules of efficiency (11)
	Simple rules of efficiency (12)
	Simple rules of efficiency (13)
	Simple rules of efficiency (14)
	Efficiency in the large
	Premature optimization
	Example of solving 1D heat equation
	Implementing 1D explicit heat equation solver
	Optimizations
	Solving 2D heat equation
	Implementing 2D explicit heat equation solver
	Minor improvements
	Saving {	t u} to file
	Exercises
	Exercises

