
Lecture 7: More about MPI programming

Lecture 7: More about MPI programming – p. 1

Some recaps (1)

One way of categorizing parallel computers is by looking at the
memory configuration:

In shared-memory systems the CPUs share the same address
space. Any CPU can access any data in the global memory.
In distributed-memory systems each CPU has its own memory.
The CPUs are connected by some network and can exchange
messages.

Example 1: The processor cores within a multicore PC have shared
memory

Example 2: A cluster of multicore PCs is a distributed
shared-memory system

Lecture 7: More about MPI programming – p. 2

Some recaps (2)

Distributed memory gives rise to the programming paradigm of
message passing

Message-passing – all involved processors have an independent
memory address space. The user is responsible for partitioning the
data/work of a global problem and distributing the sub-problems to
the processors.

Collaboration between processors is achieved by explicit message
passing, which has the purpose of data transfer and synchronization.

Lecture 7: More about MPI programming – p. 3

Some recaps (3)

The message passing paradigm is very general
Shared-memory systems can also use message passing for
programming

By using message passing, the programmer has full control, but also
has full responsibility

Appropriate use of message passing commands is essential for
achieving good performance on distributed-memory systems,
sometimes also on shared-memory systems

Message-passing programming is often non-trivial, due to the many
exposed details

MPI is the de-facto standard of message-passing programming

Lecture 7: More about MPI programming – p. 4

Some recaps (4)

Shared-memory programming assumes a global memory address
space

Creation of child processes (also called threads)
– static (at beginning of program execution)
– dynamic (fork and join)

Coordination among threads by three types of primitives:
specifying variables that can be accessed by all threads
preventing threads from improperly accessing shared resources
providing a means for synchronizing the threads

More on share-memory programming (OpenMP) later in this course

Lecture 7: More about MPI programming – p. 5

Some recaps (5)

SPMD – single program multiple data

It suffices with a SPMD model for the message passing paradigm

Same executable for all the processors

There are typically conditional branches based on the processor id

Each processor works primarily with its assigned local data

Progression of code on different processors is relatively independent
between synchronization points

Lecture 7: More about MPI programming – p. 6

Overhead present in parallel computing

Overhead of communication
Latency and bandwidth — the cost model of send a message of
length L between two processors:

tC(L) = τ + βL

Uneven load balance → not all the processors can perform useful
work at any time

Overhead of synchronization

Extra computation due to parallelization

Lecture 7: More about MPI programming – p. 7

Two very important concepts

Speed-up

S(P) =
T (1)

T (P)

The larger the value of S(P) the better

Efficiency

η(P) =
S(P)

P

The closer to 100% of η(P) the better

Lecture 7: More about MPI programming – p. 8

Rules for point-to-point communication

Message order preservation – If Process A sends two messages to
Process B, which posts two matching receive calls, then the two
messages are guaranteed to be received in the order they were sent.

Progress – It is not possible for a matching send and receive pair to
remain permanently outstanding. That is, if one process posts a send
and a second process posts a matching receive, then either the send
or the receive will eventually complete.

Lecture 7: More about MPI programming – p. 9

Probing in MPI

It is possible in MPI to only read the envelope of a message before
choosing whether or not to read the actual message.

int MPI_Probe(int source, int tag, MPI_Comm comm,

MPI_Status *status)

The MPI Probe function blocks until a message matching the given
source and/or tag is available

The result of probing is returned in an MPI Status data structure

Lecture 7: More about MPI programming – p. 10

Example: sum of random numbers

int main (int nargs, char** args)
{

int size, my_rank, i, a, sum;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

srand (7654321*(my_rank+1));
a = rand()%100;

if (my_rank==0) {
MPI_Status status;
sum = a;
for (i=1; i<size; i++) {

MPI_Probe (MPI_ANY_SOURCE,500,MPI_COMM_WORLD,&status);
MPI_Recv (&a, 1, MPI_INT,

status.MPI_SOURCE,500,MPI_COMM_WORLD,&status);
sum += a;

}
printf("<%02d> sum=%d\n",my_rank,sum);

}
else

MPI_Send (&a, 1, MPI_INT, 0, 500, MPI_COMM_WORLD);

MPI_Finalize ();
return 0;

}
Lecture 7: More about MPI programming – p. 11

Example of deadlock

When a large message is sent from one process to another
and if there is insufficient OS storage at the destination, the send
command must wait for the user to provide the memory space
(through a receive command)
the following code is unsafe because it depends on the
availability of system buffers

Process 0 Process 1

Send(1) Send(0)

Recv(1) Recv(0)

Lecture 7: More about MPI programming – p. 12

Solutions to deadlocks

Order the send/receive calls more carefully

Use MPI Sendrecv

Use MPI Bsend

Use non-blocking operations

Lecture 7: More about MPI programming – p. 13

Overlap communication with computation

Performance may be improved on many systems by overlapping
communication with computation. This is especially true on systems
where communication can be executed autonomously by an
intelligent communication controller.

Use of non-blocking and completion routines allow computation and
communication to be overlapped. (Not guaranteed, though.)

Lecture 7: More about MPI programming – p. 14

Non-blocking send

int MPI_Isend(void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

The command returns “immediately”

The message buffer should not be rewritten when the command
returns

Must check for local completion

Lecture 7: More about MPI programming – p. 15

Non-blocking receive

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request *request)

The command returns “immediately”

The message buffer should not be read yet

Must check for local completion

The use of nonblocking receives may also avoid system buffering and
memory-to-memory copying, as information is provided early on the
location of the receive buffer.

Lecture 7: More about MPI programming – p. 16

MPI_Request

A request object identifies various properties of a communication
operation

A request object also stores information about the status of the
pending communication operation

Lecture 7: More about MPI programming – p. 17

Local completion

Two ways of checking on non-blocking sends and receives
MPI Wait blocks until the communication is complete

MPI_Wait(MPI_Request *request, MPI_Status *status)

MPI Test returns “immediately”, and sets flag to true is the
communication is complete

MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

Lecture 7: More about MPI programming – p. 18

More about point-to-point communication

When a standard mode blocking send call returns, the message data
and envelope have been “safely stored away”. The message might
be copied directly into the matching receive buffer, or it might be
copied into a temporary system buffer.

MPI decides whether outgoing messages will be buffered. If MPI
buffers outgoing messages, the send call may complete before a
matching receive is invoked. On the other hand, buffer space may be
unavailable, or MPI may choose not to buffer outgoing messages, for
performance reasons. Then the send call will not complete until a
matching receive has been posted, and the data has been moved to
the receiver.

Lecture 7: More about MPI programming – p. 19

Four modes of MPI’s send

standard mode – a send may be initiated even if a matching receive
has not been initiated

buffered mode – similar to standard mode, but completion is always
independent of matching receive, and message may be buffered to
ensure this

synchronous mode – a send will not complete until message delivery
is guaranteed

ready mode – a send may be initiated only if a matching receive has
been initiated

Lecture 7: More about MPI programming – p. 20

Persistent communication requests

Often a communication with the same argument list is repeatedly
executed. MPI can bind the list of communication arguments to a
persistent communication request once and, then, repeatedly use the
request to initiate and complete messages

Overhead reduction for communication between the process and
communication controller

Creation of a persistent communication request (before
communication)

int MPI_Send_init(void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request *request)

Lecture 7: More about MPI programming – p. 21

Persistent communication requests (cont´d)

Initiation of a communication that uses a persistent request:

int MPI_Start(MPI_Request *request)

A communication started with a call to MPI Start can be completed
by a call to MPI Wait or MPI Test

The request becomes inactive after successful completion. The
request is not deallocated and it can be activated anew by a
MPI Start call

A persistent request is deallocated by a call to MPI Request free

Lecture 7: More about MPI programming – p. 22

Send-receive operations

MPI send-receive operations combine in one call the sending of a
message to one destination and the receiving of another message,
from another process

A send-receive operation is very useful for executing a shift operation
across a chain of processes

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag,

void *recvbuf, int recvcount, MPI_Datatype recvtype,

int source, int recvtag,

MPI_Comm comm, MPI_Status *status)

Lecture 7: More about MPI programming – p. 23

Null process

The special value MPI PROC NULL can be used to specify a “dummy”
source or destination for communication

This may simplify the code that is needed for dealing with
boundaries, e.g., a non-circular shift done with calls to send-receive

A communication with process MPI PROC NULL has no effect

Example:
int left_rank = my_rank-1, right_rank = my_rank+1;

if (my_rank==0)

left_rank = MPI_PROC_NULL;

if (my_rank==size-1)

right_rank = MPI_PROC_NULL;

Lecture 7: More about MPI programming – p. 24

MPI timer

double MPI_Wtime(void)

This function returns a number representing the number of wall-clock
seconds elapsed since some time in the past.

Example usage:
double starttime, endtime;

starttime = MPI_Wtime();

/* work to be timed ... */

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

Lecture 7: More about MPI programming – p. 25

Solving 1D wave equation (1)

Mathematical model
∂2u

∂t2
=

∂2u

∂x2

Spatial domain: x ∈ (0, 1)

Temporal doamin: 0 < t ≤ T

Boundary conditions: u is known at x = 0 and x = 1

Initial conditions: u(x, 0) is known, and “wave initially at rest”

Lecture 7: More about MPI programming – p. 26

Solving 1D wave equation (2)

Numerical method

Uniform mesh in x-direction: M + 2 points, ∆x = 1

M+1

x0 is left boundary point, xM+1 is rightboundary point
x1, x2, . . . , xM are interior points

Time step size: ∆t

Notation: uℓ
i ≈ u(i∆x, ℓ∆t)

∂2u
∂t2

≈
1

∆t2

(

uℓ+1
i − 2uℓ

i + uℓ−1
i

)

∂2u
∂x2 ≈

1

∆x2

(

uℓ
i−1 − 2uℓ

i + uℓ
i+1

)

Overall numerical scheme:

uℓ+1
i = 2uℓ

i − uℓ−1
i +

∆t2

∆x2

(

uℓ
i−1 − 2uℓ

i + uℓ
i+1

)

i = 1, 2, . . . , M

Lecture 7: More about MPI programming – p. 27

Solving 1D wave equation (3)

Enforcement of the initial conditions

u(x, 0) is given, for example u(x, 0) = I(x)

for (i=0; i<=M+1; i++) {

x = i*dx;

um[i] = I(x);

}

We also need to compute u1, because u2 relies on both u0 and u1:

u1
i = u0

i +
∆t2

2∆x2

(

u0
i−1 − 2u0

i + u0
i+1

)

i = 1, 2, . . . , M

for (i=1; i<=M; i++)

u[i] = um[i] +((dt*dt)/(2*dx*dx))*(um[i-1]-2*um[i]+um[i+1]);

u[0] = value_of_left_BC(dt);

u[M+1] = value_of_right_BC(dt);

Lecture 7: More about MPI programming – p. 28

Solving 1D wave equation (4)

Serial implementation

Three 1D arrays are needed:

uℓ+1: double *up=(double*)malloc((M+2)*sizeof(double));

uℓ: double *u=(double*)malloc((M+2)*sizeof(double));

uℓ−1: double *um=(double*)malloc((M+2)*sizeof(double));

A while-loop for doing the time steps

At each time step, a for-loop for updating the interior points

Lecture 7: More about MPI programming – p. 29

Solving 1D wave equation (5)

t = dt;

while (t<T){

t += dt;

for (i=1; i<=M; i++)

up[i] = 2*u[i]-um[i]+((dt*dt)/(dx*dx))*(u[i-1]-2*u[i]+u[i+1]);

up[0] = value_of_left_BC(t); // enforcing left BC

up[M+1] = value_of_rigt_BC(t); // enforcing right BC

/* preparation for next time step: shuffle the three arrays */

tmp = um;

um = u;

u = up;

up = tmp;

}

Lecture 7: More about MPI programming – p. 30

Solving 1D wave equation (6)

Parallelization starts with dividing the work

The global domain is decomposed into P segments (subdomains)
actually, the M interiors points are divided

Lecture 7: More about MPI programming – p. 31

Solving 1D wave equation (7)

Parallel implementation using MPI

Each subdomain has M/P interior points, plus two “ghost points”

if there is a neighbor domain over the boundary, the value of the
ghost point is to be provided
if there is no neighbor domain over the boundary, the ghost point
is actually a physical boundary point

First, up local[i] is computed on each interior point
i=1,2,...,M local

If there’s neighbor on the left,
send up local[1] to the left neighbor
receive up local[0] from the left neighbor

If there’s neighbor on the left,
send up local[M local] to the right neighbor
receive up local[M local+1] from the right neighbor

Lecture 7: More about MPI programming – p. 32

Solving 1D wave equation (8)

Local data structure
int M_local = M/P; // assume that M is divisible by P

double *up_local=(double*)malloc((M_local+2)*sizeof(double));

double *u_local=(double*)malloc((M_local+2)*sizeof(double));

double *um_local=(double*)malloc((M_local+2)*sizeof(double));

Lecture 7: More about MPI programming – p. 33

Solving 1D wave equation (9)

Overlapping communication with computation

up local[1] is computed first

Initiate communication with the left neighbor using MPI Isend and
MPI Irecv

up local[M local] is then computed

Initiate communication with the right neighbor using MPI Isend and
MPI Irecv

Afterwards, main local computation over indices i=2,3,...,M-1

Finally, finish communication with left neithbor using MPI Wait

Finally, finish communication with right neithbor using MPI Wait

Lecture 7: More about MPI programming – p. 34

Solving 2D wave equtation (1)

Mathematical model
∂2u

∂t2
=

1

2

(

∂2u

∂x2
+

∂2u

∂y2

)

Spatial domain: unit square (x, y) ∈ (0, 1) × (0, 1)

Temporal domain: 0 < t ≤ T

Boundary conditions: u is known on the entire boundary

Initial conditions same as for the 1D case

Lecture 7: More about MPI programming – p. 35

Solving 2D wave equtation (2)

Numerical method

Uniform 2D mesh (∆x, ∆y)

Time step size ∆t

Central finite differences (same as in 1D)

uℓ+1
i,j = 2uℓ

i,j − uℓ−1
i,j

+
∆t2

2∆x2

(

uℓ
i−1,j − 2uℓ

i,j + uℓ
i+1,j

)

+
∆t2

2∆y2

(

uℓ
i,j−1 − 2uℓ

i,j + uℓ
i,j+1

)

i = 1, 2, . . . , M, j = 1, 2, . . . , N

Lecture 7: More about MPI programming – p. 36

Solving 2D wave equtation (3)

Domain decomposition

5

4

3

2

1

0

Lecture 7: More about MPI programming – p. 37

Solving 2D wave equtation (4)

Parallelization

Each subdomain is responsible for a rectangular region of the M ×N
interior points

One layer of ghost points is needed in the local data structure

Serial local computation + exchange of values for the ghost points

Lecture 7: More about MPI programming – p. 38

	Some recaps (1)
	Some recaps (2)
	Some recaps (3)
	Some recaps (4)
	Some recaps (5)
	Overhead present in parallel computing
	Two very important concepts
	Rules for point-to-point communication
	Probing in MPI
	Example: sum of random numbers
	Example of deadlock
	Solutions to deadlocks
	Overlap communication with computation
	Non-blocking send
	Non-blocking receive
	MPI_Request
	Local completion
	More about point-to-point communication
	Four modes of MPI's send
	Persistent communication requests
	Persistent communication requests (cont'{}d)
	Send-receive operations
	Null process
	MPI timer
	Solving 1D wave equation (1)
	Solving 1D wave equation (2)
	Solving 1D wave equation (3)
	Solving 1D wave equation (4)
	Solving 1D wave equation (5)
	Solving 1D wave equation (6)
	Solving 1D wave equation (7)
	Solving 1D wave equation (8)
	Solving 1D wave equation (9)
	Solving 2D wave equtation (1)
	Solving 2D wave equtation (2)
	Solving 2D wave equtation (3)
	Solving 2D wave equtation (4)

