
Lecture 8: Performance analysis

Lecture 8: Performance analysis – p. 1



An example of time measurements

Dark grey: time spent on computation, decreasing with p
White: time spent on communication, increasing with p

Lecture 8: Performance analysis – p. 2



Objectives of the lecture

How to roughly predict computing time as function of p?

How to analyze parallel execution times?

Understand the limit of using more processors

Chapters 7 from Michael J. Quinn, Parallel Programming in C with MPI and
OpenMP

Lecture 8: Performance analysis – p. 3



Notation

n problem size
p number of processors
σ(n) inherently sequential computaiton
ϕ(n) parallelizable computation
κ(n, p) parallelization overhead

Speedup Ψ(n, p) =
Sequential execution time

Parallel execution time

Efficiency ε(n, p) =
Sequential execution time

Processors used × Parallel execution time

Lecture 8: Performance analysis – p. 4



Simple observations

Sequential execution time = σ(n) + ϕ(n)

Parallel execution time ≥ σ(n) + ϕ(n)/p + κ(n, p)

Speedup Ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

Efficiency ε(n, p) ≤
σ(n) + ϕ(n)

pσ(n) + ϕ(n) + pκ(n, p)

Lecture 8: Performance analysis – p. 5



Amdahl’s Law

If the parallel overhead κ(n, p) is neglected, then

Speedup Ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

Suppose we know the inherently sequential portion of the computation,

f =
σ(n)

σ(n) + ϕ(n)

Can we predict the speedup Ψ(n, p)?

Lecture 8: Performance analysis – p. 6



Amdahl’s Law

Note that f = σ(n)
σ(n)+ϕ(n) means

1 − f =
ϕ(n)

σ(n) + ϕ(n)

Therefore

Ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

=
1

σ(n)
σ(n)+ϕ(n) + ϕ(n)

σ(n)+ϕ(n)
1
p

=
1

f + (1 − f)/p

Lecture 8: Performance analysis – p. 7



Amdahl’s Law

Amdahl’s Law: if f = σ/(σ + ϕ) is known, then the best achievable
speedup can be estimated as

Ψ ≤
1

f + (1 − f)/p

Upper limit (when p goes to infinity): Ψ ≤
1

f+(1−f)/p < 1
f

Lecture 8: Performance analysis – p. 8



Amdahl’s Law

Lecture 8: Performance analysis – p. 9



Example 1

If we know that 90% of the computation can be parallelized, what is the
maximum speedup we can expect from using 8 processors?

Solution
Since f=10%, Amdahl’s Law tells us for p = 8

Ψ ≤
1

0.1 + (1−0.1)
8

≈ 4.7

Lecture 8: Performance analysis – p. 10



Example 2

If 25% of the operations in a parallel program must be performed
sequentially, what is the maximum speedup achievable?

Solution
The maximum speedup is

lim
p→∞

1

0.25 + (1−0.25)
p

=
1

0.25
= 4

Lecture 8: Performance analysis – p. 11



Example 3

Suppose

σ(n) = 18000 + n

ϕ(n) =
n2

100

What is the maximum speedup achievable on a problem of size
n = 10000?

Lecture 8: Performance analysis – p. 12



Example 3 (cont’d)

Solution
Since

Ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

and we know

σ(10000) = 28, 000

ϕ(10000) = 1, 000, 000

Therefore

Ψ(10000, p) ≤
28, 000 + 1, 000, 000

28, 000 + 1, 000, 000/p

Lecture 8: Performance analysis – p. 13



Comments about Amdahl’s Law

Parallelization overhead κ(n, p) is ignored by Amdahl’s Law
Amdahl’s Law gives a too optimistic estimate of Ψ

The problem size n is constant for p = 1 and increasing p values
Amdahl’s Law doesn’t consider solving larger problems with more
processors

The inherently sequential portion f may greatly decrease when n is
increased

Amdahl’s Law (Ψ < 1
f ) can be unnecessarily pessimistic for large

problems

Lecture 8: Performance analysis – p. 14



Gustafson–Barsis’s Law

What if we want to solve larger problems when the number of processors
p is increased?

That is, we may not know the computing time needed by a single
processor, because the problem size is too big for one processor.

However, suppose we know the fraction of time spent by a parallel
program (using p processors) on performing inherently sequential
operations, can we estimate the speedup Ψ?

Lecture 8: Performance analysis – p. 15



Gustafson–Barsis’s Law

Definition: s is the fraction of time spent by a parallel computation using p
processors on performing inherently sequential operations.
More specifically,

s =
σ(n)

σ(n) + ϕ(n)/p

and

1 − s =
ϕ(n)/p

σ(n) + ϕ(n)/p

Lecture 8: Performance analysis – p. 16



Gustafson–Barsis’s Law

We note

σ(n) = (σ(n) + ϕ(n)/p)s

ϕ(n) = (σ(n) + ϕ(n)/p)(1 − s)p

Therefore

Ψ(n, p) ≤
σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

=
(s + (1 − s)p)(σ(n) + ϕ(n)/p)

σ(n) + ϕ(n)/p

= s + (1 − s)p

= p + (1 − p)s

Lecture 8: Performance analysis – p. 17



Gustafson–Barsis’s Law

Given a parallel program solving a problem of size n using p processors,
let s denote the fraction of total execution time spent in serial code. The
maximum speedup Ψ achievable is

Ψ ≤ p + (1 − p)s

Lecture 8: Performance analysis – p. 18



Comments about Gustafson–Barsis’s Law

Gustafson–Barsis’s Law encourages solving larger problems using
more processors. The speedup obtained is thus also called scaled
speedup.

If n is large enough for p processors, n is probably too large (with
respect to memory) for a single processor. However, this doesn’t
prevent Gustafson–Barsis’s Law from predicting the best achievable
speedup Ψ, when s is known.

Since parallelization overhead κ(n, p) is ignored, Gustafson–Barsis’s
Law may also overestimate the speedup.

Since Ψ ≤ p + (1 − p)s = p − (p − 1)s, so the best achievable
speedup is Ψ ≤ p. The smaller s the better Ψ.

If s = 1, then there is no speedup at all, because Ψ ≤ p + (1 − p) = 1.

Lecture 8: Performance analysis – p. 19



Example 1

An application executing on 64 processors uses 5% of the total time on
non-parallelizable computations. What is the scaled speedup?

Solution
Since s = 0.05, the scaled speedup on 64 processors is

Ψ ≤ p + (1 − p)s = 64 + (1 − 64)(0.05) = 64 − 3.15 = 60.85

Lecture 8: Performance analysis – p. 20



Example 2

If we want to achieve speedup Ψ = 15000 using p = 16384 processors,
what can the maximum allowable value of the serial fraction s be?

Solution
Since

Ψ ≤ p + (1 − p)s = p − (p − 1)s

then

s ≤
p − Ψ

p − 1
=

16384 − 15000

16384 − 1
≈ 0.084

Lecture 8: Performance analysis – p. 21



Karp–Flatt Metric

Both Amdahl’s Law and Gustafson–Barsis’s Law ignore the parallelization
overhead κ(n, p), they may therefore overestimate the achievable
speedup.

We recall

Parallel execution time T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

Sequential exectuion time T (n, 1) = σ(n) + ϕ(n)

Lecture 8: Performance analysis – p. 22



Karp–Flatt Metric

If we consider the parallelization overhead as another kind of “inherently
sequential work”, then we can use Amdahl’s law to experimentally
determine a “combined” serial fraction e, which is defined as

e(n, p) =
σ(n) + κ(n, p)

σ(n) + ϕ(n)

This experimentally determined serial fraction e(n, p) may either stay
constant with respect to p (meaning that the parallelization overhead is
negliable) or increase with respect to p (meaning that parallelization
overhead deteriorates the speedup).

Lecture 8: Performance analysis – p. 23



Karp–Flatt Metric

If we know the actually achieved speedup Ψ(n, p) using p processors, how
can we determine the serial fraction e(n, p)?

Since

T (n, p) = T (n, 1)e +
T (n, 1)(1 − e)

p

and we know the value of Ψ(n, p), which is defined as

Ψ(n, p) =
T (n, 1)

T (n, p)
=

T (n, 1)

T (n, 1)e + T (n,1)(1−e)
p

=
1

e + 1−e
p

Therefore
1

Ψ
= e +

1 − e

p
⇒ e =

1/Ψ − 1/p

1 − 1/p

Lecture 8: Performance analysis – p. 24



Example 1

Benchmarking a parallel program on 1, 2, . . . , 8 processors produces the
following speedup results:

p 2 3 4 5 6 7 8

Ψ 1.82 2.50 3.08 3.57 4.00 4.38 4.71

What is the primary reason for the parallel program achieving a speedup
of only 4.71 on eight processors?

Lecture 8: Performance analysis – p. 25



Example 1 (cont’d)

Solution
We can use Karp–Flatt Metric to experimentally determine the values of
e(n, p) as

p 2 3 4 5 6 7 8

Ψ 1.82 2.50 3.08 3.57 4.00 4.38 4.71

e 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Since the experimentally determined serial fraction e is not increasing with
p, the primary reason for the poor speedup is the large fraction (10%) of
the computaiton that is inherently sequential. In other words, parallel
overhead is not the reason for the poor speedup.

Lecture 8: Performance analysis – p. 26



Example 2

Benchmarking a parallel program on 1, 2, . . . , 8 processors produces the
following speedup results:

p 2 3 4 5 6 7 8

Ψ 1.87 2.61 3.23 3.73 4.14 4.46 4.71

What is the primary reason for the parallel program achieving a speedup
of only 4.71 on eight processors?

Lecture 8: Performance analysis – p. 27



Example 2 (cont’d)

Solution
We can use Karp–Flatt Metric to experimentally determine the values of
e(n, p) as

p 2 3 4 5 6 7 8

Ψ 1.87 2.61 3.23 3.73 4.14 4.46 4.71

e 0.070 0.075 0.080 0.085 0.090 0.095 0.1

Since the experimentally determined serial fraction e is steadily increasing
with p, parallel overhead is also a contributing factor to the poor speedup.

Lecture 8: Performance analysis – p. 28


	An example of time measurements
	Objectives of the lecture
	Notation
	Simple observations
	Amdahl's Law
	Amdahl's Law
	Amdahl's Law
	Amdahl's Law
	Example 1
	Example 2
	Example 3
	Example 3 (cont'd)
	Comments about Amdahl's Law
	Gustafson--Barsis's Law
	Gustafson--Barsis's Law
	Gustafson--Barsis's Law
	Gustafson--Barsis's Law
	Comments about Gustafson--Barsis's Law
	Example 1
	Example 2
	Karp--Flatt Metric
	Karp--Flatt Metric
	Karp--Flatt Metric
	Example 1
	Example 1 (cont'd)
	Example 2
	Example 2 (cont'd)

