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Overview

Chapter 3 from Michael J. Quinn, Parallel Programming in C with MPI and
OpenMP

Another resource:
http://www.mcs.anl.gov/˜itf/dbpp/text/node14.html

How to develop a parallel algorithm?
Partitioning
Communication
Agglomeration
Mapping Parallel Algorithm Design – p. 2



General remarks

Warning: Parallel algorithm design is not always easily reduced to
simple recipes

May still benefit from a methodical approach

Intuition for good designs need to be developed gradually
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The task/channel model

Directed-graph representation of a parallel computation:
A set of tasks may interact with each other by sending messages through
channels
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Foster’s design methodology

A four-step process for designing parallel algorithms
I. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995
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Partitioning

At the beginning of design, discover as much parallelism as possible

Partitioning: divide the computation and data into pieces

Data-centric partitioning (domain decomposition)
Data is first divided into pieces, then computation is assigned to
data
Result: a number of tasks, each having some data and a set of
operations on the data
If an operation requires data from several tasks →
communication needed

Computation-centric partitioning (functional decomposition)
Computation is divided into disjoint tasks, then data is associated
with the individual tasks
If data is shared between tasks → communication needed
Often a natural division of the code following the division of tasks
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3 examples of domain decomposition
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Example of functional decomposition
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Partitioning design checklist

There are many more tasks than processors

Redundant computation and data storage are minimized

Primitive tasks are roughly the same size

The number of tasks is an increasing function of the problem size
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Communication

When primitive tasks are divided, determine the communication
pattern

Two kinds of communication

Local communication: A task needs values from a small number of
other tasks

Global communication: A significant number of tasks must contribute
data to perform a computation

Communication among tasks is part of parallelization overhead

Parallel Algorithm Design – p. 10



2 examples of communication
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Communication design checklist

The communication operations are balanced among the tasks

Each task communicates with only a small number of neighbors

Tasks can perform their communications concurrently

Tasks can perform their computations concurrently
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Agglomeration

Motivation: If the number of tasks exceeds the processors by several
orders of magnitude, creating these tasks will be a source of
significant overhead. Also non-trivial: “map which tasks to which
processors?”

Agglomeration is the process of grouping tasks into larger tasks

The purpose is to improve performance and simplify programming

Typically in MPI programs, one consolidated task per processor

Sometimes, more consolidated tasks than processors
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2 examples of agglomeration

(a) Elimination of communication (increase the locality)
(b) Decrease of message transmissions
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Agglomeration design checklist

Locality is increased

Replicated computations take less time than the communication they
replace

The amount of replicated data is small enough to allow the algorithm
to scale

Agglomerated tasks have similar computational and communication
costs

The number of tasks is an increasing function of the problem size

The number of tasks is as small as possible, yet at least as great as
the number of processors

The trade-off between the chosen agglomeration and the cost of
modification to existing sequential code is reasonable
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Mapping

Mapping: assigning tasks to processors

We focus on distributed-memory architecture

Goals of mapping: maximize processor utilization and minimize
interprocessor communication

Processor utilization is maximized when the computation is balanced
evenly

Interprocessor communication decreases when two tasks connected
by a channel are mapped to the same processor

However, finding an ideal mapping is often NP-hard

We must rely on heuristics that can do a reasonably good job of
mapping
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An example of good mapping
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An example of bad mapping
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Mapping design checklist

Designs based on one task per processor and multiple tasks per
processor have been considered

Both static and dynamic allocations of tasks to processors have been
evaluated

If a dynamic allocation has been chosen, the manager is not a
performance bottleneck
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Example: boundary value problem
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Boundary value problem (2)

1D problem in the spatial direction

Time-dependent problem

We can use a finite difference mesh: uniform in both spatial and
temporal directions

Let ui,j denote the solution on spatial point i and time level j

Computation formula

ui,j+1 = r ui−1,j + (1 − 2r)ui,j + r ui+1,j
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Boundary value problem (3)
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Boundary value problem (4)
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Example: parallel reduction

Given a set of n values: a0, a1, a2, . . ., an−1

Given an associative binary operator ⊕

Reduction: compute a0 ⊕ a1 ⊕ a2 · · · ⊕ an−1

On a sequential computer: n − 1 operations are needed

How to implement a parallel reduction?

Parallel Algorithm Design – p. 24



Parallel reduction (2)
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Finding global sum
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Finding global sum (2)
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Another example of parallel reduction

When the number of tasks is not a power of 2
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Cost analysis of parallel reduction

χ: time needed to perform the binary operation ⊕

λ: time needed to communication a value from one task to another

n: number of values

p: number of processors

If n is divided evenly among p processors
Time needed by each processor to treat its assigned values

(⌈n/p⌉ − 1) χ

⌈log p⌉ communication steps are needed
Each communication step requires time λ + χ

Total parallel computing time

(⌈n/p⌉ − 1) χ + ⌈log p⌉(λ + χ)
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Concluding remarks

The task/channel model encourages parallel algorithm designs that
maximize local computations and minimize communications

The algorithm designer typically partitions the computation, identifies
communications among primitive tasks, agglomerates primitive tasks
into larger tasks, and decides how to map tasks to processors

The goals are to maximize processor utilization and minimize
interprocessor communications

Good designs must often strike a balance between the above two
goals
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Real-life example of parallel processing
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