
Parallel Algorithm Design

Parallel Algorithm Design – p. 1



Overview

Chapter 3 from Michael J. Quinn, Parallel Programming in C with MPI and
OpenMP

Another resource:
http://www.mcs.anl.gov/˜itf/dbpp/text/node14.html

How to develop a parallel algorithm?
Partitioning
Communication
Agglomeration
Mapping Parallel Algorithm Design – p. 2



General remarks

Warning: Parallel algorithm design is not always easily reduced to
simple recipes

May still benefit from a methodical approach

Intuition for good designs need to be developed gradually

Parallel Algorithm Design – p. 3



The task/channel model

Directed-graph representation of a parallel computation:
A set of tasks may interact with each other by sending messages through
channels

Parallel Algorithm Design – p. 4



Foster’s design methodology

A four-step process for designing parallel algorithms
I. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995

Parallel Algorithm Design – p. 5



Partitioning

At the beginning of design, discover as much parallelism as possible

Partitioning: divide the computation and data into pieces

Data-centric partitioning (domain decomposition)
Data is first divided into pieces, then computation is assigned to
data
Result: a number of tasks, each having some data and a set of
operations on the data
If an operation requires data from several tasks →
communication needed

Computation-centric partitioning (functional decomposition)
Computation is divided into disjoint tasks, then data is associated
with the individual tasks
If data is shared between tasks → communication needed
Often a natural division of the code following the division of tasks

Parallel Algorithm Design – p. 6



3 examples of domain decomposition

Parallel Algorithm Design – p. 7



Example of functional decomposition

Parallel Algorithm Design – p. 8



Partitioning design checklist

There are many more tasks than processors

Redundant computation and data storage are minimized

Primitive tasks are roughly the same size

The number of tasks is an increasing function of the problem size

Parallel Algorithm Design – p. 9



Communication

When primitive tasks are divided, determine the communication
pattern

Two kinds of communication

Local communication: A task needs values from a small number of
other tasks

Global communication: A significant number of tasks must contribute
data to perform a computation

Communication among tasks is part of parallelization overhead

Parallel Algorithm Design – p. 10



2 examples of communication

Parallel Algorithm Design – p. 11



Communication design checklist

The communication operations are balanced among the tasks

Each task communicates with only a small number of neighbors

Tasks can perform their communications concurrently

Tasks can perform their computations concurrently

Parallel Algorithm Design – p. 12



Agglomeration

Motivation: If the number of tasks exceeds the processors by several
orders of magnitude, creating these tasks will be a source of
significant overhead. Also non-trivial: “map which tasks to which
processors?”

Agglomeration is the process of grouping tasks into larger tasks

The purpose is to improve performance and simplify programming

Typically in MPI programs, one consolidated task per processor

Sometimes, more consolidated tasks than processors

Parallel Algorithm Design – p. 13



2 examples of agglomeration

(a) Elimination of communication (increase the locality)
(b) Decrease of message transmissions

Parallel Algorithm Design – p. 14



Agglomeration design checklist

Locality is increased

Replicated computations take less time than the communication they
replace

The amount of replicated data is small enough to allow the algorithm
to scale

Agglomerated tasks have similar computational and communication
costs

The number of tasks is an increasing function of the problem size

The number of tasks is as small as possible, yet at least as great as
the number of processors

The trade-off between the chosen agglomeration and the cost of
modification to existing sequential code is reasonable

Parallel Algorithm Design – p. 15



Mapping

Mapping: assigning tasks to processors

We focus on distributed-memory architecture

Goals of mapping: maximize processor utilization and minimize
interprocessor communication

Processor utilization is maximized when the computation is balanced
evenly

Interprocessor communication decreases when two tasks connected
by a channel are mapped to the same processor

However, finding an ideal mapping is often NP-hard

We must rely on heuristics that can do a reasonably good job of
mapping

Parallel Algorithm Design – p. 16



An example of good mapping

Parallel Algorithm Design – p. 17



An example of bad mapping

Parallel Algorithm Design – p. 18



Mapping design checklist

Designs based on one task per processor and multiple tasks per
processor have been considered

Both static and dynamic allocations of tasks to processors have been
evaluated

If a dynamic allocation has been chosen, the manager is not a
performance bottleneck

Parallel Algorithm Design – p. 19



Example: boundary value problem

Parallel Algorithm Design – p. 20



Boundary value problem (2)

1D problem in the spatial direction

Time-dependent problem

We can use a finite difference mesh: uniform in both spatial and
temporal directions

Let ui,j denote the solution on spatial point i and time level j

Computation formula

ui,j+1 = r ui−1,j + (1 − 2r)ui,j + r ui+1,j

Parallel Algorithm Design – p. 21



Boundary value problem (3)

Parallel Algorithm Design – p. 22



Boundary value problem (4)

Parallel Algorithm Design – p. 23



Example: parallel reduction

Given a set of n values: a0, a1, a2, . . ., an−1

Given an associative binary operator ⊕

Reduction: compute a0 ⊕ a1 ⊕ a2 · · · ⊕ an−1

On a sequential computer: n − 1 operations are needed

How to implement a parallel reduction?

Parallel Algorithm Design – p. 24



Parallel reduction (2)

Parallel Algorithm Design – p. 25



Finding global sum

Parallel Algorithm Design – p. 26



Finding global sum (2)

Parallel Algorithm Design – p. 27



Another example of parallel reduction

When the number of tasks is not a power of 2

Parallel Algorithm Design – p. 28



Cost analysis of parallel reduction

χ: time needed to perform the binary operation ⊕

λ: time needed to communication a value from one task to another

n: number of values

p: number of processors

If n is divided evenly among p processors
Time needed by each processor to treat its assigned values

(⌈n/p⌉ − 1) χ

⌈log p⌉ communication steps are needed
Each communication step requires time λ + χ

Total parallel computing time

(⌈n/p⌉ − 1) χ + ⌈log p⌉(λ + χ)

Parallel Algorithm Design – p. 29



Concluding remarks

The task/channel model encourages parallel algorithm designs that
maximize local computations and minimize communications

The algorithm designer typically partitions the computation, identifies
communications among primitive tasks, agglomerates primitive tasks
into larger tasks, and decides how to map tasks to processors

The goals are to maximize processor utilization and minimize
interprocessor communications

Good designs must often strike a balance between the above two
goals

Parallel Algorithm Design – p. 30



Real-life example of parallel processing

Parallel Algorithm Design – p. 31


	Overview
	General remarks
	The task/channel model
	Foster's design methodology
	Partitioning
	3 examples of domain decomposition
	Example of functional decomposition
	Partitioning design checklist
	Communication
	2 examples of communication
	Communication design checklist
	Agglomeration
	2 examples of agglomeration
	Agglomeration design checklist
	Mapping
	An example of good mapping
	An example of bad mapping
	Mapping design checklist
	Example: boundary value problem
	Boundary value problem (2)
	Boundary value problem (3)
	Boundary value problem (4)
	Example: parallel reduction
	Parallel reduction (2)
	Finding global sum
	Finding global sum (2)
	Another example of parallel reduction
	Cost analysis of parallel reduction
	Concluding remarks
	Real-life example of parallel processing

