
Two cases of parallelization

Two cases of parallelization – p. 1

Overview

Chapters 5 & 6 from Michael J. Quinn, Parallel Programming in C with
MPI and OpenMP

The sieve of Eratosthenes: finding prime numbers
Floyd’s algorithm: the all-pairs shortest path problem

Understanding the design of parallel algorithms

Use of simple but important MPI commands

Two cases of parallelization – p. 2

The sieve of Eratosthenes

Definition of a prime number, divisible only by 1 and itself
Examples: 2, 3, 5, 7, 11, . . .

Pseudocode for the sieve of Eratosthenes:
1. Create a list of natural numbers 2, 3, 4, . . . , n, none is marked.
2. Set k to 2, the first unmarked number on the list
3. Repeat

(a) Mark all multiples of k between k2 and n
(b) Find the smallest number greater than k that is

unmarked. Set k to this new value.
Until k2 > n

4. The unmarked numbers are primes.

Two cases of parallelization – p. 3

Finding primes smaller than 60

Two cases of parallelization – p. 4

Source of parallelism

Marking multiples of k between k2 and n can be done concurrently by
many processes, each responsible for a “segment” of the list

Finding the new value of k may need info exchange among the
processes

Two cases of parallelization – p. 5

Block data decomposition

An array is divided into p contiguous blocks of roughly equal size

If the array length n is not divisible by p

make sure that the difference between the largest block and the
smallest block is 1

Which process is responsible for which part should be easily found
out

mapping between local index and global index

Two cases of parallelization – p. 6

Advantages of block decomposition

Recall: the largest prime to sieve integers up to n is ⌊√n⌋
If n/p >

√
n, it is always process 0 that decides the new value of k

no need to compare different findings from different processes

The actual work on a process:
find the first multiple of k and mark that cell (call it j)
then mark j + k, j + 2k, and so on

Two cases of parallelization – p. 7

A parallel algorithm

Every process creates its portion of the list

Every process starts with setting k = 2

During each k-iteration
every process finds the first multiple of k in its portion
mark every k’th element after the first multiple of k

Process 0 determines the new k value and broadcast it to all other
processes (MPI Bcast)

There can be several improvements as suggested in Chap. 5.9

Two cases of parallelization – p. 8

Finding shortest paths

Starting point: a graph of vertices and weighted edges

The edges may have directions
if there’s path from vertex i to j, there may not be path from
vertex j to i

path length from vertex i to j may be different than path length
from vertex j to i

Objective: finding the shortest path between every pair of vertices

Application: table of driving distances between citie pairs

Two cases of parallelization – p. 9

Adjacency matrix

There are n vertices

The path length from vertex i to vertex j is stored as a[i, j]

An n× n adjacency matrix a keeps the entire path length info

0 1 2 3 4 5

0 0 2 5 ∞ ∞ ∞
1 ∞ 0 7 1 ∞ 8
2 ∞ ∞ 0 4 ∞ ∞
3 ∞ ∞ ∞ 0 3 ∞
4 ∞ ∞ 2 ∞ 0 3
5 ∞ 5 ∞ 2 4 0

If a[i, j] is∞, it means there is no path from vertex i to vertex j

Two cases of parallelization – p. 10

Example of all-pairs shortest path

For the adjacency matrix given on the previous slide, the solution of the
all-pairs shortest path is as follows:

0 1 2 3 4 5

0 0 2 5 3 6 9
1 ∞ 0 6 1 4 7
2 ∞ 15 0 4 7 10
3 ∞ 11 5 0 3 6
4 ∞ 8 2 5 0 3
5 ∞ 5 6 2 4 0

Table of shortest path lengths

Two cases of parallelization – p. 11

Floyd’s algorithm

Input: n — number of vertices
a — adjacency matrix

Output: Transformed a that contains the shortest path lengths

for k ← 0 to n− 1
for i← 0 to n− 1

for j ← 0 to n− 1
a[i, j]← min(a[i, j], a[i, k] + a[k, j])

endfor
endfor

endfor

Two cases of parallelization – p. 12

Some observations

Floyd’s algorithm is an exhaustive and incremental approach

The entries of the a-matrix are updated n rounds

a[i, j] is compared with all n possibilities,
that is, against a[i, k] + a[k, j], for 0 ≤ k ≤ n− 1

n3 of comparisons in total

Two cases of parallelization – p. 13

Source of parallelism

During the k’th iteration, the work is (in C syntax)

for (i=0; i<n; i++)
for (j=0; j<n, j++)
a[i][j] = MIN(a[i][j], a[i][k]+a[k][j]);

Can all the entries in a be updated concurrently?

Yes, because the k’th column and the k’th row remain the same
during the k’th iteration!

Note that a[i][k]=MIN(a[i][k],a[i][k]+a[k][j]) will be
the same as a[i][k]
Note that a[k][j]=MIN(a[k][j],a[k][k]+a[k][j]) will be
the same as a[k][j]

Two cases of parallelization – p. 14

Work division

Let one MPI process be responsible for a piece of the a matrix

Memory storage of a is accordingly divided

The division can in principle be arbitrary, as long as the number of all
a[i, j] entries is divided evenly

However, a row-wise block data division is very convenient
2D arrays in C are row-major
easy to send/receive an entire row of a

We therefore choose to assign one MPI process with a number of
consecutive rows of a

Two cases of parallelization – p. 15

Communication pattern

Recall that in the k’th iteration:
a[i, j]← min(a[i, j], a[i, k] + a[k, j])

Since the data of a is divided rowwise, so a[i, k] is also in the memory
of the MPI process that owns a[i, j]

However, a[k, j] is probably in another MPI process’s memory

Communication is therefore needed!

Before the k’th iteration, the MPI process that has the k’th row of the
a matrix should broadcast this row to everyone else

Two cases of parallelization – p. 16

Recap: creating 2D arrays in C

To create a 2D array with m rows and n columns:

int **B, *Bstorage, i;

...

Bstorage=(int*)malloc(m*n*sizeof(int));

B=(int**)malloc(m*sizeof(int*));

for (i=0; i<m; i++)

B[i] = &Bstorage[i*n];

The underlying storage is contiguous, making it possible to send and
receive an entire 2D array.

Two cases of parallelization – p. 17

Global index vs. local index

Suppose a matrix (2D array) is divided into row-wise blocks and
distributed among p processors

Each processor only allocates storage for its assigned row block

We need to know: a local row corresponds to which global row?

Mapping: local index→ global index

On processor number proc id
global index=BLOCK LOW(proc id, p, n)+local index

Two cases of parallelization – p. 18

Main work of parallel Floyd’s algorithm

void compute_shortest_paths (int id, int p, dtype **a, int n)

{

int i, j, k;

int offset; /* Local index of broadcast row */

int root; /* Process controlling row to be bcast */

int* tmp; /* Holds the broadcast row */

tmp = (dtype *) malloc (n * sizeof(dtype));

for (k = 0; k < n; k++) {

root = BLOCK_OWNER(k,p,n);

if (root == id) {

offset = k - BLOCK_LOW(id,p,n);

for (j = 0; j < n; j++)

tmp[j] = a[offset][j];

}

MPI_Bcast (tmp, n, MPI_TYPE, root, MPI_COMM_WORLD);

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)

for (j = 0; j < n; j++)

a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]);

}

free (tmp);

}
Two cases of parallelization – p. 19

Matrix input

Recall that each MPI process only stores a part of the a matrix

When reading a from a file, we can
let only process p− 1 do the input
once the number of rows needed by process i are read in, they
are sent from process p− 1 to process i using MPI Send

process i must issue a matching MPI Recv

The above simple strategy is not parallel

Parallel I/O can be done using MPI-2 comands

Two cases of parallelization – p. 20

Matrix output

Let only process 0 do the output

Each process needs to send its part of a to process 0

To avoid many processes sending its entire subdata to process 0 at
the same time

Process 0 communicates with the other processes in turn
Each process waits for a “hint” (a short message) from process 0
before sending its data (a large message)

Two cases of parallelization – p. 21

Exercises

Implement the complete parallel algorithm for the sieve of
Eratosthenes, also making use of the improvements suggested in
Chap. 5.9.1 and 5.9.2. Use the parallel program to find all primes that
are smaller than 109. Study the speedup by using different numbers
of MPI processes.

Implement the complete Floyd’s algorithm and try it on a large
enough adjacency matrix (with randomly chosen path lengths).

Two cases of parallelization – p. 22

	Overview
	The sieve of Eratosthenes
	Finding primes smaller than 60
	Source of parallelism
	Block data decomposition
	Advantages of block decomposition
	A parallel algorithm
	Finding shortest paths
	Adjacency matrix
	Example of all-pairs shortest path
	Floyd's algorithm
	Some observations
	Source of parallelism
	Work division
	Communication pattern
	Recap: creating 2D arrays in C
	Global index vs.~local index
	Main work of parallel Floyd's algorithm
	Matrix input
	Matrix output
	Exercises

