
Lecture 11: Parallel finite differences

Lecture 11: Parallel finite differences – p. 1



Overview

1D heat equation ut = κuxx + f(x, t) as example

Recapitulation of the finite difference method

Recapitulation of parallelization

Jacobi method for the steady-state case: −uxx = g(x)

Relevant reading: Chapter 13 in Michael J. Quinn, Parallel
Programming in C with MPI and OpenMP

Lecture 11: Parallel finite differences – p. 2



The heat equation

1D Example: temperature history of a thin metal rod
u(x, t), for 0 < x < 1 and 0 < t ≤ T

Initial temperature distribution is known: u(x, 0) = I(x)

Temperature at both ends is zero: u(0, t) = u(1, t) = 0

Heat conduction capability of the metal rod is known
Heat source is known

The 1D partial differential equation:

∂u

∂t
= κ

∂2u

∂x2
+ f(x, t)

u(x, t): the unknown function we want to find
κ: known heat conductivity constant
f(x, t): known heat source distribution

More compact notation: ut = κuxx + f(x, t)

Lecture 11: Parallel finite differences – p. 3



The finite difference method

A uniform spatial mesh: x0, x1, x2, . . . , xn, where xi = i∆x, ∆x = 1

n

Introduction of discrete time levels: tℓ = ℓ∆t, ∆t = T
m

Notation: uℓ
i = u(xi, tℓ)

Derivatives are approximated by finite differences

∂u

∂t
≈

uℓ+1

i − uℓ
i

∆t

∂2u

∂x2
≈

uℓ
i−1 − 2uℓ

i + uℓ
i+1

∆x2

Lecture 11: Parallel finite differences – p. 4



An explicit scheme for 1D heat equation

Original equation:
∂u

∂t
= κ

∂2u

∂x2
+ f(x, t)

Approximation after using finite differences:

uℓ+1

i − uℓ
i

∆t
= κ

uℓ
i−1 − 2uℓ

i + uℓ
i+1

∆x2
+ f(xi, tℓ)

An explicit numerical scheme for computing uℓ+1 based on uℓ:

uℓ+1

i = uℓ
i + κ

∆t

∆x2

(

uℓ
i−1 − 2uℓ

i + uℓ
i+1

)

+ ∆tf(xi, tℓ)

for all inner points i = 1, 2, . . . , n − 1

uℓ+1

0 = uℓ+1
n = 0 due to the boundary condition

Lecture 11: Parallel finite differences – p. 5



Serial implementation

Two data arrays: u refers to uℓ+1, u prev refers to uℓ

Enforce the initial condition:
x = dx;
for (i=1; i<n; i++) {

u_prev[i] = I(x);
x += dx;

}

The main computation is a time-stepping process:
t = 0;
while (t<T) {

x = dx;
for (i=1; i<n; i++) {

u[i] = u_prev[i]
+kappa*dt/(dx*dx)*(u_prev[i-1]-2*u_prev[i]+u_prev[i+1])
+dt*f(x,t);

x += dx;
}
u[0] = u[n] = 0.; /* enforcement of the boundary condition*/
tmp = u_prev; u_prev = u; u = tmp; /* shuffle of array pointers */
t += dt;

}

Lecture 11: Parallel finite differences – p. 6



Parallelism

Important observation: uℓ+1

i only depends on uℓ
i−1, uℓ

i and uℓ
i+1

So, computations of uℓ+1

i and uℓ+1

j are independent of each other

Therefore, we can use several processors to divide the work of
computing uℓ+1 on all the inner points

Lecture 11: Parallel finite differences – p. 7



Work division

The n − 1 inner points are divided evenly among P processors:
Number of points assigned to processor p (p = 0, 1, 2, . . . , P − 1):

np =

{

⌊

n−1

P

⌋

+ 1 if p < mod(n − 1, P )
⌊

n−1

P

⌋

else

Maximum difference in the divided work load is 1

Lecture 11: Parallel finite differences – p. 8



Blockwise decomposition

Each processor is assigned with a contiguous subset of all xi

Start of index i for processor p:

istart,p = 1 + p

⌊

n − 1

P

⌋

+ min(p, mod(n − 1, P ))

Processor p is responsible for computing uℓ+1

i from i = istart,p
until i = istart,p + np − 1

Lecture 11: Parallel finite differences – p. 9



Need for communication

Observation: computing uℓ+1

istart,p
needs uℓ

istart,p−1, which belongs to

the left neighbor, uℓ
istart,p

is needed by the left neighbor

Similarly, computing uℓ+1 on the rightmost point needs a value of uℓ

from the right neighbor, uℓ on the rightmost point is needed by the
right neighbor

Therefore, two one-to-one data exchanges are needed on every
processor per time step

Exception: processor 0 has no left neighbor
Exception: processor P − 1 has no right neighbor

Lecture 11: Parallel finite differences – p. 10



Use of ghost points

Minimum data structure needed on each processor: two short arrays
u local and u prev local, both of length np

however, computing uℓ+1 on the leftmost point needs special
treatment
similarly, computing uℓ+1 on the rightmost point needs special
treatment

For convenience, we extend u local and u prev local with two
ghost values

That is, u local and u prev local are allocated of length
np + 2

u prev local[0] is provided by the left neighbor
u prev local[n p+1] is provided by the right neighbor
Computation of u local[i] goes from i=1 until i=n p

Lecture 11: Parallel finite differences – p. 11



MPI communication calls

When u local[i] is computed for i=1 until i=n p, data exchanges
are needed before going to the next time level

MPI Send is used to pass u local[1] to the left neighbor
MPI Recv is used to receive u local[0] from the left neighbor
MPI Send is used to pass u local[n p] to the right neighbor
MPI Recv is used to receive u local[n p+1] from the left
neighbor

The data exchanges also impose an implicit synchronization between
the processors, that is, no processor will start on a new time level
before both its neighbors have finished the current time level

Lecture 11: Parallel finite differences – p. 12



Danger for deadlock

If two neighboring processors both start with MPI Recv and conitnue
with MPI Send, deadlock will arise because none can return from the
MPI Recv call

Deadlock will probably not be a problem if both processors start with
MPI Send and continue with MPI Recv

The safest approach is to use a “rea-black” coloring scheme:
Processors with an odd rank are labeled as “red”
Processors with an even rank are labeled as “black”
On “red” processor: first MPI Send then MPI Recv

On “black” processor: first MPI Recv then MPI Send

Lecture 11: Parallel finite differences – p. 13



MPI_Sendrecv

The MPI Sendrecv command is designed to handle one-to-one data
exchange
MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status )

MPI PROC NULL can be used if the receiver or sender process does
not exist

Note that processor 0 has no left neighbor
Note that processor P − 1 has no right neighbor

Lecture 11: Parallel finite differences – p. 14



Use of non-blocking MPI calls

Another way of avoiding deadlock is to use non-blocking MPI calls,
for example, MPI Isend and MPI Irecv

However, the programmer typically has to make sure later that the
communication tasks acutally complete by MPI Wait

A more important motivation for using non-blocking MPI calls is to
exploit the possibility of communication and computation overlap →

hiding communication overhead

Lecture 11: Parallel finite differences – p. 15



Stationary heat conduction

If the heat equation ut = κuxx + f(x, t) reaches a steady state, then
ut = 0 and f(x, t) = f(x)

The resulting 1D equation becomes

−
d2u

dx2
= g(x)

where g(x) = f(x)/κ

Lecture 11: Parallel finite differences – p. 16



The Jacobi method

Finite difference approximation gives

−ui−1 + 2ui − ui+1

∆x2
= g(xi)

for i = 1, 2, . . . , n − 1

The Jacobi method is a simple solution strategy

A sequence of approximate solutions: u0, u1, u2, . . .

u0 is some initial guess
Similar to a pseudo time stepping process
One possible stopping criterion is that the difference between
uℓ+1 and uℓ is small enough

Lecture 11: Parallel finite differences – p. 17



The Jacobi method (2)

To compute uℓ+1:

uℓ+1

i =
∆x2g(xi) + uℓ

i−1 + uℓ
i+1

2

for i = 1, 2, . . . , n − 1 while uℓ+1

0 = uℓ+1
n = 0

To compute the difference between uℓ+1 and uℓ:

√

(uℓ+1

1 − uℓ
1)

2 + (uℓ+1

2 − uℓ
2)

2 + . . . + (uℓ+1

n−1 − uℓ
n−1)

2

Lecture 11: Parallel finite differences – p. 18



Observations

The Jacobi method has the same parallelism as the explicit scheme
for the time-dependent heat equation

Data partitioning is the same as before

In an MPI implementation, two arrays u local and u prev local
are needed on each processor

Computing the difference between uℓ+1 and uℓ is also parallelizable
First, every processor computes

diffp = (uℓ+1

p,1 − uℓ
p,1)

2 + (uℓ+1

p,2 − uℓ
p,2)

2 + . . . + (uℓ+1
p,np

− uℓ
p,np

)2

Then all the diffp values are added up by a reduction operation,
using MPI Allreduce

The summed value thereafter is applied with a square root
operation

Lecture 11: Parallel finite differences – p. 19



Comments

Parallelization of the Jacobi method requires both one-to-one
communication and collective communication

There are more advanced solution strategies (than Jacobi) for solving
the steady-state heat equation

Parallelization is not necessarily more difficult

2D/3D heat equations (both time-dependent and steady-state) can
be handled by the same principles

Lecture 11: Parallel finite differences – p. 20



Exercise

Make an MPI implementation of the Jacobi method for solving a 2D
steady-state heat equation

Lecture 11: Parallel finite differences – p. 21


	Overview
	The heat equation
	The finite difference method
	An explicit scheme for 1D heat equation
	Serial implementation
	Parallelism
	Work division
	Blockwise decomposition
	Need for communication
	Use of ghost points
	MPI communication calls
	Danger for deadlock
	MPI_Sendrecv
	Use of non-blocking MPI calls
	Stationary heat conduction
	The Jacobi method
	The Jacobi method (2)
	Observations
	Comments
	Exercise

