Lecture 11: Parallel finite differences

Overview

- **9** 1D heat equation $u_t = \kappa u_{xx} + f(x, t)$ as example
- Recapitulation of the finite difference method
- Recapitulation of parallelization
- Jacobi method for the steady-state case: $-u_{xx} = g(x)$
- Relevant reading: Chapter 13 in *Michael J. Quinn*, Parallel Programming in C with MPI and OpenMP

The heat equation

- ID Example: temperature history of a thin metal rod u(x,t), for 0 < x < 1 and $0 < t \le T$
 - Initial temperature distribution is known: u(x,0) = I(x)
 - Temperature at both ends is zero: u(0,t) = u(1,t) = 0
 - Heat conduction capability of the metal rod is known
 - Heat source is known
- The 1D partial differential equation:

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + f(x, t)$$

- u(x,t): the unknown function we want to find
- κ : known heat conductivity constant
- f(x,t): known heat source distribution
- More compact notation: $u_t = \kappa u_{xx} + f(x, t)$

The finite difference method

- A uniform spatial mesh: $x_0, x_1, x_2, \dots, x_n$, where $x_i = i\Delta x$, $\Delta x = \frac{1}{n}$
- Introduction of discrete time levels: $t_{\ell} = \ell \Delta t$, $\Delta t = \frac{T}{m}$
- Notation: $u_i^{\ell} = u(x_i, t_{\ell})$

Derivatives are approximated by finite differences

$$\frac{\partial u}{\partial t} \approx \frac{u_i^{\ell+1} - u_i^{\ell}}{\Delta t}$$

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1}^\ell - 2u_i^\ell + u_{i+1}^\ell}{\Delta x^2}$$

An explicit scheme for 1D heat equation

Original equation:

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + f(x, t)$$

Approximation after using finite differences:

$$\frac{u_i^{\ell+1} - u_i^{\ell}}{\Delta t} = \kappa \frac{u_{i-1}^{\ell} - 2u_i^{\ell} + u_{i+1}^{\ell}}{\Delta x^2} + f(x_i, t_\ell)$$

An explicit numerical scheme for computing $u^{\ell+1}$ based on u^{ℓ} :

$$u_{i}^{\ell+1} = u_{i}^{\ell} + \kappa \frac{\Delta t}{\Delta x^{2}} \left(u_{i-1}^{\ell} - 2u_{i}^{\ell} + u_{i+1}^{\ell} \right) + \Delta t f(x_{i}, t_{\ell})$$

for all inner points $i = 1, 2, \ldots, n-1$

•
$$u_0^{\ell+1} = u_n^{\ell+1} = 0$$
 due to the boundary condition

Serial implementation

```
I Two data arrays: u refers to u^{\ell+1}, u_prev refers to u^{\ell}
Enforce the initial condition:
   x = dx;
   for (i=1; i<n; i++) {</pre>
     u_prev[i] = I(x);
     x += dx;
The main computation is a time-stepping process:
   t = 0;
   while (t<T) {
     x = dx;
      for (i=1; i<n; i++) {</pre>
        u[i] = u prev[i]
              +kappa*dt/(dx*dx)*(u_prev[i-1]-2*u_prev[i]+u_prev[i+1])
              +dt*f(x,t);
        x += dx;
     u[0] = u[n] = 0.; /* enforcement of the boundary condition*/
      tmp = u_prev; u_prev = u; u = tmp; /* shuffle of array pointers */
     t += dt;
    }
```

Parallelism

- Important observation: $u_i^{\ell+1}$ only depends on u_{i-1}^{ℓ} , u_i^{ℓ} and u_{i+1}^{ℓ}
- So, computations of $u_i^{\ell+1}$ and $u_j^{\ell+1}$ are independent of each other
- Therefore, we can use several processors to divide the work of computing $u^{\ell+1}$ on all the inner points

Work division

The n - 1 inner points are divided evenly among P processors:
 Number of points assigned to processor p (p = 0, 1, 2, ..., P - 1):

$$n_p = \begin{cases} \left\lfloor \frac{n-1}{P} \right\rfloor + 1 & \text{if } p < \operatorname{mod}(n-1, P) \\ \left\lfloor \frac{n-1}{P} \right\rfloor & \text{else} \end{cases}$$

Maximum difference in the divided work load is 1

Blockwise decomposition

Each processor is assigned with a contiguous subset of all x_i
 Start of index i for processor p:

$$i_{\text{start},p} = 1 + p \left\lfloor \frac{n-1}{P} \right\rfloor + \min(p, \mod(n-1, P))$$

• Processor p is responsible for computing $u_i^{\ell+1}$ from $i = i_{\text{start},p}$ until $i = i_{\text{start},p} + n_p - 1$

Need for communication

- Observation: computing $u_{i_{\text{start},p}}^{\ell+1}$ needs $u_{i_{\text{start},p}-1}^{\ell}$, which belongs to the left neighbor, $u_{i_{\text{start},p}}^{\ell}$ is needed by the left neighbor
- Similarly, computing $u^{\ell+1}$ on the rightmost point needs a value of u^{ℓ} from the right neighbor, u^{ℓ} on the rightmost point is needed by the right neighbor
- Therefore, two one-to-one data exchanges are needed on every processor per time step
 - Exception: processor 0 has no left neighbor
 - Exception: processor P-1 has no right neighbor

Use of ghost points

- Minimum data structure needed on each processor: two short arrays u_local and u_prev_local, both of length np
 - however, computing $u^{\ell+1}$ on the leftmost point needs special treatment
 - similarly, computing $u^{\ell+1}$ on the rightmost point needs special treatment
- For convenience, we extend u_local and u_prev_local with two ghost values
 - That is, u_local and u_prev_local are allocated of length $n_p + 2$
 - u_prev_local[0] is provided by the left neighbor
 - u_prev_local[n_p+1] is provided by the right neighbor
 - Computation of u_local[i] goes from i=1 until i=n_p

MPI communication calls

- When u_local[i] is computed for i=1 until i=n_p, data exchanges are needed before going to the next time level
 - MPI_Send is used to pass u_local[1] to the left neighbor
 - MPI_Recv is used to receive u_local[0] from the left neighbor
 - MPI_Send is used to pass u_local[n_p] to the right neighbor
 - MPI_Recv is used to receive u_local[n_p+1] from the left neighbor
- The data exchanges also impose an implicit synchronization between the processors, that is, no processor will start on a new time level before both its neighbors have finished the current time level

Danger for deadlock

- If two neighboring processors both start with MPI_Recv and conitnue with MPI_Send, deadlock will arise because none can return from the MPI_Recv call
- Deadlock will probably not be a problem if both processors start with MPI_Send and continue with MPI_Recv
- The safest approach is to use a "rea-black" coloring scheme:
 - Processors with an odd rank are labeled as "red"
 - Processors with an even rank are labeled as "black"
 - On "red" processor: first MPI_Send then MPI_Recv
 - On "black" processor: first MPI_Recv then MPI_Send

MPI_Sendrecv

The MPI_Sendrecv command is designed to handle one-to-one data exchange

- MPI_PROC_NULL can be used if the receiver or sender process does not exist
 - Note that processor 0 has no left neighbor
 - Note that processor P-1 has no right neighbor

Use of non-blocking MPI calls

- Another way of avoiding deadlock is to use non-blocking MPI calls, for example, MPI_Isend and MPI_Irecv
- However, the programmer typically has to make sure later that the communication tasks acutally complete by MPI_Wait
- ▲ More important motivation for using non-blocking MPI calls is to exploit the possibility of communication and computation overlap → hiding communication overhead

Stationary heat conduction

- If the heat equation $u_t = \kappa u_{xx} + f(x, t)$ reaches a steady state, then $u_t = 0$ and f(x, t) = f(x)
- The resulting 1D equation becomes

$$-\frac{d^2u}{dx^2} = g(x)$$

where $g(x) = f(x)/\kappa$

The Jacobi method

Finite difference approximation gives

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{\Delta x^2} = g(x_i)$$

for i = 1, 2, ..., n - 1

- The Jacobi method is a simple solution strategy
 - A sequence of approximate solutions: u^0 , u^1 , u^2 , ...
 - u^0 is some initial guess
 - Similar to a pseudo time stepping process
 - One possible stopping criterion is that the difference between $u^{\ell+1}$ and u^{ℓ} is small enough

The Jacobi method (2)

• To compute $u^{\ell+1}$:

$$u_i^{\ell+1} = \frac{\Delta x^2 g(x_i) + u_{i-1}^{\ell} + u_{i+1}^{\ell}}{2}$$

for
$$i = 1, 2, \dots, n-1$$
 while $u_0^{\ell+1} = u_n^{\ell+1} = 0$

• To compute the difference between $u^{\ell+1}$ and u^{ℓ} :

$$\sqrt{(u_1^{\ell+1} - u_1^{\ell})^2 + (u_2^{\ell+1} - u_2^{\ell})^2 + \ldots + (u_{n-1}^{\ell+1} - u_{n-1}^{\ell})^2}$$

Observations

- The Jacobi method has the same parallelism as the explicit scheme for the time-dependent heat equation
- Data partitioning is the same as before
- In an MPI implementation, two arrays ullocal and uprevlocal are needed on each processor
- Computing the difference between $u^{\ell+1}$ and u^{ℓ} is also parallelizable
 - First, every processor computes

$$\mathsf{diff}_p = (u_{p,1}^{\ell+1} - u_{p,1}^{\ell})^2 + (u_{p,2}^{\ell+1} - u_{p,2}^{\ell})^2 + \ldots + (u_{p,n_p}^{\ell+1} - u_{p,n_p}^{\ell})^2$$

- Then all the diff_p values are added up by a reduction operation, using MPI_Allreduce
- The summed value thereafter is applied with a square root operation

Comments

- Parallelization of the Jacobi method requires both one-to-one communication and collective communication
- There are more advanced solution strategies (than Jacobi) for solving the steady-state heat equation
 - Parallelization is not necessarily more difficult
- 2D/3D heat equations (both time-dependent and steady-state) can be handled by the same principles

Exercise

Make an MPI implementation of the Jacobi method for solving a 2D steady-state heat equation