
Suggested solutions for the INF3380 exam of spring 2011

Problem 1 (10%)

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥

♥ ♥

♥
✏✏✏✏✏✮

PPPPPq

�
�✠

❅
❅❘

�
�✠

❅
❅❘

✁
✁☛

❆
❆❯

✁
✁☛

❆
❆❯

✁
✁☛

❆
❆❯

✁
✁☛

❆
❆❯

The above figure shows 15 tasks, each taking 10 minutes to be carried out by one worker. (Using
more workers on the same task won’t save any time.) Each arrowin the above figure means that the
task being pointed cannot start before the pointing task hasfinished. What will be the shortest time
for 4 workers to finish all the 15 tasks? (You need to explain your answer.) Repeat the same question
for the case of 3 workers.

Suggested solution: During the first 10 minutes, only one worker can be in action tofinish the task
on the top level. During the second 10 minutes, two workers can concurrently finish the two tasks on
the second level. During the third 10 minutes, all the four workers can concurrently finish the four
tasks on the third level. The remaining 8 tasks on the bottom level will require 20 minutes for the
four workers to finish. Therefore, the total time usage will be 50 minutes in the case of four workers.

In the case of three workers, the total time usage will be 60 minutes.

Problem 2 (20%)

Gustafson-Barsis’s law (ikke lenger pensum for 2013) can be expressed as the following formula:

Ψ(n, p)≤ p+(1− p)s

• What do the symbolsΨ, n, p ands represent?

• What can Gustafson-Barsis’s law be used to?

• Derive Gustafson-Barsis’s law.

Suggested solution: Ψ represents the obtainable speedup,n represents the problem size, and

s =
σ(n)

σ(n)+ϕ(n)/p

1

represents the fraction of time spent in the parallel computation performing inherently sequential
operations.

Gustafson-Barsis’s law can be used to estimate the speedupΨ in cases is known.
Due to the above definition ofs we can have

σ(n) = (σ(n)+ϕ(n)/p)s,

ϕ(n) = (σ(n)+ϕ(n)/p)(1− s)p.

Therefore

Ψ(n, p) ≤
σ(n)+ϕ(n)

σ(n)+ϕ(n)/p

⇒ Ψ(n, p) ≤
(σ(n)+ϕ(n)/p)(s+(1− s)p)

σ(n)+ϕ(n)/p
⇒ Ψ(n, p) ≤ s+(1− s)p = p+(1− p)s

Problem 3 (20%)

double trapezoidal (int n) {
double result = 0.0;
double h = 1.0/n;
double x;
int i;

x = 0.0;
for (i=1; i<n; i++) {

x += h;
result += exp(5.0*x)+sin(x)-x*x;

}

x = 0.;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

x = 1.0;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

return (h*result);
}

Write a parallel version of the abovetrapezoidal function using MPI. (Hint: Thefor-loop needs
to be modified a little bit to possess parallelism.) Write another parallel version using OpenMP.

Suggested solution: MPI parallelization:

double trapezoidal_MPI (int n) {
double result = 0.0, global_sum;
double h = 1.0/n;
double x;
int i;

2

int my_rank, num_procs;
MPI_Comm_Rank (MPI_COMM_WORLD, &my_rank);
MPI_Comm_Size (MPI_COMM_WORLD, &num_procs);

for (i=my_rank; i<n; i+=num_procs) {
x = i*h;
result += exp(5.0*x)+sin(x)-x*x;

}

MPI_Allreduce (&result, &global_sum, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

x = 0.;
result = global_sum + 0.5*(exp(5.0*x)+sin(x)-x*x);

x = 1.0;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

return (h*result);
}

OpenMP parallelization:

double trapezoidal_OMP (int n) {
double result = 0.0;
double h = 1.0/n;
double x;
int i;

#pragma omp parallel for private(x) reduction(+: result)
for (i=1; i<n; i++) {

x = i*h;
result += exp(5.0*x)+sin(x)-x*x;

}

x = 0.;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

x = 1.0;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

return (h*result);
}

Problem 4 (30%)

Floyd’s algorithm, which for example can be used to find the shortest distance between two and two
cities, uses the following triplefor-loop:

for (k=0; k<n; k++)
for (i=0; i<n; i++)

3

for (j=0; j<n; j++)
if (a[i][j] > (a[i][k]+a[k][j]))

a[i][j] = a[i][k]+a[k][j];

• Explain where parallelism lies in thefor-loop and why.

• Parallelize the abovefor-loop using OpenMP.

• In the context of an MPI parallelization, where the rows of the 2D-arraya are distributed as
rowwise block stripes, explain how often and how MPI communications should happen. (You
don’t need to write a complete MPI code.)

Suggested solution: The outermost for-loop that uses indexk has to carry out the iterations se-
quentially one after another, but the two nested for-loops usingi andj as index can be parallelized.

An OpenMP parallelization can be as follows:

for (k=0; k<n; k++)
#pragma omp parallel for private(j)

for (i=0; i<n; i++)
for (j=0; j<n; j++)

if (a[i][j] > (a[i][k]+a[k][j]))
a[i][j] = a[i][k]+a[k][j];

In case of an MPI parallelization, in the beginning of eachk-iteration, the MPI process that owns
thekth row of matrixa should broadcast the entire row to all the other MPI processes.

Problem 5 (20%)

t = 0.0;
while (t < T) {

t += dt;

/* compute all the interior points */
for (i=1; i<=M; i++)

up[i] = 2*u[i]-um[i]
+((dt*dt)/(dx*dx))*(u[i-1]-2*u[i]+u[i+1]);

up[0] = value_of_left_BC(t); // left boundary point
up[M+1] = value_of_rigt_BC(t); // right boundary point

/* preparation for next time step: array shuffle */
tmp = um;
um = u;
u = up;
up = tmp;

}

The abovewhile-loop implements a finite difference method that solves the 1D wave equation (in
a similar fashion as oblig 1 in spring 2011). Sketch an MPI parallelization that has the possibil-
ity of hiding the communication overhead, by using non-blocking MPI commands for sending and
receiving messages.

4

Suggested solution: To hide the communication overhead, the following approachcan be used.
First, the value ofup[1] should be calculated and a non-blocking MPI send command (MPI Isend)
and a non-blocking MPI receive command (MPI Irecv) should be initiated. Second, the value of
up[my M] should be calculated and another pair ofMPI Isend andMPI Irecv commands should be
initiated. (Note thatmy M is the local number of computation points.) Third, the remaining points are
calculated using thefor-loop, with indexi starting from2 and stopping atmy M-1. Fourth, all the
four non-blocking MPI commands should be ensured to finish (by usingMPI Wait).

5

