Suggested solutions for the INF3380 exam of spring 2011

Problem 1 (10%)
Q/O\O
Q/ \Q O/ \Q

/TN TN TN N
OO0 000000

The above figure shows 15 tasks, each taking 10 minutes torbectaut by one worker. (Using
more workers on the same task won’t save any time.) Each amrtve above figure means that the
task being pointed cannot start before the pointing taskihehed. What will be the shortest time
for 4 workers to finish all the 15 tasks? (You need to explaryamswer.) Repeat the same question
for the case of 3 workers.

Suggested solution: During the first 10 minutes, only one worker can be in actiofirtish the task

on the top level. During the second 10 minutes, two workensccacurrently finish the two tasks on

the second level. During the third 10 minutes, all the fourkeos can concurrently finish the four

tasks on the third level. The remaining 8 tasks on the bottral lwill require 20 minutes for the

four workers to finish. Therefore, the total time usage wall39 minutes in the case of four workers.
In the case of three workers, the total time usage will be Gutes.

Problem 2 (20%)
Gustafson-Barsis’s lawKke lenger pensum for 2013) can be expressed as the following formula:
W(n,p) <p+(1-p)s
e What do the symbol¥, n, p andsrepresent?

e What can Gustafson-Barsis’s law be used to?

e Derive Gustafson-Barsis’s law.

Suggested solution: W represents the obtainable speeduggpresents the problem size, and

represents the fraction of time spent in the parallel coatpant performing inherently sequential
operations.

Gustafson-Barsis’s law can be used to estimate the spéBdupasesis known.

Due to the above definition afwe can have

o(n) = (a(n)+¢(n)/p)s,
¢(n) = (o(n)+6(n)/p)(1-9)p.

Therefore

W(n,p) <

IN

= ¥(n,p)
= Y(n,p < s+(1-9p

Problem 3 (20%)

doubl e trapezoidal (int n) {
double result = 0.0;
double h = 1.0/n;

doubl e x;
int i;
x = 0.0;
for (i=1; i<n; i+4+) {
X += h;
result += exp(5.0*x)+sin(x)-x*x;
}
x =0.;

result += 0.5*(exp(5.0%x)+sin(x)-x*x);

x = 1.0;
result += 0.5*(exp(5.0%x)+sin(x)-x*x);

return (h*result);

}

Write a parallel version of the above apezoi dal function using MPI. (Hint: Thé or -loop needs
to be modified a little bit to possess parallelism.) Write &eoparallel version using OpenMP.

Suggested solution: MPI parallelization:

doubl e trapezoidal Ml (int n) {
double result = 0.0, global sum
double h = 1.0/n;
doubl e x;
int i;

int ny_rank, num procs;
MPI _Comm Rank (MPI_COMM WORLD, &my_rank)
MPI _Comm Si ze (MPI_COMM WORLD, &num procs);

for (i=ny_rank; i<n; i+=numprocs) {
X = i*h;
result += exp(5.0*x)+sin(x)-x*x;

}
MPI _Allreduce (&result, &global sum 1, MPI_DOUBLE, MPI _SUM MPlI _COWM WORLD);

x = 0.;
result = global _sum+ 0.5*(exp(5.0*x)+sin(Xx)-x*x);

x = 1.0;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

return (h*result);

OpenMP parallelization:

doubl e trapezoidal _OW (int n) {
doubl e result = 0.0;
double h = 1.0/n;
doubl e x;
int i;

#pragma onp parallel for private(x) reduction(+: result)
for (i=1; i<n; i++) {
X = i*h;
result += exp(5. 0*x) +si n(x) - x*x;

}

x = 0.;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

x = 1.0;
result += 0.5*(exp(5.0*x)+sin(x)-x*x);

return (h*result);

Problem 4 (30%)

Floyd’s algorithm, which for example can be used to find ther&st distance between two and two
cities, uses the following tripleor -loop:

for (k=0; k<n; k++)
for (i=0; i<n; i++)

for (j=0; j<n; j++)
it (ali]lj] > (a[i][k]+a[k][j]))
ali][j] = ali][k]+a[k][j];

e Explain where parallelism lies in tHer -loop and why.
e Parallelize the abovieor -loop using OpenMP.

¢ In the context of an MPI parallelization, where the rows & #D-arraya are distributed as
rowwise block stripes, explain how often and how MPI commoations should happen. (You
don’t need to write a complete MPI code.)

Suggested solution: The outermost for-loop that uses indehas to carry out the iterations se-
guentially one after another, but the two nested for-logsgi andj as index can be parallelized.
An OpenMP parallelization can be as follows:

for (k=0; k<n; k++)
#pragma onp parallel for private(j)
for (i=0; i<n; i++)
for (j=0; j<n; j++)
it (ali][j] > (a[i][k]+a[k][j]))
a[i][j] = a[i][k]+a[k][j];

In case of an MPI parallelization, in the beginning of ekdteration, the MPI process that owns
the kth row of matrixa should broadcast the entire row to all the other MPI proesse

Problem 5 (20%)

t =0.0;
while (t <T) {
t += dt;

/* compute all the interior points */
for (i=1; i<=M i+4)
up[i] = 2*u[i]-unfi]
+((dt*dt)/ (dx*dx))*(u[i-1]-2*%u[i]+u[i+1]);

up[0] = value_of left BC(t); Il 1eft boundary point
up[Mt1] = value_of rigt _BC(t); // right boundary point

/* preparation for next tinme step: array shuffle */

tnp = um
um = U,
u = up;
up = tnp;

}

The abovenhi | e-loop implements a finite difference method that solves thenvhve equation (in
a similar fashion as oblig 1 in spring 2011). Sketch an MPhpelization that has the possibil-
ity of hiding the communication overhead, by using non-king MPI commands for sending and
receiving messages.

Suggested solution: To hide the communication overhead, the following approeah be used.
First, the value ofip[1] should be calculated and a non-blocking MPI send commisiid [(send)
and a non-blocking MPI receive commandPl(_I r ecv) should be initiated. Second, the value of
up[ny_M should be calculated and another paivBf _| send andMPI _I r ecv commands should be
initiated. (Note thaty _Mis the local number of computation points.) Third, the ramrgg points are
calculated using theor -loop, with indexi starting from2 and stopping aty M 1. Fourth, all the
four non-blocking MPI commands should be ensured to finighru@ingVPl Vi t).

