INF3380 Exercise Set 4

for Chapter 4 "Basic Communication Operations"

Exercise 1

Calculate $\log n$, $\lfloor \log n \rfloor$, and $\lceil \log n \rceil$ for the following values of n:

- 3
- 13
- 32
- 123
- 321

Exercise 2

Go through the following algorithm, step by step, while assuming (1) my_{-id} is the same as *source*, and (2) my_{-id} is different from *source*:

1.	procedure GENERAL_ONE_TO_ALL_BC($d, my_id, source, X$)
2.	begin
3.	$my_virtual_id := my_id \text{ XOR } source;$
4.	$mask := 2^d - 1;$
5.	for $i := d - 1$ downto 0 do /* Outer loop */
6.	$mask := mask \text{ XOR } 2^i;$ /* Set bit <i>i</i> of mask to 0 */
7.	$\mathbf{if} \ (my_virtual_id \ \mathrm{AND} \ mask) = 0 \ \mathbf{then}$
8.	if $(my_virtual_id \text{ AND } 2^i) = 0$ then
9.	$virtual_dest := my_virtual_id \text{ XOR } 2^i;$
10.	send X to (<i>virtual_dest</i> XOR <i>source</i>);
	/* Convert <i>virtual_dest</i> to the label of the physical destination $*/$
11.	else
12.	$virtual_source := my_virtual_id \text{ XOR } 2^i;$
13.	receive X from (<i>virtual_source</i> XOR <i>source</i>);
	/* Convert virtual_source to the label of the physical source $*/$
14.	endelse;
15.	endfor;
16.	end GENERAL_ONE_TO_ALL_BC

Algorithm 4.2 One-to-all broadcast of a message X from *source* on a hypercube.

Exercise 3

Modify the above algorithm so that it can work for any number of processes, not just the power of 2.

Exercise 4

Write a C program that describes the communications performed by an allto-one reduction operation, shown in the above figure. Given the number of processes as p and a process's ID as i, where $0 \le i < p$, the C program should print a list of messages sent and/or received by process i. The message list should indicate the destination processor of all sent messages and the source process of all received messages.

For example, for the case where p = 6 and i = 1, the output of the C program should be

```
Message received from process 5
Message received from process 3
Message sent to process 0
```

Additional exercise (important for oblig 1)

Write a C program that reads in a JPEG image and then

- find the average of its pixel values,
- flip the image in the horizontal direction,
- flip the image in the vertical direction.

The existing C code collection

```
http://heim.ifi.uio.no/xingca/inf-verk3830/simple-jpeg.tar.gz
```

should be used.