
Using Abel

Using Abel – p. 1/21

Abel

Abel: UiO’s Linux cluster

Number of compute nodes: 650+

Each compute node has two 2.6GHz Xeon E5-2670 8-core CPUs

Total number of CPU cores: 10,000+

Inter-connect: InfiniBand

No. 368 on the TOP500 list (Nov 2014)
http://www.top500.org/system/177801

Using Abel – p. 2/21

More about Abel

Operating system: Linux, 64 bit Centos 6

Access to Abel (using your UiO username/password)
ssh -X username@abel.uio.no

Software available on Abel, please check
www.uio.no/english/services/it/research/hpc/abel/help/software/

Using Abel – p. 3/21

The module command

On Abel the module command is used to set up environments for
compilers, MPI versions and some installed application software

More info:
www.uio.no/english/services/it/research/hpc/abel/help/user-guide/modules.htm

Examples:

module load intel

module unload intel

Using Abel – p. 4/21

MPI installations

There are two MPI installations on Abel:

OpenMPI (compiled with four different compilers)
module load openmpi.gnu or
module load openmpi.intel or
module load openmpi.open64 or
module load openmpi.pgi

Intel’s MPI (compiled with two different compilers)
module load intelmpi.gnu or
module load intelmpi.intel

Using Abel – p. 5/21

Compiling MPI code

First, remember to load MPI by, for example,
module load openmpi.gnu

Then, the mpicc (or mpicxx) command can be used to compile MPI
code

Using Abel – p. 6/21

Job script

Remember: you shouldn’t use Abel in an interactive mode!

You must write a job script for running a compiled code, for example

#!/bin/bash

#SBATCH --job-name=YourJobname

#SBATCH --account=ln0001k

Wall clock limit:

#SBATCH --time=’00:05:00’

Number of MPI processes:

#SBATCH --ntasks=4

Max memory usage per MPI process:

#SBATCH --mem-per-cpu=100m

mpirun ./a.out

You must use ln0001k as the project account

www.uio.no/english/services/it/research/hpc/abel/help/user-guide/

Using Abel – p. 7/21

Queue system

SLURM is the queue system on Abel

Basic commands
sbatch jobscript – submitting a job

squeue -u username or squeue -j jobID – inspecting job(s)
scancel jobID – terminating job

For more info about SLURM
https://computing.llnl.gov/linux/slurm/documentation.html

Using Abel – p. 8/21

Using OpenMPI on your own laptop

Using OpenMPI on your own laptop – p. 9/21

OpenMPI

OpenMPI (http://www.open-mpi.org) is an open source MPI
implementaion

Source code for download:
http://www.open-mpi.org/software/ompi/

OpenMPI can be installed on laptops using Linux or OS X
You can turn your own laptop into an MPI-enabled parallel computer!

Using OpenMPI on your own laptop – p. 10/21

Mandatory assignment 1

Mandatory assignment 1 – p. 11/21

Objectives

Translation of simple mathematical formulas to a working code

Compilation of existing C source codes into an external library

Implementation a simple denoising algorithm

Parallelization of the denoising algorithm via MPI programming

Mandatory assignment 1 – p. 12/21

Denoising

An image with noise A denoised image

Mandatory assignment 1 – p. 13/21

An image as a 2D array

An image can be thought as a 2D array, containing m× n pixels,

u =

um−1,0 um−1,1 · · · um−1,n−1

...
...

...
...

u1,0 u1,1 · · · u1,n−1

u0,0 u0,1 · · · u0,n−1

Mandatory assignment 1 – p. 14/21

A simple denoising algorithm

We can apply a few iterations of isotropic diffusion, where each iteration
computes a new image ū as a “smoothed” version of u. Each pixel of ū is
calculated as

ūi,j = ui,j + κ (ui−1,j + ui,j−1 − 4ui,j + ui,j+1 + ui+1,j)

κ is typically a small constant (such as 0.1)

Mandatory assignment 1 – p. 15/21

Remarks

The formula for ūi,j is applicable only for the interior pixels, that is,

1 ≤ i ≤ m− 2 and 1 ≤ j ≤ n− 2

The boundary pixels of ū should simply copy the corresponding

boundary pixels of u

Before going into a new iteration, we need to copy ū back to u

Mandatory assignment 1 – p. 16/21

Compiling an external C library

We want to make use of an external C library for reading/writing

JPEG images

This external library exists as a set of header (*.h) files and C (*.c)
files
http://heim.ifi.uio.no/xingca/inf-verk3830/simple-jpeg.tar.gz

To prepare the external library

Compile all the *.c files into object (*.o) files

Group the resulting object files into a static library file
ar rcs libsimplejpeg.a *.o

Mandatory assignment 1 – p. 17/21

Reading/writing JPEG images

We can use two already implemented functions from the external C library
(libsimplejpeg.a):

void import_JPEG_file (const char* filename,

unsigned char** image_chars,

int* image_height, int* image_width,

int* num_components);

void export_JPEG_file (const char* filename,

const unsigned char* image_chars,

int image_height, int image_width,

int num_components, int quality);

A grey JPEG image is representated as a 1D array of values of type
unsigned char

We need to convert this 1D array of unsigned char values into a
2D array of floating-point values before doing numerical computations

Mandatory assignment 1 – p. 18/21

Data structure for an image (suitable for denoising)

typedef struct

{

float** image_data; /* a 2D array of floats */

int m; /* # pixels in x-direction */

int n; /* # pixels in y-direction */

}

image;

Mandatory assignment 1 – p. 19/21

Serial implementation

int main(int argc, char *argv[])

{

int m, n, c, iters; float kappa;

image u, u_bar;

unsigned char *image_chars;

/* ... */

import_JPEG_file(input_jpeg_filename, &image_chars, &m, &n, &c);

allocate_image (&u, m, n);

allocate_image (&u_bar, m, n);

convert_jpeg_to_image (image_chars, &u);

iso_diffusion_denoising (&u, &u_bar, kappa, iters);

convert_image_to_jpeg (&u_bar, image_chars);

export_JPEG_file(output_jpeg_filename, image_chars, m, n, c, 75);

deallocate_image (&u);

deallocate_image (&u_bar);

return 0;

Mandatory assignment 1 – p. 20/21

Parallel implementation

MPI programming

Process 0 is responsible for reading the input noisy image

Process 0 divides the input image into pieces, each assigned to one
MPI process

Denoising computation is done by all the MPI processes in parallel,
with needed collaboration

Finally, each MPI process sends its denoised piece back to process 0

Process 0 “stiches” the pieces together as a whole image

Process 0 writes the whole image back to file

Mandatory assignment 1 – p. 21/21

	Abel
	More about Abel
	The {	t module} command
	MPI installations
	Compiling MPI code
	Job script
	Queue system
	OpenMPI
	Objectives
	Denoising
	An image as a 2D array
	A simple denoising algorithm
	Remarks
	Compiling an external C library
	Reading/writing JPEG images
	Data structure for an image (suitable for denoising)
	Serial implementation
	Parallel implementation

