
Introduction to GPU programming

Introduction to GPU programming – p. 1/19



Overview

GPUs & computing

Principles of CUDA programming

One good reference:
David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel

Processors, Morgan Kaufmann Publishers, 2010.

Introduction to GPU programming – p. 2/19



New trends of microprocessors

Since 2003, there has been two main trajectories for microprocessor
design

Multicore – a relatively small number of cores per chip, each core is a
full-flesh processor in the “traditional sense”

Many-core – a large number of much smaller and simpler cores

NVIDIA Tesla K40 GPU has 2880 “cores” (streaming processors),
each is heavily multi-threaded, in-order, single-instruction issue
processor.

Peak performance of many-core GPUs can be 10 fold the peak
performance of multicore CPUs

GPUs have larger memory bandwidth (simpler memory models

and fewer legacy requirements)

Since 2013, Intel’s many-integrated-core (MIC) technology has
arrived

Introduction to GPU programming – p. 3/19



NVIDIA’s Fermi architecture

Designed for GPU computing

16 streaming multiprocessors (SMs)

32 CUDA cores (streaming processors) in each SM (512 cores in

total)

Each streaming processor is massively threaded

6 DRAM 64-bit memory interfaces

Peak double-precision floating-point rate: 768 GFLOPs

Introduction to GPU programming – p. 4/19



NVIDIA’s Kepler architecture

Each streaming multiprocessor is more powerful than Fermi

Dynamic parallelism (nested kernels)

Hyper-Q allows multiple CPU threads/processes to use a single GPU

Peak double-precision floating-point rate of K40: 1430 GFLOPs

Introduction to GPU programming – p. 5/19



Massive (but simple) parallelism

One streaming processor is the most fundamental execution
resource

Simpler than a CPU core

But capable of executing a large number of threads simultaneously,

where the threads carry out same instruction to different data
elements —- single-instruction-multiple-data (SIMD)

A number of streaming processors constitute one streaming

multiprocessor (SM) simultaneously

Introduction to GPU programming – p. 6/19



CUDA

CUDA – Compute Unified Device Architecture

C-based programming model for GPUs

Introduced together with GeForce 8800

Joint CPU/GPU execution (host/device)

A CUDA program consists of one of more phases that are executed
on either host or device

User needs to manage data transfer between CPU and GPU

A CUDA program is a unified source code encompassing both host
and device code

Introduction to GPU programming – p. 7/19



More about CUDA

To a CUDA programmer, the computing system consists of a host
(CPU) and one or more devices (GPUs)

Data must be explicitly copied from host to device (and back)

On device, there is so-called global memory

Device global memory tends to have long access latencies and finite
bandwidth

On-chip memories: registers and shared memory (per SM block)

have limited capacity, but are much faster

Registers are private for individual threads

All threads with a thread block can access variables in the shared
memory

Shared memory is an efficient means for threads to cooperate, by
sharing input data and intermediate results

Introduction to GPU programming – p. 8/19



Programming GPUs for computing (1)

Kernel functions – the computational tasks on GPU

An application or library function may consist of one or more
kernels

Kernels can be written in C, extended with additional keywords to
express parallelism

Once compiled, each kernel makes use of many threads that execute

the same program in parallel

Multiple threads are grouped into thread blocks

All threads in a thread block run on a single SM

Within a thread block, threads cooperate and share memory

A thread block is divided into warps of 32 threads
Warp is the fundamental unit of dispatch within an SM

Threads blocks may execute in any order

Introduction to GPU programming – p. 9/19



Programming GPUs for computing (2)

When a kernel is invoked on host, a grid of parallel threads are
generated on device

Threads in a grid are organized in a two-level hierarchy

each grid consists of one or more thread blocks

all blocks in a grid have the same number of threads

each block has a unique 3D coordinate blockIdx.x,
blockIdx.y and blockIdx.z

each thread block is organized as a 3D array of threads
threadIdx.x, threadIdx.y, threadIdx.z

The grid and thread block dimensions are set when a kernel is
invoked

A centralized scheduler

Introduction to GPU programming – p. 10/19



Programming GPUs for computing (3)

Syntax for invoking a kernel

dim3 dimGrid(64,32,1)
dim3 dimBlock(4,2,2);
KernelFunction<<<dimGrid, dimBlock>>>(...);

gridDim and blockDim contain the dimension info

All threads in a block share the same blockIdx

Each thread has its unique threadIdx within a block

Values of blockIdx and threadIdx can be used to determine
which data element(s) that a thread is to work on

Often, one thread is used to compute one data element (fine-grain
parallelism)

Introduction to GPU programming – p. 11/19



Thread execution

Launching a CUDA kernel will generate a 1D or 2D or 3D array of
thread blocks, each having a 1D or 2D or 3D array of threads

The thread blocks can execute in any order relative to each other

CUDA runtime system bundles several threads for simultaneous
execution, by partitioning each thread block into warps (32 threads)

Scheduling of warps is taken care by CUDA runtime system

The hardware executes same instruction for all threads in the same
warp

If-tests can cause thread divergence, which will require multiple

passes of divergent paths (involving all threads of a warp)

Introduction to GPU programming – p. 12/19



Simple example of CUDA program

Use GPU to calculate the square each element of an array

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
// 1D thread blocks and 1D thread array inside each block
// N is the length of the data array a, stored in device memory

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];

}

Introduction to GPU programming – p. 13/19



Simple example of CUDA program (cont’d)

// main routine that executes on the CPU host
int main(void)
{
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);

}

Introduction to GPU programming – p. 14/19



Matrix multiplication, example 1

We want to compute Q = M ×N , assuming Q, M , N are all square
matrices of same size Width×Width

Each matrix has a 1D contiguous data storage

Naive kernel implementation

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Qd,
int Width)

{
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
float Qvalue = 0;
for (int k=0; k<Width; ++k)

Qvalue += Md[Row*Width+k] * Nd[k*Width+Col];
Qd[Row*Width+Col] = Qvalue;

}

Introduction to GPU programming – p. 15/19



Matrix multiplication, example 2

The previous implementation is not memory efficient

Each thread reads 2×Width values from global memory

A better approach is to let a patch of TILE WIDTH×TILE WIDTH

threads share the 2×TILE WIDTH×Width data reads

That is, each thread reads 2×Width/TILE WIDTH values from global
memory

Shared memory is important for performance!

Also beware that size of shared memory is limited

Introduction to GPU programming – p. 16/19



Matrix multiplication, example 2 (cont’d)

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Qd,
int Width)

{
__shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;

float Qvalue = 0;
for (int m = 0; m<Width/TILE_WIDTH; ++m) {

Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
__syncthreads();

for (int k=0; k<TILE_WIDTH; ++k)
Qvalue += Mds[ty][k] * Nds[k][tx];

__syncthreads();
}

Qd[Row*Width+Col] = Qvalue;
}

Introduction to GPU programming – p. 17/19



7-point stencil in CUDA
__global__ void stencil (double * device_u, double * device_u_new,

double alpha, double beta, int Nx, int Ny)

{

int gid_x = blockIdx.x*blockDim.x + threadIdx.x + 1;

int gid_y = blockIdx.y*blockDim.y + threadIdx.y + 1;

int gid_z = blockIdx.z*blockDim.z + threadIdx.z + 1;

double (*in)[Ny][Nx];

double (*out)[Ny][Nx];

in = (double (*)[Ny][Nx])device_u;

out = (double (*)[Ny][Nx])device_u_new;

out[gid_z][gid_y][gid_x]=(alpha*in[gid_z][gid_y][gid_x])+

beta*(in[gid_z][gid_y][gid_x-1]

+in[gid_z][gid_y][gid_x+1]

+in[gid_z][gid_y-1][gid_x]

+in[gid_z][gid_y+1][gid_x]

+in[gid_z-1][gid_y][gid_x]

+in[gid_z+1][gid_y][gid_x]);

}

One mesh point is computed by one lightweight thread

Introduction to GPU programming – p. 18/19



Mint: automated C-to-CUDA code generator

Domain-specific targeting stencil computations

User only annotates a serial C code with Mint pragmas

https://sites.google.com/site/mintmodel/

Online demo: http://mint.simula.no/

#pragma mint copy(U,toDevice,(n+2),(m+2),(k+2))

#pragma mint copy(Unew,toDevice,(n+2),(m+2),(k+2))

#pragma mint parallel default(shared) {

#pragma mint for nest(all) tile(16,16,1)

for (int z=1; z<= k; z++)

for (int y=1; y<= m; y++)

for (int x=1; x<= n; x++)

Unew[z][y][x] = c0*U[z][y][x] +

c1*(U[z][y][x-1] + U[z][y][x+1] +

U[z][y-1][x] + U[z][y+1][x] +

U[z-1][y][x] + U[z+1][y][x]);

}

#pragma mint copy(Unew,toHost,(n+2),(m+2),(k+2))

Introduction to GPU programming – p. 19/19


	Overview
	New trends of microprocessors
	NVIDIA's Fermi architecture
	NVIDIA's Kepler architecture
	Massive (but simple)
parallelism
	CUDA
	More about CUDA
	Programming GPUs for computing (1)
	Programming GPUs for computing (2)
	Programming GPUs for computing (3)
	Thread execution
	Simple example of CUDA program
	Simple example of CUDA program (cont'd)
	Matrix multiplication, example 1
	Matrix multiplication, example 2
	Matrix multiplication, example 2 (cont'd)
	7-point stencil in CUDA
	Mint: automated C-to-CUDA code generator

