
Introduction to parallel computers
and parallel programming

Introduction to parallel computersand parallel programming – p. 1

Content

A quick overview of morden parallel hardware
Parallelism within a chip

Pipelining
Superscaler execution
SIMD
Multiple cores

Parallelism within a compute node
Multiple sockets
UMA vs. NUMA

Parallelism across multiple nodes

A very quick overview of parallel programming

Introduction to parallel computersand parallel programming – p. 2

First things first

CPU—central processing unit—is the “brain” of a computer

CPU processes instructions, many of which require data transfers
from/to the memory on a computer

CPU integrates many components (registers, FPUs, caches...)

CPU has a “clock”, which at each clock cycle synchronizes the logic
units within the CPU to process instructions

Introduction to parallel computersand parallel programming – p. 3

An example of a CPU core

Block diagram of an Intel Xeon Woodcrest CPU core

Introduction to parallel computersand parallel programming – p. 4

Instruction pipelining

Suppose every instruction has five stages, each taking one cycle

Without instruction pipelining

With instruction pipelining

Introduction to parallel computersand parallel programming – p. 5

Superscalar execution

Multiple execution units ⇒ more than one instruction can finish per cycle

An enhanced form of instruction-level parallelism

Introduction to parallel computersand parallel programming – p. 6

Data

Data are stored in computer memory as sequence of 0s and 1s

Each 0 or 1 occupies one bit

8 bits constitute one byte

Normally, in the C language:
char: 1 byte
int: 4 bytes
float: 4 bytes
double: 8 bytes

Bandwidth—the speed of data transfer—is measured as number of
bytes transferred per second

Introduction to parallel computersand parallel programming – p. 7

SIMD

SISD: single instruction stream single data stream

SIMD: single instruction stream multiple data streams

Introduction to parallel computersand parallel programming – p. 8

An example of a floating-point unit

FP unit on an Intel Xeon CPU

Introduction to parallel computersand parallel programming – p. 9

Multicore processor

Modern hardware technology can put several independent CPU cores on
the same chip—a multicore processor

Intel Xeon Nehalem quad-core processor

Introduction to parallel computersand parallel programming – p. 10

Multi-threading

Modern CPU cores often have threading capability

Hardware support for multiple threads to be executed within a core

However, threads have to share resources of a core
computing units
caches
translation lookaside buffer

Introduction to parallel computersand parallel programming – p. 11

Vector processor

Another approach, different from multicore (and multi-threading)

Massive SIMD
Vector registers
Direct pipes into main memory with high bandwidth

Used to be the dominating high-performance computing hardware,
but now only niche technology

Introduction to parallel computersand parallel programming – p. 12

Multi-socket

Socket—a connection on motherboard that a processor is plugged
into

Modern computers often have several sockets
Each socket holds a multicore processor
Example: Nehalem-EP (2×socket, quad-core CPUs, 8 cores in
total)

Introduction to parallel computersand parallel programming – p. 13

Shared memory

Shared memory: all CPU cores can access all memory as global
address space

Traditionally called “multiprocessor”

Introduction to parallel computersand parallel programming – p. 14

UMA

UMA—uniform memory access, one type of shared memory

Another name for symmetric multi-processing

Dual-socket Xeon Clovertown CPUs

Introduction to parallel computersand parallel programming – p. 15

NUMA

NUMA—non-uniform memory access, another type of shared
memory

Several symmetric multi-processing units are linked together

Each core should access its closest memory unit, as much as
possible

Dual-socket Xeon Nehalem CPUs
Introduction to parallel computersand parallel programming – p. 16

Cache coherence

Important for shared-memory systems

If one CPU core updates a value in its private cache, all the other
cores “know” about the update

Cache coherence is accomplished by hardware

Chapter 2.4.6 of Introduction to Parallel Computing describes several
strategies of achieving cache coherence

Introduction to parallel computersand parallel programming – p. 17

“Competition” among the cores

Within a multi-socket multicore computer, some resources are shared

Within a socket, the cores share the last-level cache

The memory bandwidth is also shared to a great extent

cores 1 2 4 6 8

BW 3.42 GB/s 4.56 GB/s 4.57 GB/s 4.32 GB/s 5.28 GB/s
Actual memory bandwidth measured on a 2×socket quad-core Xeon Harpertown

Introduction to parallel computersand parallel programming – p. 18

Distributed memory

The entire memory consists of several disjoint parts

A communication network is needed in between

There is not a single global memory space

A CPU (core) can directly access its own local memory

A CPU (core) cannot directly access a remote memory

A distributed-memory system is traditionally called a “multicomputer”

Introduction to parallel computersand parallel programming – p. 19

Comparing shared memory and distributed memory

Sharedmemory
User-friendly programming
Data sharing between processors
Not cost effective
Synchronization needed

Distributed-memory
Memory is scalable with the number of processors
Cost effective
Programmer responsible for data communication

Introduction to parallel computersand parallel programming – p. 20

Hybrid memory system

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node
In

te
rc

on
ne

ct
 N

et
w

or
k

Introduction to parallel computersand parallel programming – p. 21

Different ways of parallel programming

Threads model using OpenMP
Easy to program (inserting a few OpenMP directives)
Parallelism "behind the scene" (little user control)
Difficult to scale to many CPUs (NUMA, cache coherence)

Message passing model using MPI
Many programming details
Better user control (data & work decomposition)
Larger systems and better performance

Stream-based programming (for using GPUs)

Some special parallel languages
Co-Array Fortran, Unified Parallel C, Titanium

Hybrid parallel programming

Introduction to parallel computersand parallel programming – p. 22

Designing parallel programs

Determine whether or not the problem is parallelizable

Identify “hotspots”
Where are most of the computations?
Parallelization should focus on the hotspots

Partition the problem

Insert collaboration (unless embarrassingly parallel)

Introduction to parallel computersand parallel programming – p. 23

Partitioning

Break the problem into “chunks”

Domain decomposition (data decomposition)

Functional decomposition

https://computing.llnl.gov/tutorials/parallel comp/
Introduction to parallel computersand parallel programming – p. 24

Examples of domain decomposition

https://computing.llnl.gov/tutorials/parallel comp/

Introduction to parallel computersand parallel programming – p. 25

Collaboration

Communication
Overhead depends on both the number and size of messages
Overlap communication with computation, if possible
Different types of communications (one-to-one, collective)

Synchronization
Barrier
Lock & semaphore
Synchronous communication operations

Introduction to parallel computersand parallel programming – p. 26

Load balancing

Objective: idle time is minimized

Important for parallel performance

Balanced partitioning of work (and/or data)

Dynamic work assignment may be necessary

Introduction to parallel computersand parallel programming – p. 27

Granularity

Computations are typically separated from communications by
synchronization events

Granularity: ratio of computation to communication

Fine-grain parallelism
Individual tasks are relatively small
More overhead incurred
Might be easier for load balancing

Coarse-grain parallelism
Individual tasks are relatively large
Advantageous for performance due to lower overhead
Might be harder for load balancing

https://computing.llnl.gov/tutorials/parallel comp/

Introduction to parallel computersand parallel programming – p. 28

	Content
	First things first
	An example of a CPU core
	Instruction pipelining
	Superscalar execution
	Data
	SIMD
	An example of a floating-point unit
	Multicore processor
	Multi-threading
	Vector processor
	Multi-socket
	Shared memory
	UMA
	NUMA
	Cache coherence
	``Competition'' among the cores
	Distributed memory
	Comparing shared memory and distributed memory
	Hybrid memory system
	Different ways of parallel programming
	Designing parallel programs
	Partitioning
	Examples of domain decomposition
	Collaboration
	Load balancing
	Granularity

