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Motivations

In essence, parallel computations consist of serial computations that
are executed on multiple computing units, plus necessary

“collaboration” in between

The overall performance of a parallel program depends on the

performance of the serial parts and the collaboration cost

Effective serial computing on a single processor (core) is fundamental

This lecture looks at several performance-affecting factors and their

implications for typical scientific computations
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FLOPS

FLOPS — floating-point operations per second

A commonly used metric for processor performance

megaflops: 106 flops

gigaflops: 109 flops

teraflops: 1012 flops

petaflops: 1015 flops

exaflops: 1018 flops

As of November 2013, world’s fastest computer—“Tianhe-2”: a hybrid
cluster of multicore CPUs and many-integrated-core

coprocessors—has 54.92 petaflops theoretical peak performance,
using 3.12 million cores

Achieving peak performance is often impossible, relying on full

memory performance and full utilization of instruction-level
parallelism
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Memory is the bottleneck for performance

http://www.streambench.org/

Time to run a code: cycles spent on performing instructions, cycles

spent on transferring data from/to memory

Scientific computations are often memory intensive

Memory speed (i.e. bandwidth and latency) is lagging behind the

CPU clock frequency

Memory size is another limiting factor
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Example of memory bandwidth requirement

Suppose we want to sum up an array of double values

double sum = 0.;
for (i=0; i<LENGTH; i++)

sum += a[i];

Each iteration reads 8 bytes (one double value) from memory

For example, a memory read bandwidth of 2.9 GB/s (measured on
Intel Xeon L5420 2.5GHz processor) only gives 2.9/8 = 0.37

GFLOPS for the above example.
http://browse.geekbench.ca/geekbench2/view/81731

Realistic situations may be even worse

more memory reads and writes per operation

memory writes can be slower than memory reads
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Cache – a remedy for memory latency/bandwidth

Memory latency is another limiting factor

Read/write a value from/to main memory typically takes 10 ∼ 100
clock cycles

Cache is a small but fast buffer that duplicates a subset of the main
memory

closer to CPU

small capacity

higher bandwidth than memory

usually several levels of cache (L1, L2 and possibly also L3)

When CPU needs a value from main memory, the lowest-level cache
is checked first, if not the next-level cache is checked, and so on
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More about cache (1)

Storage of data in a cache is organized as cache lines

Each cache line is typically 32 bytes ∼ 128 bytes

One entire cache line is read/written from/to memory

Cache miss happens when CPU requests data that is not available in
cache, the opposite is called cache hit
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More about cache (2)

On which cache line should a data block from main memory be
placed?

fully associative

m-way associative

direct map

Cache line replacement strategy for associative caches

least recently used (LRU)

FIFO

random

How are data written back to main memory?

write-through (each store results in a memory write)

write-back (memory is updated only when the an entire cache
line is to be evicted)
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More about cache (3)

The key to efficiency – reuse the data in cache as much as possible

Spatial locality – neighboring data items in the main memory are
used together in computations

one cache line can hold several consecutive data items

physically close data items are more likely to be in cache at the
same time

Temporal locality – data items used in the current operation are to be
used in immediately upcoming operations
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Storage hierarchy

Processor

L1 cache

L2 cache

Main memory

Disk

Remark: modern CPUs can have 3 cache levels
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How to secure single-core performance?

Effective use of cache

smart design of data structures

correct traversal of arrays

the aim is good temporal and spatial locality

Effective use of instruction-level parallelism

capable hardware

powerful compiler

good programming style may also be helpful

Optimization

manual

compiler-enabled
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Data locality lowers the pressure on memory

A good code should take advantage of temporal and spatial locality,
i.e., good data re-use in cache

Spatial locality – if location X in memory is currently being accessed,
it is likely that a location near X will be accessed next

Temporal locality – if location X in memory is currently be accessed, it
is likely that location X will soon be accessed again
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Instruction-level parallelism

Several operations simultaneously carried out on a single processor

(core) – “parallel computing on a single core”

Pipelining – execution of multiple instructions partially overlapped

Superscalar execution – using multiple execution units

Data prefetching

Out-of-order execution – making use of independent operations

Speculative execution

branch prediction is very important
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Loop optimizations (1)

Loop fusion
for (i=0; i<ARRAY_SIZE; i++)

x = x * a[i] + b[i];
for (i=0; i<ARRAY_SIZE; i++)

y = y * a[i] + c[i];

for (i=0; i<ARRAY_SIZE; i++) {
x = x * a[i] + b[i];
y = y * a[i] + c[i];

}

Loop overhead is reduced, better chance for instruction overlap
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Loop optimizations (2)

Loop interchange
for (k=0; k<10000; k++)

for (j=0; j<400; j++)
for (i=0; i<10; i++)
a[k][j][i] = a[k][j][i] * 1.01 + 0.01;

for (k=0; k<10; k++)
for (j=0; j<400; j++)

for (i=0; i<10000; i++)
a[k][j][i] = a[k][j][i] * 1.01 + 0.01;

Assume that the data layout of array a has changed accordingly
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Loop optimizations (3)

Loop collapsing
for (i=0; i<500; i++)

for (j=0; j<80; j++)
for (k=0; k<4; k++)
a[i][j][k] = a[i][j][k] + b[i][j][k]*c[i][j][k];

for (i=0; i<(500*80*4); i++)
a[0][0][i] = a[0][0][i] + b[0][0][i]*c[0][0][i];

Assume that the 3D arrays a, b and c have contiguous underlying memory
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Loop optimizations (4)

Loop unrolling
t = 0.0;
for (i=0; i<ARRAY_SIZE; i++)

t = t + a[i]*a[i];

t1 = t2 = t3 = t4 = 0.0;
for (i=0; i<ARRAY_SIZE-3; i+=4) {

t1 = t1 + a[i+0]*a[i+0];
t2 = t2 + a[i+1]*a[i+1];
t3 = t3 + a[i+2]*a[i+2];
t4 = t4 + a[i+3]*a[i+3];

}
t = t1+t2+t3+t4;

Purpose: eliminate/reduce data dependency and improve pipelining
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Loop optimizations (5)

Improving ratio of F/M
for (i=0; i<m; i++) {

t = 0.;
for (j=0; j<n; j++)

t = t + a[i][j]*x[j]; /* 2 floating-point operations & 2 loads */
y[i] = t;

}

for (i=0; i<m-3; i+=4) {
t1 = t2 = t3 = t4 = 0.;
for (j=0; j<n-3; j+=4) { /* 32 floating-point operations & 20 loads */
t1=t1+a[i+0][j]*x[j]+a[i+0][j+1]*x[j+1]+a[i+0][j+2]*x[j+2]+a[i+0][j+3]*x
t2=t2+a[i+1][j]*x[j]+a[i+1][j+1]*x[j+1]+a[i+1][j+2]*x[j+2]+a[i+1][j+3]*x
t3=t3+a[i+2][j]*x[j]+a[i+2][j+1]*x[j+1]+a[i+2][j+2]*x[j+2]+a[i+2][j+3]*x
t4=t4+a[i+3][j]*x[j]+a[i+3][j+1]*x[j+1]+a[i+3][j+2]*x[j+2]+a[i+3][j+3]*x

}
y[i+0] = t1;
y[i+1] = t2;
y[i+2] = t3;
y[i+3] = t4;

}
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Loop optimizations (6)

Loop factoring
for (i=0; i<ARRAY_SIZE; i++) {

a[i] = 0.;
for (j=0; j<ARRAY_SIZE; j++)

a[i] = a[i] + b[j]*d[j]*c[i];
}

for (i=0; i<ARRAY_SIZE; i++) {
a[i] = 0.;
for (j=0; j<ARRAY_SIZE; j++)

a[i] = a[i] + b[j]*d[j];
a[i] = a[i]*c[i];

}
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Loop optimizations (7)

Further improvement of the previous example
t = 0.;
for (j=0; j<ARRAY_SIZE; j++)

t = t + b[j]*d[j];

for (i=0; i<ARRAY_SIZE; i++)
a[i] = t*c[i];
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Loop optimizations (8)

Loop peeling
for (i=0; i<n; i++) {

if (i==0)
a[i] = b[i+1]-b[i];

else if (i==n-1)
a[i] = b[i]-b[i-1];

else
a[i] = b[i+1]-b[i-1];

}

a[0] = b[1]-b[0];
for (i=1; i<n-1; i++)

a[i] = b[i+1]-b[i-1];
a[n-1] = b[n-1]-b[n-2];
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Loop optimizations (9)

The smaller the loop stepping stride the better

Avoid using if inside loops

for (i=0; i<n; i++)
if (j>0)

x[i] = x[i] + 1;
else

x[i] = 0;

if (j>0)
for (i=0; i<n; i++)

x[i] = x[i] + 1;
else

for (i=0; i<n; i++)
x[i] = 0;
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Loop optimizations (10)

Blocking: A strategy for obtaining spatial locality in loops where it’s

impossible to have small strides for all arrays
for (i=0; i<n; i++)

for (j=0; j<n; j++)
a[i][j] = b[j][i];

for (ii=0; ii<n; ii+=lot) /* square blocking */
for (jj=0; jj<n; jj+=lot)

for (i=ii; i<min(n,ii+(lot-1)); i++)
for (j=jj; j<min(n,jj+(lot-1)); j++)

a[i][j] = b[j][i];
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Other rules of optimization (1)

Factorization
xx = xx + x*a[i] + x*b[i] + x*c[i] + x*d[i];

xx = xx + x*(a[i] + b[i] + c[i] + d[i]);
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Other rules of optimization (2)

Common expression elimination
s1 = a + c + b;
s2 = a + b - c;

s1 = (a+b) + c;
s2 = (a+b) - c;

Make it recognizable by compiler optimization
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Other rules of optimization (3)

Strength reduction

Replace floating-point division with inverse multiplication (if possible)

Replace low-order exponential functions with repeated multiplications

y=pow(x,3);

y=x*x*x;

Use of Horner’s rule of polynomial evaluation

y=a*pow(x,4)+b*pow(x,3)+c*pow(x,2)+d*pow(x,1)+e;

y=(((a*x+b)*x+c)*x+d)*x+e;
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Efficiency in the large

What is efficiency?

Human efficiency is most important for programmers

Computational efficiency is most important for program users
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Premature optimization

“Premature optimization is the root of all evil”
(Donald Knuth)

F77 programmers tend to dive into implementation and think about

efficiency in every statement

“80-20” rule: “80” percent of the CPU time is spent in “20” percent of
the code

Common: only some small loops are responsible for the vast portion
of the CPU time

Don’t think too much about efficiency before you have a thoroughly

debugged and verified program!
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Example of solving 1D heat equation

∂u

∂t
=

∂2u

∂x2

Spatioal solution domain: 0 < x < 1

Temporal solution domain: 0 < t < T

Initial condition: u(x, 0) = I(x) prescribed

Boundary condition: u(0, t) = u(1, t) = 0 always

An explicit finite difference scheme

M + 2 uniformly spaced spatial points: x0 = 0, xM+1 = 1, xi =
i

M+1

uℓ
i
≈ u(xi, ℓ∆t)

Discretization:

uℓ+1

i
− uℓ

i

∆t
=

uℓ
i−1 − 2uℓ

i
+ uℓ

i+1

∆x2
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Implementing 1D explicit heat equation solver

Computation during one time step:

uℓ+1

i
= ρ(uℓ

i−1 + uℓ
i+1) + (1− 2ρ)uℓ

i
for i = 1, 2, . . . ,M , ρ = ∆t/∆x2

We need two 1D arrays in a computer program: u refers to the uℓ+1

vector, u prev refers to the uℓ vector

Enforce the initial condition

u_prev[0] = u_prev[M+1] = 0.0;

x = dx;
for (i=1; i<=M; i++) {

u_prev[i] = I(x);
x += dx;

}
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Implementing the time loop

t = 0;

while (t<T) {
t += dt;

for (i=1; i<=M; i++)
u[i] = rho*(u_prev[i-1]+u_prev[i+1])+(1.0-2.0*rho)*u_prev[i];

/* boundary condition enforcement */
u[0] = u[M+1] = 0.;

/* data copy before next time step */
for (i=0; i<=M+1; i++)

u_prev[i] = u[i];
}
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Optimizations

We can avoid repeated computations of 1− 2ρ
double c_1_2rho = 1.0-2.0*rho;
/* ... */

for (i=1; i<=M; i++)
u[i] = rho*(u_prev[i-1]+u_prev[i+1])+c_1_2rho*u_prev[i];

We can avoid the copy between u prev and u by simply switching
the two pointers

double *tmp_pointer;
/* ... */

tmp_pointer = u_prev;
u_prev = u;
u = tmp_pointer;
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Saving u to file

Binary format

FILE *fp = fopen("u.bin","wb");
fwrite(u, sizeof(double), M+2, fp);
fclose(fp);

File size: 8× (M + 2) bytes

ASCII format

FILE *fp = fopen("u.txt","w");
for (i=0; i<=M+1; i++) {

fprintf(fp, "u[%d]=%g\n",i,u[i]);
fclose(fp);

The binary data file is both smaller in size and much faster to write
and read!
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