
Performance of serial C programs

Performance of serial C programs – p. 1/33



Motivations

In essence, parallel computations consist of serial computations that
are executed on multiple computing units, plus necessary

“collaboration” in between

The overall performance of a parallel program depends on the

performance of the serial parts and the collaboration cost

Effective serial computing on a single processor (core) is fundamental

This lecture looks at several performance-affecting factors and their

implications for typical scientific computations

Performance of serial C programs – p. 2/33



FLOPS

FLOPS — floating-point operations per second

A commonly used metric for processor performance

megaflops: 106 flops

gigaflops: 109 flops

teraflops: 1012 flops

petaflops: 1015 flops

exaflops: 1018 flops

As of November 2013, world’s fastest computer—“Tianhe-2”: a hybrid
cluster of multicore CPUs and many-integrated-core

coprocessors—has 54.92 petaflops theoretical peak performance,
using 3.12 million cores

Achieving peak performance is often impossible, relying on full

memory performance and full utilization of instruction-level
parallelism

Performance of serial C programs – p. 3/33



Memory is the bottleneck for performance

http://www.streambench.org/

Time to run a code: cycles spent on performing instructions, cycles

spent on transferring data from/to memory

Scientific computations are often memory intensive

Memory speed (i.e. bandwidth and latency) is lagging behind the

CPU clock frequency

Memory size is another limiting factor

Performance of serial C programs – p. 4/33



Example of memory bandwidth requirement

Suppose we want to sum up an array of double values

double sum = 0.;
for (i=0; i<LENGTH; i++)

sum += a[i];

Each iteration reads 8 bytes (one double value) from memory

For example, a memory read bandwidth of 2.9 GB/s (measured on
Intel Xeon L5420 2.5GHz processor) only gives 2.9/8 = 0.37

GFLOPS for the above example.
http://browse.geekbench.ca/geekbench2/view/81731

Realistic situations may be even worse

more memory reads and writes per operation

memory writes can be slower than memory reads

Performance of serial C programs – p. 5/33



Cache – a remedy for memory latency/bandwidth

Memory latency is another limiting factor

Read/write a value from/to main memory typically takes 10 ∼ 100
clock cycles

Cache is a small but fast buffer that duplicates a subset of the main
memory

closer to CPU

small capacity

higher bandwidth than memory

usually several levels of cache (L1, L2 and possibly also L3)

When CPU needs a value from main memory, the lowest-level cache
is checked first, if not the next-level cache is checked, and so on

Performance of serial C programs – p. 6/33



More about cache (1)

Storage of data in a cache is organized as cache lines

Each cache line is typically 32 bytes ∼ 128 bytes

One entire cache line is read/written from/to memory

Cache miss happens when CPU requests data that is not available in
cache, the opposite is called cache hit

Performance of serial C programs – p. 7/33



More about cache (2)

On which cache line should a data block from main memory be
placed?

fully associative

m-way associative

direct map

Cache line replacement strategy for associative caches

least recently used (LRU)

FIFO

random

How are data written back to main memory?

write-through (each store results in a memory write)

write-back (memory is updated only when the an entire cache
line is to be evicted)

Performance of serial C programs – p. 8/33



More about cache (3)

The key to efficiency – reuse the data in cache as much as possible

Spatial locality – neighboring data items in the main memory are
used together in computations

one cache line can hold several consecutive data items

physically close data items are more likely to be in cache at the
same time

Temporal locality – data items used in the current operation are to be
used in immediately upcoming operations

Performance of serial C programs – p. 9/33



Storage hierarchy

Processor

L1 cache

L2 cache

Main memory

Disk

Remark: modern CPUs can have 3 cache levels

Performance of serial C programs – p. 10/33



How to secure single-core performance?

Effective use of cache

smart design of data structures

correct traversal of arrays

the aim is good temporal and spatial locality

Effective use of instruction-level parallelism

capable hardware

powerful compiler

good programming style may also be helpful

Optimization

manual

compiler-enabled

Performance of serial C programs – p. 11/33



Data locality lowers the pressure on memory

A good code should take advantage of temporal and spatial locality,
i.e., good data re-use in cache

Spatial locality – if location X in memory is currently being accessed,
it is likely that a location near X will be accessed next

Temporal locality – if location X in memory is currently be accessed, it
is likely that location X will soon be accessed again

Performance of serial C programs – p. 12/33



Instruction-level parallelism

Several operations simultaneously carried out on a single processor

(core) – “parallel computing on a single core”

Pipelining – execution of multiple instructions partially overlapped

Superscalar execution – using multiple execution units

Data prefetching

Out-of-order execution – making use of independent operations

Speculative execution

branch prediction is very important

Performance of serial C programs – p. 13/33



Loop optimizations (1)

Loop fusion
for (i=0; i<ARRAY_SIZE; i++)

x = x * a[i] + b[i];
for (i=0; i<ARRAY_SIZE; i++)

y = y * a[i] + c[i];

for (i=0; i<ARRAY_SIZE; i++) {
x = x * a[i] + b[i];
y = y * a[i] + c[i];

}

Loop overhead is reduced, better chance for instruction overlap

Performance of serial C programs – p. 14/33



Loop optimizations (2)

Loop interchange
for (k=0; k<10000; k++)

for (j=0; j<400; j++)
for (i=0; i<10; i++)
a[k][j][i] = a[k][j][i] * 1.01 + 0.01;

for (k=0; k<10; k++)
for (j=0; j<400; j++)

for (i=0; i<10000; i++)
a[k][j][i] = a[k][j][i] * 1.01 + 0.01;

Assume that the data layout of array a has changed accordingly

Performance of serial C programs – p. 15/33



Loop optimizations (3)

Loop collapsing
for (i=0; i<500; i++)

for (j=0; j<80; j++)
for (k=0; k<4; k++)
a[i][j][k] = a[i][j][k] + b[i][j][k]*c[i][j][k];

for (i=0; i<(500*80*4); i++)
a[0][0][i] = a[0][0][i] + b[0][0][i]*c[0][0][i];

Assume that the 3D arrays a, b and c have contiguous underlying memory

Performance of serial C programs – p. 16/33



Loop optimizations (4)

Loop unrolling
t = 0.0;
for (i=0; i<ARRAY_SIZE; i++)

t = t + a[i]*a[i];

t1 = t2 = t3 = t4 = 0.0;
for (i=0; i<ARRAY_SIZE-3; i+=4) {

t1 = t1 + a[i+0]*a[i+0];
t2 = t2 + a[i+1]*a[i+1];
t3 = t3 + a[i+2]*a[i+2];
t4 = t4 + a[i+3]*a[i+3];

}
t = t1+t2+t3+t4;

Purpose: eliminate/reduce data dependency and improve pipelining

Performance of serial C programs – p. 17/33



Loop optimizations (5)

Improving ratio of F/M
for (i=0; i<m; i++) {

t = 0.;
for (j=0; j<n; j++)

t = t + a[i][j]*x[j]; /* 2 floating-point operations & 2 loads */
y[i] = t;

}

for (i=0; i<m-3; i+=4) {
t1 = t2 = t3 = t4 = 0.;
for (j=0; j<n-3; j+=4) { /* 32 floating-point operations & 20 loads */
t1=t1+a[i+0][j]*x[j]+a[i+0][j+1]*x[j+1]+a[i+0][j+2]*x[j+2]+a[i+0][j+3]*x
t2=t2+a[i+1][j]*x[j]+a[i+1][j+1]*x[j+1]+a[i+1][j+2]*x[j+2]+a[i+1][j+3]*x
t3=t3+a[i+2][j]*x[j]+a[i+2][j+1]*x[j+1]+a[i+2][j+2]*x[j+2]+a[i+2][j+3]*x
t4=t4+a[i+3][j]*x[j]+a[i+3][j+1]*x[j+1]+a[i+3][j+2]*x[j+2]+a[i+3][j+3]*x

}
y[i+0] = t1;
y[i+1] = t2;
y[i+2] = t3;
y[i+3] = t4;

}

Performance of serial C programs – p. 18/33



Loop optimizations (6)

Loop factoring
for (i=0; i<ARRAY_SIZE; i++) {

a[i] = 0.;
for (j=0; j<ARRAY_SIZE; j++)

a[i] = a[i] + b[j]*d[j]*c[i];
}

for (i=0; i<ARRAY_SIZE; i++) {
a[i] = 0.;
for (j=0; j<ARRAY_SIZE; j++)

a[i] = a[i] + b[j]*d[j];
a[i] = a[i]*c[i];

}

Performance of serial C programs – p. 19/33



Loop optimizations (7)

Further improvement of the previous example
t = 0.;
for (j=0; j<ARRAY_SIZE; j++)

t = t + b[j]*d[j];

for (i=0; i<ARRAY_SIZE; i++)
a[i] = t*c[i];

Performance of serial C programs – p. 20/33



Loop optimizations (8)

Loop peeling
for (i=0; i<n; i++) {

if (i==0)
a[i] = b[i+1]-b[i];

else if (i==n-1)
a[i] = b[i]-b[i-1];

else
a[i] = b[i+1]-b[i-1];

}

a[0] = b[1]-b[0];
for (i=1; i<n-1; i++)

a[i] = b[i+1]-b[i-1];
a[n-1] = b[n-1]-b[n-2];

Performance of serial C programs – p. 21/33



Loop optimizations (9)

The smaller the loop stepping stride the better

Avoid using if inside loops

for (i=0; i<n; i++)
if (j>0)

x[i] = x[i] + 1;
else

x[i] = 0;

if (j>0)
for (i=0; i<n; i++)

x[i] = x[i] + 1;
else

for (i=0; i<n; i++)
x[i] = 0;

Performance of serial C programs – p. 22/33



Loop optimizations (10)

Blocking: A strategy for obtaining spatial locality in loops where it’s

impossible to have small strides for all arrays
for (i=0; i<n; i++)

for (j=0; j<n; j++)
a[i][j] = b[j][i];

for (ii=0; ii<n; ii+=lot) /* square blocking */
for (jj=0; jj<n; jj+=lot)

for (i=ii; i<min(n,ii+(lot-1)); i++)
for (j=jj; j<min(n,jj+(lot-1)); j++)

a[i][j] = b[j][i];

Performance of serial C programs – p. 23/33



Other rules of optimization (1)

Factorization
xx = xx + x*a[i] + x*b[i] + x*c[i] + x*d[i];

xx = xx + x*(a[i] + b[i] + c[i] + d[i]);

Performance of serial C programs – p. 24/33



Other rules of optimization (2)

Common expression elimination
s1 = a + c + b;
s2 = a + b - c;

s1 = (a+b) + c;
s2 = (a+b) - c;

Make it recognizable by compiler optimization

Performance of serial C programs – p. 25/33



Other rules of optimization (3)

Strength reduction

Replace floating-point division with inverse multiplication (if possible)

Replace low-order exponential functions with repeated multiplications

y=pow(x,3);

y=x*x*x;

Use of Horner’s rule of polynomial evaluation

y=a*pow(x,4)+b*pow(x,3)+c*pow(x,2)+d*pow(x,1)+e;

y=(((a*x+b)*x+c)*x+d)*x+e;

Performance of serial C programs – p. 26/33



Efficiency in the large

What is efficiency?

Human efficiency is most important for programmers

Computational efficiency is most important for program users

Performance of serial C programs – p. 27/33



Premature optimization

“Premature optimization is the root of all evil”
(Donald Knuth)

F77 programmers tend to dive into implementation and think about

efficiency in every statement

“80-20” rule: “80” percent of the CPU time is spent in “20” percent of
the code

Common: only some small loops are responsible for the vast portion
of the CPU time

Don’t think too much about efficiency before you have a thoroughly

debugged and verified program!

Performance of serial C programs – p. 28/33



Example of solving 1D heat equation

∂u

∂t
=

∂2u

∂x2

Spatioal solution domain: 0 < x < 1

Temporal solution domain: 0 < t < T

Initial condition: u(x, 0) = I(x) prescribed

Boundary condition: u(0, t) = u(1, t) = 0 always

An explicit finite difference scheme

M + 2 uniformly spaced spatial points: x0 = 0, xM+1 = 1, xi =
i

M+1

uℓ
i
≈ u(xi, ℓ∆t)

Discretization:

uℓ+1

i
− uℓ

i

∆t
=

uℓ
i−1 − 2uℓ

i
+ uℓ

i+1

∆x2

Performance of serial C programs – p. 29/33



Implementing 1D explicit heat equation solver

Computation during one time step:

uℓ+1

i
= ρ(uℓ

i−1 + uℓ
i+1) + (1− 2ρ)uℓ

i
for i = 1, 2, . . . ,M , ρ = ∆t/∆x2

We need two 1D arrays in a computer program: u refers to the uℓ+1

vector, u prev refers to the uℓ vector

Enforce the initial condition

u_prev[0] = u_prev[M+1] = 0.0;

x = dx;
for (i=1; i<=M; i++) {

u_prev[i] = I(x);
x += dx;

}

Performance of serial C programs – p. 30/33



Implementing the time loop

t = 0;

while (t<T) {
t += dt;

for (i=1; i<=M; i++)
u[i] = rho*(u_prev[i-1]+u_prev[i+1])+(1.0-2.0*rho)*u_prev[i];

/* boundary condition enforcement */
u[0] = u[M+1] = 0.;

/* data copy before next time step */
for (i=0; i<=M+1; i++)

u_prev[i] = u[i];
}

Performance of serial C programs – p. 31/33



Optimizations

We can avoid repeated computations of 1− 2ρ
double c_1_2rho = 1.0-2.0*rho;
/* ... */

for (i=1; i<=M; i++)
u[i] = rho*(u_prev[i-1]+u_prev[i+1])+c_1_2rho*u_prev[i];

We can avoid the copy between u prev and u by simply switching
the two pointers

double *tmp_pointer;
/* ... */

tmp_pointer = u_prev;
u_prev = u;
u = tmp_pointer;

Performance of serial C programs – p. 32/33



Saving u to file

Binary format

FILE *fp = fopen("u.bin","wb");
fwrite(u, sizeof(double), M+2, fp);
fclose(fp);

File size: 8× (M + 2) bytes

ASCII format

FILE *fp = fopen("u.txt","w");
for (i=0; i<=M+1; i++) {

fprintf(fp, "u[%d]=%g\n",i,u[i]);
fclose(fp);

The binary data file is both smaller in size and much faster to write
and read!

Performance of serial C programs – p. 33/33


	Motivations
	FLOPS
	Memory is the bottleneck for performance
	Example of memory bandwidth requirement
	Cache -- a remedy for memory latency/bandwidth
	More about cache (1)
	More about cache (2)
	More about cache (3)
	Storage hierarchy
	How to secure single-core performance?
	Data locality lowers the pressure on memory
	Instruction-level parallelism
	Loop optimizations (1)
	Loop optimizations (2)
	Loop optimizations (3)
	Loop optimizations (4)
	Loop optimizations (5)
	Loop optimizations (6)
	Loop optimizations (7)
	Loop optimizations (8)
	Loop optimizations (9)
	Loop optimizations (10)
	Other rules of optimization (1)
	Other rules of optimization (2)
	Other rules of optimization (3)
	Efficiency in the large
	Premature optimization
	Example of solving 1D heat equation
	Implementing 1D explicit heat equation solver
	Implementing the time loop
	Optimizations
	Saving {	t u} to file

