
Suggested solutions for the INF3380 exam of spring 2013

Problem 1 (10%)
If a computational problem has 10% of its work that must be carried out serially, prove that the
maximum obtainable speedup cannot exceed 10 by any parallelization.

Suggested solution: The obtainable speedup can be calculated as

S(p) =
T (1)
T (p)

≤ f +(1− f )

f + 1− f
p

,

where f is the fraction of inherently serial work in T (1). It is therefore clear that maxS(p) =
limS(p)p→∞ = 1

f . For the current case, where we have f = 10%, the maximum speedup can thus not
exceed 10.

Comment: The reason of having ≤ in the above formula is due to consideration of likely paral-
lelization overhead and possible load imbalance.

Problem 2 (15%)
for (k=0; k<n; k++)

for (j=0; j<k; j++)
A[k][j] = A[j][k];

Write an OpenMP parallelization of the above code segment. Discuss your solution with respect
to load balancing and parallelization overhead.

Suggested solution: First of all, the above nested double for-loop is parallelizable, without the
danger of race condition. However, the difficulty is that the work amount with each k-iteration
increases (because of for (j=0; j<k; j++)).

If #pragma omp parallel for is inserted before the for-loop with index k, load imbalance
will arise. This is because the default scheduler is static and uses a largest possible chunksize
value by default.

If #pragma omp parallel for is inserted before the for-loop with index j, load imbalance
will no longer be a problem. However, the overhead due to repeatedly forking and joining threads
will be excessive.

The best solution is as follows:

#pragma omp parallel for schedule(dynamic, chunksize)
for (k=0; k<n; k++)

for (j=0; j<k; j++)
A[k][j] = A[j][k];
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Comment: The value of chunksize should neither be too large or too small, depending on the
actual size of n. Another possibility is to use the guided scheduler. A third possibility is to use
schedule(static,1), for which load imbalance will not be very severe.

Problem 3 (20%)
In Oblig-1 we have looked at the problem of “image denoising”, where the computation at each pixel
is of the following form:

ūi, j = ui, j +κ
(
ui−1, j +ui, j−1−4ui, j +ui, j+1 +ui+1, j

)
.

Suppose MPI is used to parallelize “image denoising” and that MPI Send and MPI Recv are used
to exchange data between two and two neighbors. Moreover, we assume that the time taken to
exchange an MPI message of size m is

ts + twm,

where ts and tw are two known constant values.
For the case of a picture that has n× n pixels and there are P MPI processes, discuss when it

pays off to use a 2D block-partitioning instead of a 1D block-partitioning. (Hint: you are supposed
to derive a relation between n, ts, tw and P.)

Suggested solution: For the 1D block-partitioning, most of the MPI processes will have two neigh-
bors that need to exchange data with. The size of each message in such a case is n. Therefore, the
total communication overhead per process is

2(ts + twn) .

For the 2D block-partitioning, most of the MPI processes will have four neighbors that need
to exchange data with. The size of each message in such a case is n/

√
P. Therefore, the total

communication overhead per process is

4
(

ts + tw
n√
P

)
.

In order for the 2D block-partitioning to pay off, we need to have

4
(

ts + tw
n√
P

)
< 2(ts + twn) ,

which can give the following relationship:

n− 2n√
P
>

ts
tw
.

Problem 4
We want to compute y = Ax, where A is an n×n matrix, and x and y are two vectors of length n.

Problem 4a (10%)
Explain how the matrix-vector multiplication can be parallelized, if we assume a 1D rowwise block-
partitioning of A, x and y.
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Suggested solution: The 1D rowwise block-partitioning means that the rows of matrix A are equally
distributed among the p processes, each having n/p rows of A. Moreover, the x vector is also equally
distributed among the p processes, each having n/p values of x.

Therefore, the first step of parallelization is to do an all-to-all broadcast among the p processes,
such that each process gets the entire x vector. Thereafter, each process can independently carry out
a local matrix-vector multiplication to produce the desired segment of the y vector.

Problem 4b (15%)
According to the textbook, the time usage of the above parallelization will be

TP =
n2

p
+ ts log p+ twn

where p is the number of processing elements, ts and tw are two known constant values.
Carry out a scalability analysis with help of the “isoefficiency” metric.

Suggested solution: Recall that the “isoefficiency” metric is about finding a guidance about how
fast the problem size W should (asymptotically) grow as p increases, such that the parallel efficiency
is maintained at a constant level. The exact formula of “isoefficiency” metric is expressed as

W = KTO(W, p),

where K = E/(1−E) is a desirable constant and TO is the total overhead.
For the above case of matrix-vector multiplication, we have W = TS = n2 and

TO(W, p) = pTp−TS = ts p log p+ twnp.

For the first term of TO, the “isoefficiency” metric requires n2 = Kts p log p, whereas the second
term of TO requires

n2 = Ktwnp ⇒ n = Ktw p.

It can be seen that the second term makes a higher demand on the problem size, which in term means

W = n2 = K2t2
w p2 = O(p2).

Problem 5
The problem of “all-pairs shortest paths” is about finding the shortest path between any pair of nodes
in a graph. As the starting point we have a matrix A that shows all the direct paths between the nodes.
As the result we want to compute a matrix D such that di. j is the length of the shortest path from node
i to node j.

Problem 5a (10%)
Compute D if A is as follows: 

0 4 ∞ ∞

2 0 3 3
∞ 4 0 3
∞ 2 4 0


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Suggested solution:

D =


0 4 7 7
2 0 3 3
6 4 0 3
4 2 4 0


Problem 5b (10%)
Explain how Floyd’s algorithm can be used to solve the “all-pairs shortest paths”-problem in general.

Suggested solution: Floyd’s Algorithm:

procedure FLOYD ALL PAIRS SP(A)
begin

D(0) = A;
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do

d(k)
i, j := min

(
d(k−1)

i, j ,d(k−1)
i,k +d(k−1)

k, j

)
;

end FLOYD ALL PAIRS SP

Or simply implemented as the following code segment:

for (k=0; k<n; k++)
for (i=0; i<n; i++)
for (j=0; j<n; j++)
if ( (d[i][k]+d[k][j]) < d[i][j] )
d[i][j] = d[i][k]+d[k][j];

Problem 5c (10%)
Parallelize Floyd’s algorithm with help of OpenMP programming. (You can assume that matrix A is
given as input and the number of nodes is n.)

Suggested solution:

#pragma omp parallel default(shared) private(i,j,k)
{
for (k=0; k<n; k++)

#pragma omp for
for (i=0; i<n; i++)
for (j=0; j<n; j++)
if ( (d[i][k]+d[k][j]) < d[i][j] )
d[i][j] = d[i][k]+d[k][j];

}

Comment: It is very important to use the private(i,j,k) clause, otherwise the OpenMP paral-
lelization won’t work.
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