Suggested solutions for the INF3380 exam of spring 2013

Problem 1 (10%)

If a computational problem has 10% of its work that must be carried out serially, prove that the
maximum obtainable speedup cannot exceed 10 by any parallelization.

Suggested solution: The obtainable speedup can be calculated as

(1) _f+(1-))

T(p) = f+5L 7

S(p) =

where f is the fraction of inherently serial work in 7'(1). It is therefore clear that maxS(p) =
imS(p)p—see =]lc For the current case, where we have f = 10%, the maximum speedup can thus not
exceed 10.

Comment: The reason of having < in the above formula is due to consideration of likely paral-
lelization overhead and possible load imbalance.

Problem 2 (15%)

for (k=0; k<n; k++)
for (3=0; j<k; Jj++)
Alk][Jj] = A[]][k];

Write an OpenMP parallelization of the above code segment. Discuss your solution with respect
to load balancing and parallelization overhead.

Suggested solution: First of all, the above nested double for-loop is parallelizable, without the
danger of race condition. However, the difficulty is that the work amount with each k-iteration
increases (because of for (3=0; j<k; j++)).

If #pragma omp parallel for is inserted before the for-loop with index k, load imbalance
will arise. This is because the default scheduler is static and uses a largest possible chunksize
value by default.

If #pragma omp parallel for is inserted before the for-loop with index j, load imbalance
will no longer be a problem. However, the overhead due to repeatedly forking and joining threads
will be excessive.

The best solution is as follows:

#pragma omp parallel for schedule(dynamic, chunksize)
for (k=0; k<n; k++)
for (3=0; Jj<k; J++)
Alk][3] = A[J][k];

Comment: The value of chunksize should neither be too large or too small, depending on the
actual size of n. Another possibility is to use the guided scheduler. A third possibility is to use
schedule (static, 1), for which load imbalance will not be very severe.

Problem 3 (20%)

In Oblig-1 we have looked at the problem of “image denoising”, where the computation at each pixel
is of the following form:

iti,j = i j+ 6 (i1 j w1 — 4w i)

Suppose MPI is used to parallelize “image denoising” and that MPT_Send and MPI _Recv are used
to exchange data between two and two neighbors. Moreover, we assume that the time taken to
exchange an MPI message of size m is

ty +t,m,

where 7, and ¢,, are two known constant values.

For the case of a picture that has n X n pixels and there are P MPI processes, discuss when it
pays off to use a 2D block-partitioning instead of a 1D block-partitioning. (Hint: you are supposed
to derive a relation between n, t,, t,, and P.)

Suggested solution: For the 1D block-partitioning, most of the MPI processes will have two neigh-
bors that need to exchange data with. The size of each message in such a case is n. Therefore, the
total communication overhead per process is

2(ts+tyn).

For the 2D block-partitioning, most of the MPI processes will have four neighbors that need
to exchange data with. The size of each message in such a case is n/\/P. Therefore, the total
communication overhead per process is

n
4 (ts +twﬁ) .
In order for the 2D block-partitioning to pay off, we need to have

n

VP

4 (IS—HW) <2(ts+tyn),

which can give the following relationship:

2n ts
n———>—

VPt
Problem 4

We want to compute y = Ax, where A is an n X n matrix, and x and y are two vectors of length n.

Problem 4a (10%)

Explain how the matrix-vector multiplication can be parallelized, if we assume a 1D rowwise block-
partitioning of A, x and y.

Suggested solution: The 1D rowwise block-partitioning means that the rows of matrix A are equally
distributed among the p processes, each having n/p rows of A. Moreover, the x vector is also equally
distributed among the p processes, each having n/p values of x.

Therefore, the first step of parallelization is to do an all-to-all broadcast among the p processes,
such that each process gets the entire x vector. Thereafter, each process can independently carry out
a local matrix-vector multiplication to produce the desired segment of the y vector.

Problem 4b (15%)

According to the textbook, the time usage of the above parallelization will be
n2
Tp = E +tslogp +tyn

where p is the number of processing elements, #; and ¢,, are two known constant values.
Carry out a scalability analysis with help of the “isoefficiency” metric.

Suggested solution: Recall that the “isoefficiency” metric is about finding a guidance about how
fast the problem size W should (asymptotically) grow as p increases, such that the parallel efficiency
is maintained at a constant level. The exact formula of “isoefficiency” metric is expressed as

W= KTo(W,p),

where K = E /(1 —E) is a desirable constant and Tp is the total overhead.
For the above case of matrix-vector multiplication, we have W = Ty = n? and

To(W,p) = pT, — Ts = typlog p + tynp.

For the first term of Tp, the “isoefficiency” metric requires n> = Kt,plog p, whereas the second
term of Tp requires
n? = Ktynp = n=Kt,p.

It can be seen that the second term makes a higher demand on the problem size, which in term means

W =n?>=K*2p*=0(p?).

Problem 5

The problem of “all-pairs shortest paths™ is about finding the shortest path between any pair of nodes
in a graph. As the starting point we have a matrix A that shows all the direct paths between the nodes.
As the result we want to compute a matrix D such that d; ; is the length of the shortest path from node
i to node ;.

Problem 5a (10%)

Compute D if A is as follows:

g 8 o
N Ao A
N~ O W
S W w Y

Suggested solution:

0 4 7 7
2 0 3 3
D=1¢ 4 0 3
4 2 4 0

Problem 5b (10%)

Explain how Floyd’s algorithm can be used to solve the “all-pairs shortest paths”-problem in general.

Suggested solution: Floyd’s Algorithm:

procedure FLOYD_ALL_PAIRS_SP(A)
begin
DO — A
for k:=1tondo
fori:=1tondo

for j:=1tondo
dl.(f;.) = min (dl-(f;*l)
end FLOYD_ALL_PAIRS_SP

(k=1) | S(k=1)},
iy T)

Or simply implemented as the following code segment:

for (k=0; k<n; k++)
for (i=0; i<n; i++)
for (J=0; Jj<n; J++)
if ((d[i] [k]+d[k] [

1131) <
d(i][3] = d[i][k]]

J
+d [k

Problem 5c¢ (10%)

Parallelize Floyd’s algorithm with help of OpenMP programming. (You can assume that matrix A is
given as input and the number of nodes is n.)

Suggested solution:

#pragma omp parallel default (shared) private(i, j, k)
{
for (k=0; k<n; k++)
#pragma omp for
for (i=0; i<n; i++)
for (j3=0; j<n; J++)
if ((d[i] [k]+d[k][

1031)
d(1][j] = d[i][k]

J
+d [k

— A

Comment: It is very important to use the private (i, j, k) clause, otherwise the OpenMP paral-
lelization won’t work.

