Chapter 9 (Secs. 9.1, 9.3, 9.4)
Sorting Algorithms

A. Grama, A. Gupta, G. Karypis, and V. Kumar

To accompany the text “Intfroduction to Parallel Computing”,
Addison Wesley, 2003.

Topic Overview

e Issues in Sorfing on Parallel Computers
e Bubble Sort and its Variants

e Quicksort

Sorting: Basics

e One of the most commonly used and well-studied kernels.

e The fundamental operation of comparison-based sorting Is
compare-exchange.

e [he lower bound on any comparison-based sort of n numbers
IS ©(nlogn) on a serial compufter.

e In case of parallel sorting, the sorted list is partitioned among a
number of processors, such that (1) each sublist is sorted (2) for
1 < 7,each element in processor P;’s sublist is less than those in
P;’s sublist.

Sorting: quqllel Compare Exchange Operation

a; o a,a; aj, ammin{a;, a;} max{a;, a;}
(P) Q ®) ® @) ®)
Step 1 Step 2 Step 3

A paradllel compare-exchange operation (each process is
responsible for one element). Processes P, and P; send their
elements fo each other. Process P; keeps min{a;, a;}, and P;

keeps max{a;, a;}.

Sorting: Parallel Compare Split Operation

1{6|8]11)13

2|7]19)10|12

1|6|8(1113) =——= |2|7|9p0[12 1|6|8(11}13 2|7|9010|12
Step 1 Step 2
1|2|6|7|8|9}10]11]1213 1|2|6|7|8|9[10]11]12[13 1|2|6|7|8 9 110[11]12/13
Step 3 Step 4

A compare-split operation (each process is responsible for a
pblock of elements). Each process sends all its elements to
another process. Each process merges the received block with
its own block and retains only the appropriate half of the
merged block. In this example, process P; retains the smaller
elements and process P; retains the larger elements.

Bubble Sort and its Variants

The sequential bubble sort algorithm compares and exchanges
adjacent elements in the sequence to be sorted:

procedure BUBBLE_SORT(n)
begin
for: := n — 1 downto 1 do
forj :=1to:do
compare-exchange(a;, a;+1).
end BUBBLE_SORT

SCOobh WD~

Sequential bubble sort algorithm.

Bubble Sort and its Variants

e The complexity of bubble sort is ©(n?).

e Bubble sort is difficult to parallelize since the algorithm has no
concurrency.

e A simple variant, though, uncovers the concurrency.

Voo NO A~

N — O

Odd-Even Transposition

procedure ODD-EVEN(n)

begin
fori := 1ton do
begin
if 7 is odd then
forj :=0ton/2 —1do
compare-exchange(as;+i, azj+2);
if < is even then
forj:=1ton/2 —1do
compare-exchange(as;, azj+1).
end for

end ODD-EVEN

Sequential odd-even fransposition sort algorithm.

Odd-Even Transposition

Unsorted

3 2 3 8 5 6 4 1
L L L L] Phase1 (oda)
2 3 3 8 5 6 1 4

| | | | | | Phase 2 (even)
2 3 3 5 8 1 6 4
L L L1 [| Phase3 (odd)
2 3 3 5 1 8 4 6

| | | | | | Phase 4 (even)
2 3 3 1 5 4 8 6
L L L [Peses (odg)
2 3 1 3 4 5 6 8

| | | | | | Phase 6 (even)
2 1 3 3 4 5 6 8
L L L L] Phese7 (odg)
1 2 3 3 4 5 6 8

| | | | | | Phase 8 (even)
1 2 3 3 4 5 6 8

Sorted

Sorting n = 8 elements, using the odd-even transposition sort
algorithm. During each phase, n = 8 elements are compared.

Odd-Even Transposition

e After n phases of odd-even exchanges, the sequence is sorted.

e Each phase of the algorithm (either odd or even) requires O(n)
comparisons.

e Serial complexity is ©(n?).

Parallel Odd-Even Transposition

e Consider the one item per processor case.

e There are n iterations, in each iteration, each processor does
one compare-exchange.

e The parallel run fime of this formulation is ©(n).

e This is cost optimal with respect to the base serial algorithm but
not the optimal one.

Vo NO A~

NOo O ON—O

Parallel Odd-Even Transposition

procedure ODD-EVEN_PAR(n)
begin
1d := process’s label
fori .= 1ton do
begin
if < is odd then
if id is odd then
compare-exchange_min(id + 1);
else
compare-exchange_max(id — 1);
if < is even then
if 2d is even then
compare-exchange_min(id + 1);
else
compare-exchange_max(id — 1);
end for
end ODD-EVEN_PAR

Parallel formulation of odd-even transposition.

Parallel Odd-Even Transposition

e Consider a block of n/p elements per processor.
e The first step is a local sorf.

e In each subsequent step, the compare exchange operation is
replaced by the compare split operation.

e The parallel run time of the formulation is

local sort
_ A\

~ comparisons communication

Tp =0 (g log %) + O(n) + O(n).

Ve

Shellsori

e Let n be the number of elements to be sorted and p be the
number of processes.

e During the first phase, processes that are far away from each
ofther in the array compare-split their elements.

e During the second phase, the algorithm switches to an odd-
even fransposition sort.

Parallel Shellsort

000808 g¢

1

S50 00D ¢
538508588

An example of the first phase of parallel shellsort on an
eight-process array.

Parallel Shellsort

Each process performs d = log p compare-split operations.

With O(p) bisection widfth, the each communication can be
performed in time ©(n/p) for a total time of ©((nlogp)/p).

In The second phase, | odd and even phases are performed,
each requiring time ©(n/p).

The parallel run time of the algorithm is:

Ioch sort first ebase second phase

N\ N\ N\

Tp:@<ﬁlogﬁ>+@(ﬁlog]))+ @(lﬁ). (1)
p p p p

Quicksort

e Quicksort is one of the most common sorting algorithms for
sequential computers because of ifs simplicity, low overhead,
and optimal average complexity.

e Quicksort selects one of the enftries in the sequence 1o be the
pivot and divides the sequence into two — one with all elements
less Than the pivot and other greafter.

e The process is recursively applied to each of the sublists.

Quicksort

@ |3|2(1 (5|8 |4 |3]|7

Pivot
@ |1]|2|3|5|8|4|3]|7 v

() 1(2(3|3|4|5|8]|7 Final position

d |12 |3|3(4|5|7]|8

@ |1]|2|3|3|4|5|7]8

Example of the quicksort algorithm sorting a sequence of size
n = &,

Quicksort

e The performance of quicksort depends critically on the quality
of the pivot.

e INn the best case, the pivot divides the list in such a way that the
larger of the two lists does not have more than an elements (for
some constant «).

e In this case, the complexity of quicksortis O(nlogn).

Parallelizing Quicksort: Shared Address Space
Formulation

Consider a list of size n equally divided across p processors.

A pivot is selected by one of the processors and made known
tfo all processors.

Each processor partitions its list into two, say S; and L;, based
on the selected pivot.

All of the S; lists are merged and all of the L, lists are merged
separately.

The set of processors is parfitioned info two (in proportion of the
size of lists S and L). The process is recursively applied to each
of the lists.

Shared Address Space Formulation

First Step

Second Step

Third Step

Fourth Step

Py Py Py D3 Py
| 7]13[18] 2 |17] 1 |14]20] 6 [10[15] 9 [3 [16[19] 4 [12]12] 5] 8] npivot selection
pivot=7
Po Py Py Ps3 Py
i i i i ‘ i after local
| 712]18]13] 1]17]14[20] 6 [10]15[9 [3[4 [19]16] 5 [12[11] 8] [eqrrangement
after global
| 712[1]6]3]4]5][18]13[17]14]20[10]15] o [10[16[12[11] 8| [eqrrangement
P P Py Py Py
[7]2]1]6]3]4]5]18]13]17]14]20[10]15] 9 [19]16]12[11] 8| pivot selection
pivot=5 pivot=17
P P P P3 Py
‘ i i i i after loca
l1]2]7[6]3]4]s]1a]13[17]18|20]10[15] 9 |19[16[12[11] 8] reqrrangement
[1]2]3]4]5] 7|6 |w]ws]17]10]15] o [16]12]12] & [18]20[0] ' IOFA
rearrangement
Py Py P P3 Py
[1]2]3]4]5]|7]6]|14]13]17[10]15] o [16]12]11] 8 [18]20]19] pivot selection
pivot=11
Po Py P B3 Py
i after local
[1]2]3]4]5]6]7]10]13]17]14]15] o] 8 [12]12]16[18]19]20] rearrangement
after global
10] 9 | 8 [12]11]13]17]14]15] 16 rearrangement
P P
2 3 after local
10] 9 | 8 |12]11]13]17]14]15] 16 rearrangement
Py P P P Py
[1]2]3]4]5]6]7]8]9]10]11]12]|13]14]15]16]17[18[19]20] Solution

Parallelizing Quicksort: Shared Address Space
Formulation

How to globally merge the local lists (Sy, Lo, S1, L1, ...) to form
S and L?

Each processor needs to determine the right location for its
elements in the merged list.

Each processor first counts the number of elements locally less
than and greater than pivot.

It then computes two sum-scans fo deftermine the starting
location for its elements in the merged S and L lists.

Once it knows the starting locations, it can write its elements
safely.

Parallelizing Quicksort: Shared Address Space
Formulation

[7aa[sa] 2 [2 sa[0] 0] 5[o [s[5 4 aa]ue['s [a] - pivotslction
pivot=7

Py o P - P - P3 . Py

(712 [1a[3[1 Tsr o[o[s [0 15[o s o[s[5 12l 5] ‘hmamuren

Ii“refix Sur¢\ Iﬁi’refix Sur¢1

Lof2]s]afe]7] o] 2]5]8[10]13]

after global

| 7]2[1]6]3[4]5]18[13]17]14]20[10]15] o [19[16]12]11] 8 | reqprangement

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Efficient global rearrangement of the array.

Parallelizing Quicksort: Shared Address Space
Formulation

e The pardllel time depends on the split and merge time, and the
quality of the pivot.

e [he latteris an issue independent of parallelism, so we focus on
the first aspect, assuming ideal pivot selection.

e The algorithm executes In four steps: () determine and
broadcast the pivot; (i) locally rearrange the array assigned
to each process; (i) determine the locations in the globally
rearranged array that the local elements will go to; and (iv)
perform the global rearrangement.

e The first step takes time ©(logp). the second, ©(n/p), the third,
©(log p). and the fourth, ©(n/p).

e The overall complexity of splitting an n-element array is ©(n/p)+
©(logp).

Parallelizing Quicksort: Shared Address Space
Formulation

e [he process recurses unftil there are p lists, at which point, the
lists are sorted locally.

e Therefore, the total parallel fime is:

Ioch sort orrox\spIiTs
Tp =0 (% log %) +06 (% logp) + O(log” p). (2)

e The corresponding isoefficiency is ©(plog® p) due to broadcast
and scan operations.

Parallelizing Quicksort: Message Passing Formulation

A simple message passing formulation is based on the recursive
halving of the machine.

Assume that each processor in the lower half of a p processor
ensemble is paired with a corresponding processor in the upper
half.

A designated processor selects and broadcasts the pivof.

Each processor splits its local list into two lists, one less (5;), and
other greater (L;) than the pivot.

A processor in the low half of the machine sends its list L; To the
paired processor in the other half. The paired processor sends
its list .S;.

It is easy to see that after this step, all elements less than the
pivot are in the low half of the machine and all elements
greater than the pivot are in the high half.

Parallelizing Quicksort: Message Passing Formulation

e The above process is recursed until each processor has itfs own
local list, which is sorted locally.

e The fime for a single reorganizafion is O(log p) for broadcasting
the pivot element, ©(n/p) for splifting the locally assigned
porfion of the aray, ©O(n/p) for exchange and locadl
reorganization.

e We note that this fime is identical fo that of the corresponding
shared address space formulation.

e [Tisimportant fo remember that the reorganization of elements
is a bandwidth sensitive operation.

