INF3380 Exercise Set 1

Exercise 1

e Write a C program to verify that the limit of 1 — 2% + 2% — 2% +...1s %.

e Write a C program that allocates a 1D array of runtime-prescribed

length n, assigns the values of the array with random numbers, and
finds the maximum and minimum values. (You can use e.g. the rand
function from stdlib.h.)

When assigning values to the entries of a m x n matrix, it is common
to use a nested for-loop with the outer index looping over the rows
and the inner index looping over the columns. Does it matter if the
sequence of these two loops is swapped?

Write a C program that allocates a 3D array of dimension (n,, n,,n.,).
A 1D underlying contiguous storage should be used. Assign some values
to the entries of the 3D array. Deallocate the 3D array at the end of
the program.

Exercise 2

e Write a C program that reads from a data file containing one day’s

temperature measurements of the following format:

00:05 -0.1
00:21 0.1
00:29 -0.2



Find out the highest and lowest temperatures and when they occurred.
Compute also the average temperature and the associated standard
deviation.

e Extend the smooth function to be applicable to a 2D array, for which
the numerical formula is

new

v = Vig + ¢ (Vi + vijo1 — 40ig + Vi + Vi)

Exercise 3

e The following two functions implement the famous quicksort:
(see http://alienryderflex.com/quicksort/)

void swap(int *a, int *b)

{
int t=%*a; *a=%*b; xb=t;
+
void sort(int arr[], int beg, int end)
{

if (end > beg + 1) {
int piv = arr[beg], 1 = beg + 1, r = end;
while (1 < 1) {
if (arr[l] <= piv)
1++;
else
swap (&arr[1], &arr[--r]);
}
swap (&arr[--1], &arr[beg]);
sort(arr, beg, 1);
sort(arr, r, end);
}
+

Modify the sort function such that instead of directly sorting the ar-
ray arr, we keep it as is but produce a so-called permutation vec-
tor perm. The purpose is that arr[perm[0]], arr([perm[1]], ...,
arr [perm[n-1]] is an ordered series.



