
INF3380 Exercise Set 1

Exercise 1

• Write a C program to verify that the limit of 1− 1
22

+ 1
24
− 1

26
+ . . . is 4

5
.

• Write a C program that allocates a 1D array of runtime-prescribed
length n, assigns the values of the array with random numbers, and
finds the maximum and minimum values. (You can use e.g. the rand

function from stdlib.h.)

• When assigning values to the entries of a m× n matrix, it is common
to use a nested for-loop with the outer index looping over the rows
and the inner index looping over the columns. Does it matter if the
sequence of these two loops is swapped?

• Write a C program that allocates a 3D array of dimension (nx, ny, nz).
A 1D underlying contiguous storage should be used. Assign some values
to the entries of the 3D array. Deallocate the 3D array at the end of
the program.

Exercise 2

• Write a C program that reads from a data file containing one day’s
temperature measurements of the following format:

00:05 -0.1

00:21 0.1

00:29 -0.2

...

1



Find out the highest and lowest temperatures and when they occurred.
Compute also the average temperature and the associated standard
deviation.

• Extend the smooth function to be applicable to a 2D array, for which
the numerical formula is

vnewi,j = vi,j + c (vi−1,j + vi,j−1 − 4vi,j + vi,j+1 + vi+1,j)

Exercise 3

• The following two functions implement the famous quicksort:
(see http://alienryderflex.com/quicksort/)

void swap(int *a, int *b)

{

int t=*a; *a=*b; *b=t;

}

void sort(int arr[], int beg, int end)

{

if (end > beg + 1) {

int piv = arr[beg], l = beg + 1, r = end;

while (l < r) {

if (arr[l] <= piv)

l++;

else

swap(&arr[l], &arr[--r]);

}

swap(&arr[--l], &arr[beg]);

sort(arr, beg, l);

sort(arr, r, end);

}

}

Modify the sort function such that instead of directly sorting the ar-
ray arr, we keep it as is but produce a so-called permutation vec-
tor perm. The purpose is that arr[perm[0]], arr[perm[1]], . . .,
arr[perm[n-1]] is an ordered series.

2


