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Content

® A quick overview of morden parallel hardware

o Parallelism within a chip
& Pipelining
& Superscaler execution
s SIMD
& Multiple cores

» Parallelism within a compute node
& Multiple sockets
¢ UMA vs. NUMA

» Parallelism across multiple nodes
® A very quick overview of parallel programming
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First things first

CPU—central processing unit—is the “brain” of a computer

CPU processes instructions, many of which require data transfers
from/to the memory on a computer

CPU integrates many components (registers, FPUs, caches...)

CPU has a “clock”, which at each clock cycle synchronizes the logic
units within the CPU to process instructions
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An example of a CPU core
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Block diagram of an Intel Xeon Woodcrest CPU core
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Instruction pipelining

Suppose every instruction has five stages, each taking one cycle
IF | ID MEM | WB

IF|1D| EX | MEM | WB
' IF (1D |EX [ MEM | WB

Without instruction pipelining

IF | ID | EX MEM
li F | D | Ex =Y wB
o IF | ID | = MEM| WB
IF EX |[MEM| WB
ID | EX [MEM| wWB

With instruction pipelining
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Superscalar execution

Multiple execution units = more than one instruction can finish per cycle

IF ID | EX MEM
IF ID | EX [MEM
i IF ID | EX WB
t IF ID | EX WB
IF 1D MEM| WB
IF 1D MEM| WB
IF EX IMEM| WB
IF EX [MEM| WB
ID | EX [MEM| WB
ID | EX |MEM| WB

An enhanced form of instruction-level parallelism
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Data

Data are stored in computer memory as sequence of Os and 1s
Each O or 1 occupies one bit
8 bits constitute one byte

Normally, in the C language:
o char: 1 byte

s | Nt: 4bytes

o fl oat: 4bytes

o doubl e: 8 bytes

Bandwidth—the speed of data transfer—is measured as number of
bytes transferred per second
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SIMD

B Instructions
[[] Data
W Results

® SISD: single instruction stream single data stream
$» SIMD: single instruction stream multiple data streams
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An example of a floating-point unit
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FP unit on an Intel Xeon CPU
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Multicore processor

Modern hardware technology can put several independent CPU cores on
the same chip—a multicore processor

E; E.'I."T T
CPU
Eorer?

S95N4 R 01 UaD)

e BIELPUT o) eBple

=1 2IMB
| GIEL - ES L ap |
8IMB 13| < | 8IMB| 13
‘Cache' |o ) Cache

2INIB
of
BMB L3
Eache

T
2
=
=
m
=
a
@
5
=
=
3
i
i

of
El r'-.'l1 Ei L-.:IF
Eache

s1ang SILUAN
LD1IME

SEMREET

Intel Xeon Nehalem quad-core processor
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Multi-threading

® Modern CPU cores often have threading capability
® Hardware support for multiple threads to be executed within a core

® However, threads have to share resources of a core
& computing units
# caches
o translation lookaside buffer
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Vector processor

® Another approach, different from multicore (and multi-threading)

$» Massive SIMD
# \ector registers

# Direct pipes into main memory with high bandwidth

® Used to be the dominating high-performance computing hardware,
but now only niche technology
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Multi-socket

® Socket—a connection on motherboard that a processor is plugged
Into

® Modern computers often have several sockets
# Each socket holds a multicore processor

o Example: Nehalem-EP (2 xsocket, quad-core CPUs, 8 cores in
total)
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Shared memory

® Shared memory: all CPU cores can access all memory as global
address space

® Traditionally called “multiprocessor”
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UMA

®» UMA—uniform memory access, one type of shared memory

® Another name for symmetric multi-processing
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NUMA

NUMA—non-uniform memory access, another type of shared
memory

Several symmetric multi-processing units are linked together

Each core should access its closest memory unit, as much as
possible

~10% nanoseconds

latency
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Cache coherence

® Important for shared-memory systems

® If one CPU core updates a value in its private cache, all the other
cores “know” about the update

® Cache coherence is accomplished by hardware

Chapter 2.4.6 of Introduction to Parallel Computing describes several
strategies of achieving cache coherence
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“Competition” among the cores

® Within a multi-socket multicore computer, some resources are shared
® \Within a socket, the cores share the last-level cache
® The memory bandwidth is also shared to a great extent

# cores 1 2 4 6 8
BW 3.42 GB/s | 4.56 GB/s | 4.57 GB/s | 4.32 GB/s | 5.28 GB/s

Actual memory bandwidth measured on a 2 x socket quad-core Xeon Harpertown
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Distributed memory

The entire memory consists of several disjoint parts

A communication network is needed in between

There is not a single global memory space

A CPU (core) can directly access its own local memory

A CPU (core) cannot directly access a remote memory

A distributed-memory system is traditionally called a “multicomputer”
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Comparing shared memory and distributed memory

® Sharedmemory
» User-friendly programming
» Data sharing between processors
# Not cost effective
# Synchronization needed

® Distributed-memory
o Memory is scalable with the number of processors
» Cost effective
# Programmer responsible for data communication
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Hybrid memory system
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Different ways of parallel programming

Threads model using OpenMP

o Easy to program (inserting a few OpenMP directives)

» Parallelism "behind the scene" (little user control)

» Difficult to scale to many CPUs (NUMA, cache coherence)

Message passing model using MPI

# Many programming details

» Better user control (data & work decomposition)
» Larger systems and better performance

Stream-based programming (for using GPUSs)

Some special parallel languages
o Co-Array Fortran, Unified Parallel C, Titanium

Hybrid parallel programming

Introduction to parallel computersand parallel programming — p. 22



Designing parallel programs

Determine whether or not the problem is parallelizable

ldentify “hotspots”
o Where are most of the computations?
» Parallelization should focus on the hotspots

Partition the problem
Insert collaboration (unless embarrassingly parallel)
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Partitioning

® Break the problem into “chunks”
$® Domain decomposition (data decomposition)

Problem Data Set

LILILIL

® Functional decomposition

Problem Instruction Set

-
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Examples of domain decomposition

1D a= L el
BELOCK CYCLIC
BLOCK, * * BLOCK BLOCK, BLOCK

CYCLIC, * *, CYCLIC CYCLIC, CYCLIC

https://conputing.lInl.gov/tutorials/parallel _conp/
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Collaboration

® Communication
» Overhead depends on both the number and size of messages
# Overlap communication with computation, if possible
» Different types of communications (one-to-one, collective)

® Synchronization
o Barrier
» Lock & semaphore
# Synchronous communication operations
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Load balancing

Obijective: idle time is minimized

Important for parallel performance

Balanced partitioning of work (and/or data)
Dynamic work assignment may be necessary
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Granularity

® Computations are typically separated from communications by
synchronization events

® Granularity: ratio of computation to communication

® Fine-grain parallelism
# Individual tasks are relatively small
o More overhead incurred
# Might be easier for load balancing

® Coarse-grain parallelism
# Individual tasks are relatively large
# Advantageous for performance due to lower overhead
# Might be harder for load balancing

https://conputing.lInl.gov/tutorials/parallel _conp/
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