Introduction to parallel computers
and parallel programming

Introduction to parallel computersand parallel programming — p. 1

Content

® A quick overview of morden parallel hardware

o Parallelism within a chip
& Pipelining
& Superscaler execution
s SIMD
& Multiple cores

» Parallelism within a compute node
& Multiple sockets
¢ UMA vs. NUMA

» Parallelism across multiple nodes
® A very quick overview of parallel programming

Introduction to parallel computersand parallel programming — p. 2

First things first

CPU—central processing unit—is the “brain” of a computer

CPU processes instructions, many of which require data transfers
from/to the memory on a computer

CPU integrates many components (registers, FPUs, caches...)

CPU has a “clock”, which at each clock cycle synchronizes the logic
units within the CPU to process instructions

Introduction to parallel computersand parallel programming — p. 3

An example of a CPU core

BB/ 2B/ | nstruction TLES
SRl alg prefetcher
7 W ¥ [*™|Microcods ROM M 9P quele ~ &
Trace cache ﬁ
12 1 MOps =
g
=
b
| MIEMOTY W op quens | | Inteper/Floating Point pop quens | E
th
* :
L2 cache | IMemory Scheduler | |Fast | |Sluw.-‘Gene:ral FP Sched. || Simple FPl E
(4 1ME) T } 3
LA Integer Reg File ;|- oo EFP Rep. File/
EE Bypass nerwork Bypass network
] Tr
a ¥ ; F ¥ .1*‘* —l] T T ¥ ¥
§ A G AGLT ATTT ALTT MFPuI\-;l‘; Branch
Simple
o istore) || iload) mgﬂ Contplex S5E(2) Move
32 ES 3B g
evele cyele 1y "; i
Systeml ¥ 104 GBA
Bus
L1 Data ¥ ¥
Cdchs % Diata TLE
(16 KB) .

Block diagram of an Intel Xeon Woodcrest CPU core

Introduction to parallel computersand parallel programming — p. 4

Instruction pipelining

Suppose every instruction has five stages, each taking one cycle
IF | ID MEM | WB

IF|1D| EX | MEM | WB
' IF (1D |EX [MEM | WB

Without instruction pipelining

IF | ID | EX MEM
li F | D | Ex =Y wB
o IF | ID | = MEM| WB
IF EX |[MEM| WB
ID | EX [MEM| wWB

With instruction pipelining

Introduction to parallel computersand parallel programming — p. 5

Superscalar execution

Multiple execution units = more than one instruction can finish per cycle

IF ID | EX MEM
IF ID | EX [MEM
i IF ID | EX WB
t IF ID | EX WB
IF 1D MEM| WB
IF 1D MEM| WB
IF EX IMEM| WB
IF EX [MEM| WB
ID | EX [MEM| WB
ID | EX |MEM| WB

An enhanced form of instruction-level parallelism

Introduction to parallel computersand parallel programming — p. 6

e o0 @

Data

Data are stored in computer memory as sequence of Os and 1s
Each O or 1 occupies one bit
8 bits constitute one byte

Normally, in the C language:
o char: 1 byte

s | Nt: 4bytes

o fl oat: 4bytes

o doubl e: 8 bytes

Bandwidth—the speed of data transfer—is measured as number of
bytes transferred per second

Introduction to parallel computersand parallel programming — p. 7

SIMD

B Instructions
[[] Data
W Results

® SISD: single instruction stream single data stream
$» SIMD: single instruction stream multiple data streams

Introduction to parallel computersand parallel programming — p. 8

An example of a floating-point unit

Floating—Foint Register Fila

4

t ¥ ¥ ¥ y ¥ ¥ ¥
MLX ALU MK i SSE = FE Add FF Mult. FF Diw.
Pack{Unpack| | o Laookimp -3 STED SE5E2 SSE2
Thift E Tabl= E Ty

FP unit on an Intel Xeon CPU

Introduction to parallel computersand parallel programming — p. 9

Multicore processor

Modern hardware technology can put several independent CPU cores on
the same chip—a multicore processor

E; E.'I."T T
CPU
Eorer?

S95N4 R 01 UaD)

e BIELPUT o) eBple

=1 2IMB
| GIEL - ES L ap |
8IMB 13| < | 8IMB| 13
‘Cache' |o) Cache

2INIB
of
BMB L3
Eache

T
2
=
=
m
=
a
@
5
=
=
3
i
i

of
El r'-.'l1 Ei L-.:IF
Eache

s1ang SILUAN
LD1IME

SEMREET

Intel Xeon Nehalem quad-core processor

Introduction to parallel computersand parallel programming — p. 10

Multi-threading

® Modern CPU cores often have threading capability
® Hardware support for multiple threads to be executed within a core

® However, threads have to share resources of a core
& computing units
caches
o translation lookaside buffer

Introduction to parallel computersand parallel programming — p. 11

Vector processor

® Another approach, different from multicore (and multi-threading)

$» Massive SIMD
\ector registers

Direct pipes into main memory with high bandwidth

® Used to be the dominating high-performance computing hardware,
but now only niche technology

Iulain Memory

=" Veoror Inreger Add (3) |
=] Veoror Logical (%) |
el Vector Shift i |

~es=me] Floating-Paint 4dd (6) |
{es=mse] P Bultiply |
es=msm] FP Reciprocal Apx (14] |

=incegeradd (3 |
o= Scalar Shift (2] |

m=me] fddress Add (2)

loemme] Address Mult. (6) |

Introduction to parallel computersand parallel programming — p. 12

Multi-socket

® Socket—a connection on motherboard that a processor is plugged
Into

® Modern computers often have several sockets
Each socket holds a multicore processor

o Example: Nehalem-EP (2 xsocket, quad-core CPUs, 8 cores in
total)

Introduction to parallel computersand parallel programming — p. 13

Shared memory

® Shared memory: all CPU cores can access all memory as global
address space

® Traditionally called “multiprocessor”

Introduction to parallel computersand parallel programming — p. 14

UMA

®» UMA—uniform memory access, one type of shared memory

® Another name for symmetric multi-processing

Woodcrest
ar
Clovertowrn
chips

1o .EIGB.-'E lD.EIGE-.-'s

ey [HHE—F
o, PE—E
T
==

S R

Memory

Controller

|
¥

|

I

PCI Express ports

L
Bridps

Dual-socket Xeon Clovertown CPUs

Introduction to parallel computersand parallel programming — p. 15

NUMA

NUMA—non-uniform memory access, another type of shared
memory

Several symmetric multi-processing units are linked together

Each core should access its closest memory unit, as much as
possible

~10% nanoseconds

latency

o H ‘o
) g IL1[DL1 IL1DL1:|IL1DL IL1|DL1 g
= : i i f
o5
& fo o
e 5 5
gl Q A -
¢ c »| QPI L3 IMC| <

? QP! Qer 8 MiB, inclusive] = ;

o to other Jdf

I Nehalem
socket
DRAM DRAM
QPI2 N “ QPI2
to |OH to |OH
1/0 Hub
< S B < =
Nehalem-EP 4 GiB/s + 4 GiB/s
8-way cc-NUMA per 1B link
platform

Dual-socket Xeon Nehalem CPUs

Introduction to parallel computersand parallel programming — p. 16

Cache coherence

® Important for shared-memory systems

® If one CPU core updates a value in its private cache, all the other
cores “know” about the update

® Cache coherence is accomplished by hardware

Chapter 2.4.6 of Introduction to Parallel Computing describes several
strategies of achieving cache coherence

Introduction to parallel computersand parallel programming — p. 17

“Competition” among the cores

® Within a multi-socket multicore computer, some resources are shared
® \Within a socket, the cores share the last-level cache
® The memory bandwidth is also shared to a great extent

cores 1 2 4 6 8
BW 3.42 GB/s | 4.56 GB/s | 4.57 GB/s | 4.32 GB/s | 5.28 GB/s

Actual memory bandwidth measured on a 2 x socket quad-core Xeon Harpertown

Introduction to parallel computersand parallel programming — p. 18

© oo o0 @

Distributed memory

The entire memory consists of several disjoint parts

A communication network is needed in between

There is not a single global memory space

A CPU (core) can directly access its own local memory

A CPU (core) cannot directly access a remote memory

A distributed-memory system is traditionally called a “multicomputer”

Introduction to parallel computersand parallel programming — p. 19

Comparing shared memory and distributed memory

® Sharedmemory
» User-friendly programming
» Data sharing between processors
Not cost effective
Synchronization needed

® Distributed-memory
o Memory is scalable with the number of processors
» Cost effective
Programmer responsible for data communication

Introduction to parallel computersand parallel programming — p. 20

Hybrid memory system

Interconnect Network

Core | Core | Core | Core Core | Core | Core | Core
Cache Cache Cache Cache
Bus
Compute Node
Core | Core | Core | Core Core | Core | Core | Core
Cache Cache Cache Cache
Bus
Compute Node
[)
[)
[
[)
Core | Core | Core | Core Core | Core | Core | Core
Cache Cache Cache Cache
Bus
Compute Node

Introduction to parallel computersand parallel programming — p. 21

Different ways of parallel programming

Threads model using OpenMP

o Easy to program (inserting a few OpenMP directives)

» Parallelism "behind the scene" (little user control)

» Difficult to scale to many CPUs (NUMA, cache coherence)

Message passing model using MPI

Many programming details

» Better user control (data & work decomposition)
» Larger systems and better performance

Stream-based programming (for using GPUSs)

Some special parallel languages
o Co-Array Fortran, Unified Parallel C, Titanium

Hybrid parallel programming

Introduction to parallel computersand parallel programming — p. 22

Designing parallel programs

Determine whether or not the problem is parallelizable

ldentify “hotspots”
o Where are most of the computations?
» Parallelization should focus on the hotspots

Partition the problem
Insert collaboration (unless embarrassingly parallel)

Introduction to parallel computersand parallel programming — p. 23

Partitioning

® Break the problem into “chunks”
$® Domain decomposition (data decomposition)

Problem Data Set

LILILIL

® Functional decomposition

Problem Instruction Set

-

Introguction to parallel computersand parallel programming — p. 24

https://computina.llnl.agov/tutorials/parall el _conp

task 0 task 1

Examples of domain decomposition

1D a= L el
BELOCK CYCLIC
BLOCK, * * BLOCK BLOCK, BLOCK

CYCLIC, * *, CYCLIC CYCLIC, CYCLIC

https://conputing.lInl.gov/tutorials/parallel _conp/

Introduction to parallel computersand parallel programming — p. 25

Collaboration

® Communication
» Overhead depends on both the number and size of messages
Overlap communication with computation, if possible
» Different types of communications (one-to-one, collective)

® Synchronization
o Barrier
» Lock & semaphore
Synchronous communication operations

Introduction to parallel computersand parallel programming — p. 26

e o0 o

Load balancing

Obijective: idle time is minimized

Important for parallel performance

Balanced partitioning of work (and/or data)
Dynamic work assignment may be necessary

Introduction to parallel computersand parallel programming — p. 27

Granularity

® Computations are typically separated from communications by
synchronization events

® Granularity: ratio of computation to communication

® Fine-grain parallelism
Individual tasks are relatively small
o More overhead incurred
Might be easier for load balancing

® Coarse-grain parallelism
Individual tasks are relatively large
Advantageous for performance due to lower overhead
Might be harder for load balancing

https://conputing.lInl.gov/tutorials/parallel _conp/

Introduction to parallel computersand parallel programming — p. 28

	Content
	First things first
	An example of a CPU core
	Instruction pipelining
	Superscalar execution
	Data
	SIMD
	An example of a floating-point unit
	Multicore processor
	Multi-threading
	Vector processor
	Multi-socket
	Shared memory
	UMA
	NUMA
	Cache coherence
	``Competition'' among the cores
	Distributed memory
	Comparing shared memory and distributed memory
	Hybrid memory system
	Different ways of parallel programming
	Designing parallel programs
	Partitioning
	Examples of domain decomposition
	Collaboration
	Load balancing
	Granularity

