
INF3380: Summary

INF3380: Summary – p. 1



Outline

INF3380: an introduction to parallel programming

Why?
We want to solve larger scientific problems faster
Parallel hardware is now widespread

How?
Given a problem, identify parallelism
Design & analysis of parallel algorithms
Implementation using OpenMP and/or MPI programming

Concrete examples

Note: This summary is very general, you should
read the book for details!

INF3380: Summary – p. 2



Decomposition (Chap. 3)

Decomposition is the first step of developing a parallel algorithm

A given problem may be decomposed into tasks, in many different
ways

A decomposition can be represented by a task dependency graph:
Nodes correspond to tasks
Edges indicate that the result of one task is required for
processing the next

INF3380: Summary – p. 3



Granularity and degree of concurrency (Chap. 3)

Granularity depends on the number of tasks from decomposition
fine-grained decomposition
coarse-grained decomposition

Degree of concurrency: the number of tasks can be executed in
parallel

may change as the execution proceeds
finer granularity → increased concurrency

INF3380: Summary – p. 4



Limits on parallel performance (Chap. 3)

It would appear that the parallel time can be made arbitrarily small by
making the decomposition finer in granularity.

There is, howeer, an inherent bound on how fine the granularity of a
computation can be.

Concurrent tasks often have to exchange data with other tasks. This
results in communication overhead.

There is a tradeoff between the granularity of a decomposition and
associated overheads.

INF3380: Summary – p. 5



Processes and mapping (Chap. 3)

In general, the number of tasks from a decomposition exceeds the
number of processing elements available

A parallel algorithm thus must also provide a mapping of tasks to
processing elements

Appropriate mapping is important for parallel performance
load balancing
interaction minimization
assigning tasks on critical path to processing elements as soon
as possible

INF3380: Summary – p. 6



Point-to-point communication cost

A simple cost model:
tcomm = ts +mtw

ts — startup time
tw — per-word transfer time
m — amount of data transferred

INF3380: Summary – p. 7



Group communication (Chap. 4)

Many interactions in practical parallel programs occur in well-defined
patterns involving groups of processors.

Group communication operations are built using point-to-point
messaging primitives.

The actual cost of a group communication depends on
the type of communication
the number of processors involved
the communication network used

INF3380: Summary – p. 8



Analytical modeling (Chap. 5)

The parallel runtime TP of a program depends on the input size the
parallel system and p

TS : serial time.

Total overhead: To = Tall − TS = pTP − TS

INF3380: Summary – p. 9



Speedup (Chap. 5)

S(p) =
TS

TP (p)

Always consider the best sequential program as the baseline

Speedup is normally bounded by p, but can have exceptions
(superlinear speedup)

Parallel efficiency: E = S(p)/p

INF3380: Summary – p. 10



Cost optimality (Chap. 5)

Total cost of a parallel system: p× TP

A parallel system is said to cost-optimal if p× TP is asymptotically
identical with TS

Parallel efficiency E = O(1) for cost-optimal systems

INF3380: Summary – p. 11



Scaling (Chap. 5)

Efficiency:

E =
S

p
=

TS

pTP
=

1

1 + To

TS

Note: total overhead To is typically an increasing function of p

To maintain a constant level of E, we have to increase the problem
size as the same time as p increases

if yes → scalable parallel system

INF3380: Summary – p. 12



Maintaining parallel efficiency (Chap. 5)

At what rate should the problem size be increased, with respect to p,
if we want to maintain a constant parallel efficiency?

This rate determines the scalability of the system, the slower the
better

Problem size W : the asymptotic number of operations associated
with the best serial algorithm to solve the problem

INF3380: Summary – p. 13



Isoefficiency metric (Chap. 5)

Recall

TP =
W + To(W, p)

p

S =
W

TP
=

pW

W + To(W, p)

Therefore,

E =
S

p
=

W

W + To(W, p)
=

1

1 + To(W, p)/W

INF3380: Summary – p. 14



More about isoefficiency metric

From E = 1
1+To(W,p)/W we can get

To(W, p)

W
=

1− E

E
⇒ W =

E

1− E
To(W, p)

For a desired efficiency E, we will have a constant K = E/(1− E),
which tells us that W must grow as fast as

W = KTo(W, p)

That is, W can usually be obtained as a function of p for maintaining
efficiency — isoefficiency function

INF3380: Summary – p. 15



Serial fraction (Chap. 5)

Suppose

W = Tser + Tpar

TP = Tser +
Tpar

p
= Tser +

W − Tser

p

Then we can define the serial fraction as

f =
Tser

W

Therefore

TP = f ×W +
W − f ×W

p
= W ×

(

f +
1− f

p

)

INF3380: Summary – p. 16



MPI programming (Chap. 6)

MPI is the de-facto standard of message passing programming

Assumption: each process’s own memory is not directly accessible
by other processes

Collaboration between the processes is through sending and
receiving messages between the processes

a message is an array of predefined data types
point-to-point communication
collective communication

The global data structure is normally divided among the processes
(as little duplication as possible)

INF3380: Summary – p. 17



MPI basics (Chap. 6)

The working units are called MPI processes

An MPI communicator is group of processes

Each process within a communicator has a unique rank, between 0
and #procs-1

Carelessly programmed MPI communications may deadlock

Non-deterministic features of an MPI program
Between communications, the different processes may proceed
at different paces
If a process is expecting two messages from two senders, the
order of arrival is normally not known beforehand

Synchronization
explicit – MPI Barrier

implicit – collective commands or matching MPI Send and
MPI Recv

INF3380: Summary – p. 18



Overlap communication with computation (Chap. 6)

Performance may be improved on many systems by overlapping
communication with computation

Use of non-blocking communication and completion routines

For example, initiate the communication with MPI Isend and
MPI Irecv, continue with computation, finish with MPI Wait

INF3380: Summary – p. 19



OpenMP programming (Chap. 7)

OpenMP is the most user-friendly thread programming standard

Thread programming is a natural model for shared-memory
architecture

Execution unit: thread
Many threads have access to shared variables
Information exchange is (implicitly) through the shared variables

INF3380: Summary – p. 20



The programming model of OpenMP (Chap. 7)

Multiple cooperating threads are allowed to run simultaneously

The threads are created and destroyed dynamically in a fork-join
pattern

An OpenMP program consists of a number of parallel regions
Between two parallel regions there is only one master thread
In the beginning of a parallel region, a team of new threads is
spawned
The new threads work simultaneously with the master thread
At the end of a parallel region, the new threads are destroyed

INF3380: Summary – p. 21



The memory model of OpenMP (Chap. 7)

Most variables are shared between the threads

Each thread has the possibility of having some private variables
Avoid race conditions
Passing values between the sequential part and the parallel
region

Very important to decide: which variables should be shared? which
should be private?

INF3380: Summary – p. 22



Practicalities

First step: identify parallelism in a sequential algorithm
find out the operations that can be done simultaneously

Good work division is important
even distribution of the work load among computational units
keep the overhead of resulting communication low

On distributed memory, data should be divided as well

Be aware of needed synchronizations (both MPI and OpenMP)

Be aware of possible deadlocks (both MPI and OpenMP)

Be aware of possible racing conditions (OpenMP)

INF3380: Summary – p. 23



Matrix-vector multiplication (Chap. 8)

Multiply a dense n× n matrix A with an n× 1 input vector x to yield
an n× 1 result vector y.

Rowwise 1D partitioning

2D block partitioning

INF3380: Summary – p. 24



Matrix-matrix multiplication (Chap. 8)

C = A× B, where A, B and C are al square n× n matrices

2D block data partitioning, each block is an (n/q)× (n/q) submatrix.
Simple parallel algorithm
Cannon’s algorithm
The DNS algorithm

INF3380: Summary – p. 25



Solving a system of linear equations (Chap. 8)

Ax = b where A is an n× n square (dense) matrix

Parallelization of a simple Gaussian elimination algorithm

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin

3. for k := 0 to n− 1 do /* Outer loop */
4. begin

5. for j := k + 1 to n− 1 do

6. A[k, j] := A[k, j]/A[k, k]; /* Division step */
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n− 1 do

10. begin

11. for j := k + 1 to n− 1 do

12. A[i, j] := A[i, j]−A[i, k]×A[k, j]; /* Elimination step */
13. b[i] := b[i]−A[i, k]× y[k];
14. A[i, k] := 0;
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN_ELIMINATION INF3380: Summary – p. 26



Parallel sorting (Chap. 9)

Odd-even transposition

Shellsort

Quicksort

INF3380: Summary – p. 27



Parallel graph algorithms (Chap. 10)

Minimum spanning tree: Prim’s algorithm

Single-source shortest paths: Dijkstra’s algorithm

All-pairs shortest paths: Dijkstra’s algorithm & Floyd’s algorithm

INF3380: Summary – p. 28



About the exam

4-hour written exam

One A4-sheet (two-sided) with handwritten notes is allowed at the
exam

INF3380: Summary – p. 29


	Outline
	Decomposition (Chap.~3)
	Granularity and degree of concurrency (Chap.~3)
	Limits on parallel performance (Chap.~3)
	Processes and mapping (Chap.~3)
	Point-to-point communication cost
	Group communication (Chap.~4)
	Analytical modeling (Chap.~5)
	Speedup (Chap.~5)
	Cost optimality (Chap.~5)
	Scaling (Chap.~5)
	Maintaining parallel efficiency (Chap.~5)
	Isoefficiency metric (Chap.~5)
	More about isoefficiency metric
	Serial fraction (Chap.~5)
	MPI programming (Chap.~6)
	MPI basics (Chap.~6)
	Overlap communication with computation (Chap.~6)
	OpenMP programming (Chap.~7)
	The programming model of OpenMP (Chap.~7)
	The memory model of OpenMP (Chap.~7)
	Practicalities
	Matrix-vector multiplication (Chap.~8)
	Matrix-matrix multiplication (Chap.~8)
	Solving a system of linear equations (Chap.~8)
	Parallel sorting (Chap.~9)
	Parallel graph algorithms (Chap.~10)
	About the exam

